
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.resource-control.5'

$ man systemd.resource-control.5

SYSTEMD.RESOURCE-CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE-CONTROL(5)

NAME

 systemd.resource-control - Resource control unit settings

SYNOPSIS

 slice.slice, scope.scope, service.service, socket.socket, mount.mount, swap.swap

DESCRIPTION

 Unit configuration files for services, slices, scopes, sockets, mount points, and swap

 devices share a subset of configuration options for resource control of spawned processes.

 Internally, this relies on the Linux Control Groups (cgroups) kernel concept for

 organizing processes in a hierarchical tree of named groups for the purpose of resource

 management.

 This man page lists the configuration options shared by those six unit types. See

 systemd.unit(5) for the common options of all unit configuration files, and

 systemd.slice(5), systemd.scope(5), systemd.service(5), systemd.socket(5),

 systemd.mount(5), and systemd.swap(5) for more information on the specific unit

 configuration files. The resource control configuration options are configured in the

 [Slice], [Scope], [Service], [Socket], [Mount], or [Swap] sections, depending on the unit

 type.

 In addition, options which control resources available to programs executed by systemd are

 listed in systemd.exec(5). Those options complement options listed here.

 See the New Control Group Interfaces[1] for an introduction on how to make use of resource

 control APIs from programs.

 Setting resource controls for a group of related units Page 1/23

 As described in systemd.unit(5), the settings listed here may be set through the main file

 of a unit and drop-in snippets in *.d/ directories. The list of directories searched for

 drop-ins includes names formed by repeatedly truncating the unit name after all dashes.

 This is particularly convenient to set resource limits for a group of units with similar

 names.

 For example, every user gets their own slice user-nnn.slice. Drop-ins with local

 configuration that affect user 1000 may be placed in /etc/systemd/system/user-1000.slice,

 /etc/systemd/system/user-1000.slice.d/*.conf, but also

 /etc/systemd/system/user-.slice.d/*.conf. This last directory applies to all user slices.

IMPLICIT DEPENDENCIES

 The following dependencies are implicitly added:

 ? Units with the Slice= setting set automatically acquire Requires= and After=

 dependencies on the specified slice unit.

UNIFIED AND LEGACY CONTROL GROUP HIERARCHIES

 The unified control group hierarchy is the new version of kernel control group interface,

 see Control Groups v2[2]. Depending on the resource type, there are differences in

 resource control capabilities. Also, because of interface changes, some resource types

 have separate set of options on the unified hierarchy.

 CPU

 CPUWeight= and StartupCPUWeight= replace CPUShares= and StartupCPUShares=,

 respectively.

 The "cpuacct" controller does not exist separately on the unified hierarchy.

 Memory

 MemoryMax= replaces MemoryLimit=. MemoryLow= and MemoryHigh= are effective only on

 unified hierarchy.

 IO

 "IO"-prefixed settings are a superset of and replace "BlockIO"-prefixed ones. On

 unified hierarchy, IO resource control also applies to buffered writes.

 To ease the transition, there is best-effort translation between the two versions of

 settings. For each controller, if any of the settings for the unified hierarchy are

 present, all settings for the legacy hierarchy are ignored. If the resulting settings are

 for the other type of hierarchy, the configurations are translated before application.

 Legacy control group hierarchy (see Control Groups version 1[3]), also called cgroup-v1, Page 2/23

 doesn't allow safe delegation of controllers to unprivileged processes. If the system uses

 the legacy control group hierarchy, resource control is disabled for the systemd user

 instance, see systemd(1).

OPTIONS

 Units of the types listed above can have settings for resource control configuration:

 CPUAccounting=

 Turn on CPU usage accounting for this unit. Takes a boolean argument. Note that

 turning on CPU accounting for one unit will also implicitly turn it on for all units

 contained in the same slice and for all its parent slices and the units contained

 therein. The system default for this setting may be controlled with

 DefaultCPUAccounting= in systemd-system.conf(5).

 CPUWeight=weight, StartupCPUWeight=weight

 Assign the specified CPU time weight to the processes executed, if the unified control

 group hierarchy is used on the system. These options take an integer value and control

 the "cpu.weight" control group attribute. The allowed range is 1 to 10000. Defaults to

 100. For details about this control group attribute, see Control Groups v2[2] and CFS

 Scheduler[4]. The available CPU time is split up among all units within one slice

 relative to their CPU time weight. A higher weight means more CPU time, a lower weight

 means less.

 While StartupCPUWeight= only applies to the startup phase of the system, CPUWeight=

 applies to normal runtime of the system, and if the former is not set also to the

 startup phase. Using StartupCPUWeight= allows prioritizing specific services at

 boot-up differently than during normal runtime.

 These settings replace CPUShares= and StartupCPUShares=.

 CPUQuota=

 Assign the specified CPU time quota to the processes executed. Takes a percentage

 value, suffixed with "%". The percentage specifies how much CPU time the unit shall

 get at maximum, relative to the total CPU time available on one CPU. Use values > 100%

 for allotting CPU time on more than one CPU. This controls the "cpu.max" attribute on

 the unified control group hierarchy and "cpu.cfs_quota_us" on legacy. For details

 about these control group attributes, see Control Groups v2[2] and sched-bwc.txt[5].

 Setting CPUQuota= to an empty value unsets the quota.

 Example: CPUQuota=20% ensures that the executed processes will never get more than 20% Page 3/23

 CPU time on one CPU.

 CPUQuotaPeriodSec=

 Assign the duration over which the CPU time quota specified by CPUQuota= is measured.

 Takes a time duration value in seconds, with an optional suffix such as "ms" for

 milliseconds (or "s" for seconds.) The default setting is 100ms. The period is clamped

 to the range supported by the kernel, which is [1ms, 1000ms]. Additionally, the period

 is adjusted up so that the quota interval is also at least 1ms. Setting

 CPUQuotaPeriodSec= to an empty value resets it to the default.

 This controls the second field of "cpu.max" attribute on the unified control group

 hierarchy and "cpu.cfs_period_us" on legacy. For details about these control group

 attributes, see Control Groups v2[2] and CFS Scheduler[4].

 Example: CPUQuotaPeriodSec=10ms to request that the CPU quota is measured in periods

 of 10ms.

 AllowedCPUs=

 Restrict processes to be executed on specific CPUs. Takes a list of CPU indices or

 ranges separated by either whitespace or commas. CPU ranges are specified by the lower

 and upper CPU indices separated by a dash.

 Setting AllowedCPUs= doesn't guarantee that all of the CPUs will be used by the

 processes as it may be limited by parent units. The effective configuration is

 reported as EffectiveCPUs=.

 This setting is supported only with the unified control group hierarchy.

 AllowedMemoryNodes=

 Restrict processes to be executed on specific memory NUMA nodes. Takes a list of

 memory NUMA nodes indices or ranges separated by either whitespace or commas. Memory

 NUMA nodes ranges are specified by the lower and upper NUMA nodes indices separated by

 a dash.

 Setting AllowedMemoryNodes= doesn't guarantee that all of the memory NUMA nodes will

 be used by the processes as it may be limited by parent units. The effective

 configuration is reported as EffectiveMemoryNodes=.

 This setting is supported only with the unified control group hierarchy.

 MemoryAccounting=

 Turn on process and kernel memory accounting for this unit. Takes a boolean argument.

 Note that turning on memory accounting for one unit will also implicitly turn it on Page 4/23

 for all units contained in the same slice and for all its parent slices and the units

 contained therein. The system default for this setting may be controlled with

 DefaultMemoryAccounting= in systemd-system.conf(5).

 MemoryMin=bytes, MemoryLow=bytes

 Specify the memory usage protection of the executed processes in this unit. When

 reclaiming memory, the unit is treated as if it was using less memory resulting in

 memory to be preferentially reclaimed from unprotected units. Using MemoryLow= results

 in a weaker protection where memory may still be reclaimed to avoid invoking the OOM

 killer in case there is no other reclaimable memory.

 For a protection to be effective, it is generally required to set a corresponding

 allocation on all ancestors, which is then distributed between children (with the

 exception of the root slice). Any MemoryMin= or MemoryLow= allocation that is not

 explicitly distributed to specific children is used to create a shared protection for

 all children. As this is a shared protection, the children will freely compete for the

 memory.

 Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the

 specified memory size is parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with

 the base 1024), respectively. Alternatively, a percentage value may be specified,

 which is taken relative to the installed physical memory on the system. If assigned

 the special value "infinity", all available memory is protected, which may be useful

 in order to always inherit all of the protection afforded by ancestors. This controls

 the "memory.min" or "memory.low" control group attribute. For details about this

 control group attribute, see Memory Interface Files[6].

 This setting is supported only if the unified control group hierarchy is used and

 disables MemoryLimit=.

 Units may have their children use a default "memory.min" or "memory.low" value by

 specifying DefaultMemoryMin= or DefaultMemoryLow=, which has the same semantics as

 MemoryMin= and MemoryLow=. This setting does not affect "memory.min" or "memory.low"

 in the unit itself. Using it to set a default child allocation is only useful on

 kernels older than 5.7, which do not support the "memory_recursiveprot" cgroup2 mount

 option.

 MemoryHigh=bytes

 Specify the throttling limit on memory usage of the executed processes in this unit. Page 5/23

 Memory usage may go above the limit if unavoidable, but the processes are heavily

 slowed down and memory is taken away aggressively in such cases. This is the main

 mechanism to control memory usage of a unit.

 Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the

 specified memory size is parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with

 the base 1024), respectively. Alternatively, a percentage value may be specified,

 which is taken relative to the installed physical memory on the system. If assigned

 the special value "infinity", no memory throttling is applied. This controls the

 "memory.high" control group attribute. For details about this control group attribute,

 see Memory Interface Files[6].

 This setting is supported only if the unified control group hierarchy is used and

 disables MemoryLimit=.

 MemoryMax=bytes

 Specify the absolute limit on memory usage of the executed processes in this unit. If

 memory usage cannot be contained under the limit, out-of-memory killer is invoked

 inside the unit. It is recommended to use MemoryHigh= as the main control mechanism

 and use MemoryMax= as the last line of defense.

 Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the

 specified memory size is parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with

 the base 1024), respectively. Alternatively, a percentage value may be specified,

 which is taken relative to the installed physical memory on the system. If assigned

 the special value "infinity", no memory limit is applied. This controls the

 "memory.max" control group attribute. For details about this control group attribute,

 see Memory Interface Files[6].

 This setting replaces MemoryLimit=.

 MemorySwapMax=bytes

 Specify the absolute limit on swap usage of the executed processes in this unit.

 Takes a swap size in bytes. If the value is suffixed with K, M, G or T, the specified

 swap size is parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base

 1024), respectively. If assigned the special value "infinity", no swap limit is

 applied. This controls the "memory.swap.max" control group attribute. For details

 about this control group attribute, see Memory Interface Files[6].

 This setting is supported only if the unified control group hierarchy is used and Page 6/23

 disables MemoryLimit=.

 TasksAccounting=

 Turn on task accounting for this unit. Takes a boolean argument. If enabled, the

 system manager will keep track of the number of tasks in the unit. The number of tasks

 accounted this way includes both kernel threads and userspace processes, with each

 thread counting individually. Note that turning on tasks accounting for one unit will

 also implicitly turn it on for all units contained in the same slice and for all its

 parent slices and the units contained therein. The system default for this setting may

 be controlled with DefaultTasksAccounting= in systemd-system.conf(5).

 TasksMax=N

 Specify the maximum number of tasks that may be created in the unit. This ensures that

 the number of tasks accounted for the unit (see above) stays below a specific limit.

 This either takes an absolute number of tasks or a percentage value that is taken

 relative to the configured maximum number of tasks on the system. If assigned the

 special value "infinity", no tasks limit is applied. This controls the "pids.max"

 control group attribute. For details about this control group attribute, see Process

 Number Controller[7].

 The system default for this setting may be controlled with DefaultTasksMax= in

 systemd-system.conf(5).

 IOAccounting=

 Turn on Block I/O accounting for this unit, if the unified control group hierarchy is

 used on the system. Takes a boolean argument. Note that turning on block I/O

 accounting for one unit will also implicitly turn it on for all units contained in the

 same slice and all for its parent slices and the units contained therein. The system

 default for this setting may be controlled with DefaultIOAccounting= in systemd-

 system.conf(5).

 This setting replaces BlockIOAccounting= and disables settings prefixed with BlockIO

 or StartupBlockIO.

 IOWeight=weight, StartupIOWeight=weight

 Set the default overall block I/O weight for the executed processes, if the unified

 control group hierarchy is used on the system. Takes a single weight value (between 1

 and 10000) to set the default block I/O weight. This controls the "io.weight" control

 group attribute, which defaults to 100. For details about this control group Page 7/23

 attribute, see IO Interface Files[8]. The available I/O bandwidth is split up among

 all units within one slice relative to their block I/O weight. A higher weight means

 more I/O bandwidth, a lower weight means less.

 While StartupIOWeight= only applies to the startup phase of the system, IOWeight=

 applies to the later runtime of the system, and if the former is not set also to the

 startup phase. This allows prioritizing specific services at boot-up differently than

 during runtime.

 These settings replace BlockIOWeight= and StartupBlockIOWeight= and disable settings

 prefixed with BlockIO or StartupBlockIO.

 IODeviceWeight=device weight

 Set the per-device overall block I/O weight for the executed processes, if the unified

 control group hierarchy is used on the system. Takes a space-separated pair of a file

 path and a weight value to specify the device specific weight value, between 1 and

 10000. (Example: "/dev/sda 1000"). The file path may be specified as path to a block

 device node or as any other file, in which case the backing block device of the file

 system of the file is determined. This controls the "io.weight" control group

 attribute, which defaults to 100. Use this option multiple times to set weights for

 multiple devices. For details about this control group attribute, see IO Interface

 Files[8].

 This setting replaces BlockIODeviceWeight= and disables settings prefixed with BlockIO

 or StartupBlockIO.

 The specified device node should reference a block device that has an I/O scheduler

 associated, i.e. should not refer to partition or loopback block devices, but to the

 originating, physical device. When a path to a regular file or directory is specified

 it is attempted to discover the correct originating device backing the file system of

 the specified path. This works correctly only for simpler cases, where the file system

 is directly placed on a partition or physical block device, or where simple 1:1

 encryption using dm-crypt/LUKS is used. This discovery does not cover complex storage

 and in particular RAID and volume management storage devices.

 IOReadBandwidthMax=device bytes, IOWriteBandwidthMax=device bytes

 Set the per-device overall block I/O bandwidth maximum limit for the executed

 processes, if the unified control group hierarchy is used on the system. This limit is

 not work-conserving and the executed processes are not allowed to use more even if the Page 8/23

 device has idle capacity. Takes a space-separated pair of a file path and a bandwidth

 value (in bytes per second) to specify the device specific bandwidth. The file path

 may be a path to a block device node, or as any other file in which case the backing

 block device of the file system of the file is used. If the bandwidth is suffixed with

 K, M, G, or T, the specified bandwidth is parsed as Kilobytes, Megabytes, Gigabytes,

 or Terabytes, respectively, to the base of 1000. (Example:

 "/dev/disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0 5M"). This controls the "io.max"

 control group attributes. Use this option multiple times to set bandwidth limits for

 multiple devices. For details about this control group attribute, see IO Interface

 Files[8].

 These settings replace BlockIOReadBandwidth= and BlockIOWriteBandwidth= and disable

 settings prefixed with BlockIO or StartupBlockIO.

 Similar restrictions on block device discovery as for IODeviceWeight= apply, see

 above.

 IOReadIOPSMax=device IOPS, IOWriteIOPSMax=device IOPS

 Set the per-device overall block I/O IOs-Per-Second maximum limit for the executed

 processes, if the unified control group hierarchy is used on the system. This limit is

 not work-conserving and the executed processes are not allowed to use more even if the

 device has idle capacity. Takes a space-separated pair of a file path and an IOPS

 value to specify the device specific IOPS. The file path may be a path to a block

 device node, or as any other file in which case the backing block device of the file

 system of the file is used. If the IOPS is suffixed with K, M, G, or T, the specified

 IOPS is parsed as KiloIOPS, MegaIOPS, GigaIOPS, or TeraIOPS, respectively, to the base

 of 1000. (Example: "/dev/disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0 1K"). This

 controls the "io.max" control group attributes. Use this option multiple times to set

 IOPS limits for multiple devices. For details about this control group attribute, see

 IO Interface Files[8].

 These settings are supported only if the unified control group hierarchy is used and

 disable settings prefixed with BlockIO or StartupBlockIO.

 Similar restrictions on block device discovery as for IODeviceWeight= apply, see

 above.

 IODeviceLatencyTargetSec=device target

 Set the per-device average target I/O latency for the executed processes, if the Page 9/23

 unified control group hierarchy is used on the system. Takes a file path and a

 timespan separated by a space to specify the device specific latency target. (Example:

 "/dev/sda 25ms"). The file path may be specified as path to a block device node or as

 any other file, in which case the backing block device of the file system of the file

 is determined. This controls the "io.latency" control group attribute. Use this option

 multiple times to set latency target for multiple devices. For details about this

 control group attribute, see IO Interface Files[8].

 Implies "IOAccounting=yes".

 These settings are supported only if the unified control group hierarchy is used.

 Similar restrictions on block device discovery as for IODeviceWeight= apply, see

 above.

 IPAccounting=

 Takes a boolean argument. If true, turns on IPv4 and IPv6 network traffic accounting

 for packets sent or received by the unit. When this option is turned on, all IPv4 and

 IPv6 sockets created by any process of the unit are accounted for.

 When this option is used in socket units, it applies to all IPv4 and IPv6 sockets

 associated with it (including both listening and connection sockets where this

 applies). Note that for socket-activated services, this configuration setting and the

 accounting data of the service unit and the socket unit are kept separate, and

 displayed separately. No propagation of the setting and the collected statistics is

 done, in either direction. Moreover, any traffic sent or received on any of the socket

 unit's sockets is accounted to the socket unit ? and never to the service unit it

 might have activated, even if the socket is used by it.

 The system default for this setting may be controlled with DefaultIPAccounting= in

 systemd-system.conf(5).

 IPAddressAllow=ADDRESS[/PREFIXLENGTH]..., IPAddressDeny=ADDRESS[/PREFIXLENGTH]...

 Turn on network traffic filtering for IP packets sent and received over AF_INET and

 AF_INET6 sockets. Both directives take a space separated list of IPv4 or IPv6

 addresses, each optionally suffixed with an address prefix length in bits after a "/"

 character. If the suffix is omitted, the address is considered a host address, i.e.

 the filter covers the whole address (32 bits for IPv4, 128 bits for IPv6).

 The access lists configured with this option are applied to all sockets created by

 processes of this unit (or in the case of socket units, associated with it). The lists Page 10/23

 are implicitly combined with any lists configured for any of the parent slice units

 this unit might be a member of. By default both access lists are empty. Both ingress

 and egress traffic is filtered by these settings. In case of ingress traffic the

 source IP address is checked against these access lists, in case of egress traffic the

 destination IP address is checked. The following rules are applied in turn:

 ? Access is granted when the checked IP address matches an entry in the

 IPAddressAllow= list.

 ? Otherwise, access is denied when the checked IP address matches an entry in the

 IPAddressDeny= list.

 ? Otherwise, access is granted.

 In order to implement an allow-listing IP firewall, it is recommended to use a

 IPAddressDeny=any setting on an upper-level slice unit (such as the root slice -.slice

 or the slice containing all system services system.slice ? see systemd.special(7) for

 details on these slice units), plus individual per-service IPAddressAllow= lines

 permitting network access to relevant services, and only them.

 Note that for socket-activated services, the IP access list configured on the socket

 unit applies to all sockets associated with it directly, but not to any sockets

 created by the ultimately activated services for it. Conversely, the IP access list

 configured for the service is not applied to any sockets passed into the service via

 socket activation. Thus, it is usually a good idea to replicate the IP access lists on

 both the socket and the service unit. Nevertheless, it may make sense to maintain one

 list more open and the other one more restricted, depending on the usecase.

 If these settings are used multiple times in the same unit the specified lists are

 combined. If an empty string is assigned to these settings the specific access list is

 reset and all previous settings undone.

 In place of explicit IPv4 or IPv6 address and prefix length specifications a small set

 of symbolic names may be used. The following names are defined:

 Table 1. Special address/network names

 ??

 ?Symbolic Name ? Definition ? Meaning ?

 ??

 ?any ? 0.0.0.0/0 ::/0 ? Any host ?

 ?? Page 11/23

 ?localhost ? 127.0.0.0/8 ::1/128 ? All addresses on the ?

 ? ? ? local loopback ?

 ??

 ?link-local ? 169.254.0.0/16 fe80::/64 ? All link-local IP ?

 ? ? ? addresses ?

 ??

 ?multicast ? 224.0.0.0/4 ff00::/8 ? All IP multicasting ?

 ? ? ? addresses ?

 ??

 Note that these settings might not be supported on some systems (for example if eBPF

 control group support is not enabled in the underlying kernel or container manager).

 These settings will have no effect in that case. If compatibility with such systems is

 desired it is hence recommended to not exclusively rely on them for IP security.

 IPIngressFilterPath=BPF_FS_PROGRAM_PATH, IPEgressFilterPath=BPF_FS_PROGRAM_PATH

 Add custom network traffic filters implemented as BPF programs, applying to all IP

 packets sent and received over AF_INET and AF_INET6 sockets. Takes an absolute path to

 a pinned BPF program in the BPF virtual filesystem (/sys/fs/bpf/).

 The filters configured with this option are applied to all sockets created by

 processes of this unit (or in the case of socket units, associated with it). The

 filters are loaded in addition to filters any of the parent slice units this unit

 might be a member of as well as any IPAddressAllow= and IPAddressDeny= filters in any

 of these units. By default there are no filters specified.

 If these settings are used multiple times in the same unit all the specified programs

 are attached. If an empty string is assigned to these settings the program list is

 reset and all previous specified programs ignored.

 If the path BPF_FS_PROGRAM_PATH in IPIngressFilterPath= assignment is already being

 handled by BPFProgram= ingress hook, e.g. BPFProgram=ingress:BPF_FS_PROGRAM_PATH, the

 assignment will be still considered valid and the program will be attached to a

 cgroup. Same for IPEgressFilterPath= path and egress hook.

 Note that for socket-activated services, the IP filter programs configured on the

 socket unit apply to all sockets associated with it directly, but not to any sockets

 created by the ultimately activated services for it. Conversely, the IP filter

 programs configured for the service are not applied to any sockets passed into the Page 12/23

 service via socket activation. Thus, it is usually a good idea, to replicate the IP

 filter programs on both the socket and the service unit, however it often makes sense

 to maintain one configuration more open and the other one more restricted, depending

 on the usecase.

 Note that these settings might not be supported on some systems (for example if eBPF

 control group support is not enabled in the underlying kernel or container manager).

 These settings will fail the service in that case. If compatibility with such systems

 is desired it is hence recommended to attach your filter manually (requires

 Delegate=yes) instead of using this setting.

 BPFProgram=type:program-path

 Add a custom cgroup BPF program.

 BPFProgram= allows attaching BPF hooks to the cgroup of a systemd unit. (This

 generalizes the functionality exposed via IPEgressFilterPath= for egress and

 IPIngressFilterPath= for ingress.) Cgroup-bpf hooks in the form of BPF programs loaded

 to the BPF filesystem are attached with cgroup-bpf attach flags determined by the

 unit. For details about attachment types and flags see

 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/include/uapi/linux/bpf.h.

 For general BPF documentation please refer to

 https://www.kernel.org/doc/html/latest/bpf/index.html.

 The specification of BPF program consists of a type followed by a program-path with

 ":" as the separator: type:program-path.

 type is the string name of BPF attach type also used in bpftool. type can be one of

 egress, ingress, sock_create, sock_ops, device, bind4, bind6, connect4, connect6,

 post_bind4, post_bind6, sendmsg4, sendmsg6, sysctl, recvmsg4, recvmsg6, getsockopt,

 setsockopt.

 Setting BPFProgram= to an empty value makes previous assignments ineffective.

 Multiple assignments of the same type:program-path value have the same effect as a

 single assignment: the program with the path program-path will be attached to cgroup

 hook type just once.

 If BPF egress pinned to program-path path is already being handled by

 IPEgressFilterPath=, BPFProgram= assignment will be considered valid and BPFProgram=

 will be attached to a cgroup. Similarly for ingress hook and IPIngressFilterPath=

 assignment. Page 13/23

 BPF programs passed with BPFProgram= are attached to the cgroup of a unit with BPF

 attach flag multi, that allows further attachments of the same type within cgroup

 hierarchy topped by the unit cgroup.

 Examples:

 BPFProgram=egress:/sys/fs/bpf/egress-hook

 BPFProgram=bind6:/sys/fs/bpf/sock-addr-hook

 SocketBindAllow=bind-rule, SocketBindDeny=bind-rule

 Allow or deny binding a socket address to a socket by matching it with the bind-rule

 and applying a corresponding action if there is a match.

 bind-rule describes socket properties such as address-family, transport-protocol and

 ip-ports.

 bind-rule := { [address-family:][transport-protocol:][ip-ports] | any }

 address-family := { ipv4 | ipv6 }

 transport-protocol := { tcp | udp }

 ip-ports := { ip-port | ip-port-range }

 An optional address-family expects ipv4 or ipv6 values. If not specified, a rule will

 be matched for both IPv4 and IPv6 addresses and applied depending on other socket

 fields, e.g. transport-protocol, ip-port.

 An optional transport-protocol expects tcp or udp transport protocol names. If not

 specified, a rule will be matched for any transport protocol.

 An optional ip-port value must lie within 1...65535 interval inclusively, i.e. dynamic

 port 0 is not allowed. A range of sequential ports is described by ip-port-range :=

 ip-port-low-ip-port-high, where ip-port-low is smaller than or equal to ip-port-high

 and both are within 1...65535 inclusively.

 A special value any can be used to apply a rule to any address family, transport

 protocol and any port with a positive value.

 To allow multiple rules assign SocketBindAllow= or SocketBindDeny= multiple times. To

 clear the existing assignments pass an empty SocketBindAllow= or SocketBindDeny=

 assignment.

 For each of SocketBindAllow= and SocketBindDeny=, maximum allowed number of

 assignments is 128.

 ? Binding to a socket is allowed when a socket address matches an entry in the

 SocketBindAllow= list. Page 14/23

 ? Otherwise, binding is denied when the socket address matches an entry in the

 SocketBindDeny= list.

 ? Otherwise, binding is allowed.

 The feature is implemented with cgroup/bind4 and cgroup/bind6 cgroup-bpf hooks.

 Examples:

 ...

 # Allow binding IPv6 socket addresses with a port greater than or equal to 10000.

 [Service]

 SocketBindAllow=ipv6:10000-65535

 SocketBindDeny=any

 ...

 # Allow binding IPv4 and IPv6 socket addresses with 1234 and 4321 ports.

 [Service]

 SocketBindAllow=1234

 SocketBindAllow=4321

 SocketBindDeny=any

 ...

 # Deny binding IPv6 socket addresses.

 [Service]

 SocketBindDeny=ipv6

 ...

 # Deny binding IPv4 and IPv6 socket addresses.

 [Service]

 SocketBindDeny=any

 ...

 # Allow binding only over TCP

 [Service]

 SocketBindAllow=tcp

 SocketBindDeny=any

 ...

 # Allow binding only over IPv6/TCP

 [Service]

 SocketBindAllow=ipv6:tcp Page 15/23

 SocketBindDeny=any

 ...

 # Allow binding ports within 10000-65535 range over IPv4/UDP.

 [Service]

 SocketBindAllow=ipv4:udp:10000-65535

 SocketBindDeny=any

 ...

 DeviceAllow=

 Control access to specific device nodes by the executed processes. Takes two

 space-separated strings: a device node specifier followed by a combination of r, w, m

 to control reading, writing, or creation of the specific device node(s) by the unit

 (mknod), respectively. On cgroup-v1 this controls the "devices.allow" control group

 attribute. For details about this control group attribute, see Device Whitelist

 Controller[9]. In the unified cgroup hierarchy this functionality is implemented using

 eBPF filtering.

 The device node specifier is either a path to a device node in the file system,

 starting with /dev/, or a string starting with either "char-" or "block-" followed by

 a device group name, as listed in /proc/devices. The latter is useful to allow-list

 all current and future devices belonging to a specific device group at once. The

 device group is matched according to filename globbing rules, you may hence use the

 "*" and "?" wildcards. (Note that such globbing wildcards are not available for

 device node path specifications!) In order to match device nodes by numeric

 major/minor, use device node paths in the /dev/char/ and /dev/block/ directories.

 However, matching devices by major/minor is generally not recommended as assignments

 are neither stable nor portable between systems or different kernel versions.

 Examples: /dev/sda5 is a path to a device node, referring to an ATA or SCSI block

 device. "char-pts" and "char-alsa" are specifiers for all pseudo TTYs and all ALSA

 sound devices, respectively. "char-cpu/*" is a specifier matching all CPU related

 device groups.

 Note that allow lists defined this way should only reference device groups which are

 resolvable at the time the unit is started. Any device groups not resolvable then are

 not added to the device allow list. In order to work around this limitation, consider

 extending service units with a pair of After=modprobe@xyz.service and Page 16/23

 Wants=modprobe@xyz.service lines that load the necessary kernel module implementing

 the device group if missing. Example:

 ...

 [Unit]

 Wants=modprobe@loop.service

 After=modprobe@loop.service

 [Service]

 DeviceAllow=block-loop

 DeviceAllow=/dev/loop-control

 ...

 DevicePolicy=auto|closed|strict

 Control the policy for allowing device access:

 strict

 means to only allow types of access that are explicitly specified.

 closed

 in addition, allows access to standard pseudo devices including /dev/null,

 /dev/zero, /dev/full, /dev/random, and /dev/urandom.

 auto

 in addition, allows access to all devices if no explicit DeviceAllow= is present.

 This is the default.

 Slice=

 The name of the slice unit to place the unit in. Defaults to system.slice for all

 non-instantiated units of all unit types (except for slice units themselves see

 below). Instance units are by default placed in a subslice of system.slice that is

 named after the template name.

 This option may be used to arrange systemd units in a hierarchy of slices each of

 which might have resource settings applied.

 For units of type slice, the only accepted value for this setting is the parent slice.

 Since the name of a slice unit implies the parent slice, it is hence redundant to ever

 set this parameter directly for slice units.

 Special care should be taken when relying on the default slice assignment in templated

 service units that have DefaultDependencies=no set, see systemd.service(5), section

 "Default Dependencies" for details. Page 17/23

 Delegate=

 Turns on delegation of further resource control partitioning to processes of the unit.

 Units where this is enabled may create and manage their own private subhierarchy of

 control groups below the control group of the unit itself. For unprivileged services

 (i.e. those using the User= setting) the unit's control group will be made accessible

 to the relevant user. When enabled the service manager will refrain from manipulating

 control groups or moving processes below the unit's control group, so that a clear

 concept of ownership is established: the control group tree above the unit's control

 group (i.e. towards the root control group) is owned and managed by the service

 manager of the host, while the control group tree below the unit's control group is

 owned and managed by the unit itself. Takes either a boolean argument or a list of

 control group controller names. If true, delegation is turned on, and all supported

 controllers are enabled for the unit, making them available to the unit's processes

 for management. If false, delegation is turned off entirely (and no additional

 controllers are enabled). If set to a list of controllers, delegation is turned on,

 and the specified controllers are enabled for the unit. Note that additional

 controllers than the ones specified might be made available as well, depending on

 configuration of the containing slice unit or other units contained in it. Note that

 assigning the empty string will enable delegation, but reset the list of controllers,

 all assignments prior to this will have no effect. Defaults to false.

 Note that controller delegation to less privileged code is only safe on the unified

 control group hierarchy. Accordingly, access to the specified controllers will not be

 granted to unprivileged services on the legacy hierarchy, even when requested.

 The following controller names may be specified: cpu, cpuacct, cpuset, io, blkio,

 memory, devices, pids, bpf-firewall, and bpf-devices.

 Not all of these controllers are available on all kernels however, and some are

 specific to the unified hierarchy while others are specific to the legacy hierarchy.

 Also note that the kernel might support further controllers, which aren't covered here

 yet as delegation is either not supported at all for them or not defined cleanly.

 For further details on the delegation model consult Control Group APIs and

 Delegation[10].

 DisableControllers=

 Disables controllers from being enabled for a unit's children. If a controller listed Page 18/23

 is already in use in its subtree, the controller will be removed from the subtree.

 This can be used to avoid child units being able to implicitly or explicitly enable a

 controller. Defaults to not disabling any controllers.

 It may not be possible to successfully disable a controller if the unit or any child

 of the unit in question delegates controllers to its children, as any delegated

 subtree of the cgroup hierarchy is unmanaged by systemd.

 Multiple controllers may be specified, separated by spaces. You may also pass

 DisableControllers= multiple times, in which case each new instance adds another

 controller to disable. Passing DisableControllers= by itself with no controller name

 present resets the disabled controller list.

 The following controller names may be specified: cpu, cpuacct, cpuset, io, blkio,

 memory, devices, pids, bpf-firewall, and bpf-devices.

 ManagedOOMSwap=auto|kill, ManagedOOMMemoryPressure=auto|kill

 Specifies how systemd-oomd.service(8) will act on this unit's cgroups. Defaults to

 auto.

 When set to kill, systemd-oomd will actively monitor this unit's cgroup metrics to

 decide whether it needs to act. If the cgroup passes the limits set by oomd.conf(5) or

 its overrides, systemd-oomd will send a SIGKILL to all of the processes under the

 chosen candidate cgroup. Note that only descendant cgroups can be eligible candidates

 for killing; the unit that set its property to kill is not a candidate (unless one of

 its ancestors set their property to kill). You can find more details on candidates and

 kill behavior at systemd-oomd.service(8) and oomd.conf(5). Setting either of these

 properties to kill will also automatically acquire After= and Wants= dependencies on

 systemd-oomd.service unless DefaultDependencies=no.

 When set to auto, systemd-oomd will not actively use this cgroup's data for monitoring

 and detection. However, if an ancestor cgroup has one of these properties set to kill,

 a unit with auto can still be an eligible candidate for systemd-oomd to act on.

 ManagedOOMMemoryPressureLimit=

 Overrides the default memory pressure limit set by oomd.conf(5) for this unit

 (cgroup). Takes a percentage value between 0% and 100%, inclusive. This property is

 ignored unless ManagedOOMMemoryPressure=kill. Defaults to 0%, which means to use the

 default set by oomd.conf(5).

 ManagedOOMPreference=none|avoid|omit Page 19/23

 Allows deprioritizing or omitting this unit's cgroup as a candidate when systemd-oomd

 needs to act. Requires support for extended attributes (see xattr(7)) in order to use

 avoid or omit. Additionally, systemd-oomd will ignore these extended attributes if the

 unit's cgroup is not owned by the root user.

 If this property is set to avoid, the service manager will convey this to

 systemd-oomd, which will only select this cgroup if there are no other viable

 candidates.

 If this property is set to omit, the service manager will convey this to systemd-oomd,

 which will ignore this cgroup as a candidate and will not perform any actions on it.

 It is recommended to use avoid and omit sparingly, as it can adversely affect

 systemd-oomd's kill behavior. Also note that these extended attributes are not applied

 recursively to cgroups under this unit's cgroup.

 Defaults to none which means systemd-oomd will rank this unit's cgroup as defined in

 systemd-oomd.service(8) and oomd.conf(5).

DEPRECATED OPTIONS

 The following options are deprecated. Use the indicated superseding options instead:

 CPUShares=weight, StartupCPUShares=weight

 Assign the specified CPU time share weight to the processes executed. These options

 take an integer value and control the "cpu.shares" control group attribute. The

 allowed range is 2 to 262144. Defaults to 1024. For details about this control group

 attribute, see CFS Scheduler[4]. The available CPU time is split up among all units

 within one slice relative to their CPU time share weight.

 While StartupCPUShares= only applies to the startup phase of the system, CPUShares=

 applies to normal runtime of the system, and if the former is not set also to the

 startup phase. Using StartupCPUShares= allows prioritizing specific services at

 boot-up differently than during normal runtime.

 Implies "CPUAccounting=yes".

 These settings are deprecated. Use CPUWeight= and StartupCPUWeight= instead.

 MemoryLimit=bytes

 Specify the limit on maximum memory usage of the executed processes. The limit

 specifies how much process and kernel memory can be used by tasks in this unit. Takes

 a memory size in bytes. If the value is suffixed with K, M, G or T, the specified

 memory size is parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base Page 20/23

 1024), respectively. Alternatively, a percentage value may be specified, which is

 taken relative to the installed physical memory on the system. If assigned the special

 value "infinity", no memory limit is applied. This controls the

 "memory.limit_in_bytes" control group attribute. For details about this control group

 attribute, see Memory Resource Controller[11].

 Implies "MemoryAccounting=yes".

 This setting is deprecated. Use MemoryMax= instead.

 BlockIOAccounting=

 Turn on Block I/O accounting for this unit, if the legacy control group hierarchy is

 used on the system. Takes a boolean argument. Note that turning on block I/O

 accounting for one unit will also implicitly turn it on for all units contained in the

 same slice and all for its parent slices and the units contained therein. The system

 default for this setting may be controlled with DefaultBlockIOAccounting= in systemd-

 system.conf(5).

 This setting is deprecated. Use IOAccounting= instead.

 BlockIOWeight=weight, StartupBlockIOWeight=weight

 Set the default overall block I/O weight for the executed processes, if the legacy

 control group hierarchy is used on the system. Takes a single weight value (between 10

 and 1000) to set the default block I/O weight. This controls the "blkio.weight"

 control group attribute, which defaults to 500. For details about this control group

 attribute, see Block IO Controller[12]. The available I/O bandwidth is split up among

 all units within one slice relative to their block I/O weight.

 While StartupBlockIOWeight= only applies to the startup phase of the system,

 BlockIOWeight= applies to the later runtime of the system, and if the former is not

 set also to the startup phase. This allows prioritizing specific services at boot-up

 differently than during runtime.

 Implies "BlockIOAccounting=yes".

 These settings are deprecated. Use IOWeight= and StartupIOWeight= instead.

 BlockIODeviceWeight=device weight

 Set the per-device overall block I/O weight for the executed processes, if the legacy

 control group hierarchy is used on the system. Takes a space-separated pair of a file

 path and a weight value to specify the device specific weight value, between 10 and

 1000. (Example: "/dev/sda 500"). The file path may be specified as path to a block Page 21/23

 device node or as any other file, in which case the backing block device of the file

 system of the file is determined. This controls the "blkio.weight_device" control

 group attribute, which defaults to 1000. Use this option multiple times to set weights

 for multiple devices. For details about this control group attribute, see Block IO

 Controller[12].

 Implies "BlockIOAccounting=yes".

 This setting is deprecated. Use IODeviceWeight= instead.

 BlockIOReadBandwidth=device bytes, BlockIOWriteBandwidth=device bytes

 Set the per-device overall block I/O bandwidth limit for the executed processes, if

 the legacy control group hierarchy is used on the system. Takes a space-separated pair

 of a file path and a bandwidth value (in bytes per second) to specify the device

 specific bandwidth. The file path may be a path to a block device node, or as any

 other file in which case the backing block device of the file system of the file is

 used. If the bandwidth is suffixed with K, M, G, or T, the specified bandwidth is

 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes, respectively, to the base of

 1000. (Example: "/dev/disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0 5M"). This controls

 the "blkio.throttle.read_bps_device" and "blkio.throttle.write_bps_device" control

 group attributes. Use this option multiple times to set bandwidth limits for multiple

 devices. For details about these control group attributes, see Block IO

 Controller[12].

 Implies "BlockIOAccounting=yes".

 These settings are deprecated. Use IOReadBandwidthMax= and IOWriteBandwidthMax=

 instead.

SEE ALSO

 systemd(1), systemd-system.conf(5), systemd.unit(5), systemd.service(5), systemd.slice(5),

 systemd.scope(5), systemd.socket(5), systemd.mount(5), systemd.swap(5), systemd.exec(5),

 systemd.directives(7), systemd.special(7), systemd-oomd.service(8), The documentation for

 control groups and specific controllers in the Linux kernel: Control Groups v2[2].

NOTES

 1. New Control Group Interfaces

 https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface/

 2. Control Groups v2

 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html Page 22/23

 3. Control Groups version 1

 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/

 4. CFS Scheduler

 https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html

 5. sched-bwc.txt

 https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

 6. Memory Interface Files

 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#memory-interface-files

 7. Process Number Controller

 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/pids.html

 8. IO Interface Files

 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#io-interface-files

 9. Device Whitelist Controller

 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/devices.html

 10. Control Group APIs and Delegation

 https://systemd.io/CGROUP_DELEGATION

 11. Memory Resource Controller

 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/memory.html

 12. Block IO Controller

 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/blkio-controller.html

systemd 249 SYSTEMD.RESOURCE-CONTROL(5)

Page 23/23

