PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-cake.8'
$ man tc-cake.8
CAKE(8) Linux CAKE(8)
NAME
CAKE - Common Applications Kept Enhanced (CAKE)
SYNOPSIS
tc qdisc ... cake
[bandwidth RATE | unlimited* | autorate-ingress]
[rtt TIME | datacentre | lan | metro | regional | internet* | oceanic | satellite | in?
terplanetary]
[besteffort | diffserv8 | diffserv4 | diffserv3*]
[flowblind | srchost | dsthost | hosts | flows | dual-srchost | dual-dsthost | triple-
isolate*]
[nat | nonat*]
[wash | nowash*]
[split-gso* | no-split-gso |
[ack-filter | ack-filter-aggressive | no-ack-filter*]
[memlimit LIMIT]
[fwmark MASK]
[ptm | atm | noatm*]
[overhead N | conservative | raw* |
[mpuN]
[ingress | egress* |
(* marks defaults)

DESCRIPTION

FPDF Library

Page 1/12

CAKE (Common Applications Kept Enhanced) is a shaping-capable queue discipline which uses
both AQM and FQ. It combines COBALT, which is an AQM algorithm combining Codel and BLUE,
a shaper which operates in deficit mode, and a variant of DRR++ for flow isolation. 8-way
set-associative hashing is used to virtually eliminate hash collisions. Priority queuing
is available through a simplified diffserv implementation. Overhead compensation for var?
ious encapsulation schemes is tightly integrated.
All settings are optional; the default settings are chosen to be sensible in most common
deployments. Most people will only need to set the bandwidth parameter to get useful re?
sults, but reading the Overhead Compensation and Round Trip Time sections is strongly en?
couraged.
SHAPER PARAMETERS

CAKE uses a deficit-mode shaper, which does not exhibit the initial burst typical of to?
ken-bucket shapers. It will automatically burst precisely as much as required to maintain
the configured throughput. As such, it is very straightforward to configure.
unlimited (default)

No limit on the bandwidth.
bandwidth RATE

Set the shaper bandwidth. See tc(8) or examples below for details of the RATE value.
autorate-ingress

Automatic capacity estimation based on traffic arriving at this gdisc. This is most
likely to be useful with cellular links, which tend to change quality randomly. A band?
width parameter can be used in conjunction to specify an initial estimate. The shaper
will periodically be set to a bandwidth slightly below the estimated rate. This estimator
cannot estimate the bandwidth of links downstream of itself.

OVERHEAD COMPENSATION PARAMETERS
The size of each packet on the wire may differ from that seen by Linux. The following pa?
rameters allow CAKE to compensate for this difference by internally considering each
packet to be bigger than Linux informs it. To assist users who are not expert network en?
gineers, keywords have been provided to represent a number of common link technologies.
Manual Overhead Specification

overhead BYTES

Adds BYTES to the size of each packet. BYTES may be negative; values between -64 and

256 (inclusive) are accepted. Page 2/12

mpu BYTES

Rounds each packet (including overhead) up to a minimum length BYTES. BYTES may not
be negative; values between 0 and 256 (inclusive) are accepted.
atm

Compensates for ATM cell framing, which is normally found on ADSL links. This is
performed after the overhead parameter above. ATM uses fixed 53-byte cells, each of which
can carry 48 bytes payload.
ptm

Compensates for PTM encoding, which is normally found on VDSL2 links and uses a
64b/65b encoding scheme. It is even more efficient to simply derate the specified shaper
bandwidth by a factor of 64/65 or 0.984. See ITU G.992.3 Annex N and IEEE 802.3 Section
61.3 for details.
noatm

Disables ATM and PTM compensation.

Failsafe Overhead Keywords
These two keywords are provided for quick-and-dirty setup. Use them if you can't be both?
ered to read the rest of this section.
raw (default)

Turns off all overhead compensation in CAKE. The packet size reported by Linux will
be used directly.

Other overhead keywords may be added after "raw". The effect of this is to make the
overhead compensation operate relative to the reported packet size, not the underlying 1P
packet size.
conservative

Compensates for more overhead than is likely to occur on any widely-deployed link
technology.

Equivalent to overhead 48 atm.

ADSL Overhead Keywords
Most ADSL modems have a way to check which framing scheme is in use. Often this is also
specified in the settings document provided by the ISP. The keywords in this section are
intended to correspond with these sources of information. All of them implicitly set the
atm flag.

pppoa-vemux Page 3/12

Equivalent to overhead 10 atm
pppoa-lic

Equivalent to overhead 14 atm
pppoe-vemux

Equivalent to overhead 32 atm
pppoe-licsnap

Equivalent to overhead 40 atm
bridged-vemux

Equivalent to overhead 24 atm
bridged-licsnap

Equivalent to overhead 32 atm
ipoa-vemux

Equivalent to overhead 8 atm
ipoa-licsnap

Equivalent to overhead 16 atm
See also the Ethernet Correction Factors section below.

VDSL2 Overhead Keywords

ATM was dropped from VDSL2 in favour of PTM, which is a much more straightforward framing

scheme. Some ISPs retained PPPoE for compatibility with their existing back-end systems.
pppoe-ptm
Equivalent to overhead 30 ptm
PPPoE: 2B PPP + 6B PPPoOE +
ETHERNET: 6B dest MAC + 6B src MAC + 2B ethertype + 4B Frame Check Sequence +
PTM: 1B Start of Frame (S) + 1B End of Frame (Ck) + 2B TC-CRC (PTM-FCS)
bridged-ptm
Equivalent to overhead 22 ptm
ETHERNET: 6B dest MAC + 6B src MAC + 2B ethertype + 4B Frame Check Sequence +
PTM: 1B Start of Frame (S) + 1B End of Frame (Ck) + 2B TC-CRC (PTM-FCS)
See also the Ethernet Correction Factors section below.
DOCSIS Cable Overhead Keyword
DOCSIS is the universal standard for providing Internet service over cable-TV infrastruc?
ture.

In this case, the actual on-wire overhead is less important than the packet size the head-

Page 4/12

end equipment uses for shaping and metering. This is specified to be an Ethernet frame
including the CRC (aka FCS).
docsis

Equivalent to overhead 18 mpu 64 noatm

Ethernet Overhead Keywords

ethernet

Accounts for Ethernet's preamble, inter-frame gap, and Frame Check Sequence. Use
this keyword when the bottleneck being shaped for is an actual Ethernet cable.

Equivalent to overhead 38 mpu 84 noatm
ether-vlan

Adds 4 bytes to the overhead compensation, accounting for an IEEE 802.1Q VLAN header
appended to the Ethernet frame header. NB: Some ISPs use one or even two of these within
PPPOoE; this keyword may be repeated as necessary to express this.

ROUND TRIP TIME PARAMETERS

Active Queue Management (AQM) consists of embedding congestion signals in the packet flow,
which receivers use to instruct senders to slow down when the queue is persistently occu?
pied. CAKE uses ECN signalling when available, and packet drops otherwise, according to a
combination of the Codel and BLUE AQM algorithms called COBALT.
Very short latencies require a very rapid AQM response to adequately control latency.
However, such a rapid response tends to impair throughput when the actual RTT is rela?
tively long. CAKE allows specifying the RTT it assumes for tuning various parameters.
Actual RTTs within an order of magnitude of this will generally work well for both
throughput and latency management.
At the 'lan’ setting and below, the time constants are similar in magnitude to the jitter
in the Linux kernel itself, so congestion might be signalled prematurely. The flows will
then become sparse and total throughput reduced, leaving little or no back-pressure for
the fairness logic to work against. Use the "metro" setting for local lans unless you have
a custom kernel.
rtt TIME

Manually specify an RTT.
datacentre

For extremely high-performance 10GigE+ networks only. Equivalent to rtt 100us.

lan Page 5/12

For pure Ethernet (not Wi-Fi) networks, at home or in the office. Don't use this
when shaping for an Internet access link. Equivalent to rtt 1ms.
metro

For traffic mostly within a single city. Equivalent to rtt 10ms.
regional

For traffic mostly within a European-sized country. Equivalent to rtt 30ms.
internet (default)

This is suitable for most Internet traffic. Equivalent to rtt 100ms.
oceanic

For Internet traffic with generally above-average latency, such as that suffered by
Australasian residents. Equivalent to rtt 300ms.
satellite

For traffic via geostationary satellites. Equivalent to rtt 27000ms.
interplanetary

So named because Jupiter is about 1 light-hour from Earth. Use this to (almost) com?
pletely disable AQM actions. Equivalent to rtt 3600s.

FLOW ISOLATION PARAMETERS

With flow isolation enabled, CAKE places packets from different flows into different
gueues, each of which carries its own AQM state. Packets from each queue are then deliv?
ered fairly, according to a DRR++ algorithm which minimizes latency for "sparse" flows.
CAKE uses a set-associative hashing algorithm to minimize flow collisions.
These keywords specify whether fairness based on source address, destination address, in?
dividual flows, or any combination of those is desired.
flowblind

Disables flow isolation; all traffic passes through a single queue for each tin.
srchost

Flows are defined only by source address. Could be useful on the egress path of an
ISP backhaul.
dsthost

Flows are defined only by destination address. Could be useful on the ingress path
of an ISP backhaul.
hosts

Flows are defined by source-destination host pairs. This is host isolation, rather Page 6/12

than flow isolation.
flows

Flows are defined by the entire 5-tuple of source address, destination address,
transport protocol, source port and destination port. This is the type of flow isolation
performed by SFQ and fg_codel.
dual-srchost

Flows are defined by the 5-tuple, and fairness is applied first over source ad?
dresses, then over individual flows. Good for use on egress traffic from a LAN to the in?
ternet, where it'll prevent any one LAN host from monopolising the uplink, regardless of
the number of flows they use.
dual-dsthost

Flows are defined by the 5-tuple, and fairness is applied first over destination ad?
dresses, then over individual flows. Good for use on ingress traffic to a LAN from the
internet, where it'll prevent any one LAN host from monopolising the downlink, regardless
of the number of flows they use.
triple-isolate (default)

Flows are defined by the 5-tuple, and fairness is applied over source *and* destina?
tion addresses intelligently (ie. not merely by host-pairs), and also over individual
flows. Use this if you're not certain whether to use dual-srchost or dual-dsthost; it'll
do both jobs at once, preventing any one host on *either* side of the link from monopolis?
ing it with a large number of flows.
nat

Instructs Cake to perform a NAT lookup before applying flow-isolation rules, to de?
termine the true addresses and port numbers of the packet, to improve fairness between
hosts "inside" the NAT. This has no practical effect in "flowblind" or "flows" modes, or
if NAT is performed on a different host.
nonat (default)

Cake will not perform a NAT lookup. Flow isolation will be performed using the ad?
dresses and port numbers directly visible to the interface Cake is attached to.

PRIORITY QUEUE PARAMETERS
CAKE can divide traffic into "tins" based on the Diffserv field. Each tin has its own in?
dependent set of flow-isolation queues, and is serviced based on a WRR algorithm. To

avoid perverse Diffserv marking incentives, tin weights have a "priority sharing” value Page 7/12

when bandwidth used by that tin is below a threshold, and a lower "bandwidth sharing"
value when above. Bandwidth is compared against the threshold using the same algorithm as
the deficit-mode shaper.
Detailed customisation of tin parameters is not provided. The following presets perform
all necessary tuning, relative to the current shaper bandwidth and RTT settings.
besteffort
Disables priority queuing by placing all traffic in one tin.
precedence
Enables legacy interpretation of TOS "Precedence" field. Use of this preset on the
modern Internet is firmly discouraged.
diffserv4
Provides a general-purpose Diffserv implementation with four tins:
Bulk (CS1, LE in kernel v5.9+), 6.25% threshold, generally low priority.
Best Effort (general), 100% threshold.
Video (AF4x, AF3x, CS3, AF2x, CS2, TOS4, TOS1), 50% threshold.
Voice (CS7, CS6, EF, VA, CS5, CS4), 25% threshold.
diffserv3 (default)
Provides a simple, general-purpose Diffserv implementation with three tins:
Bulk (CS1, LE in kernel v5.9+), 6.25% threshold, generally low priority.
Best Effort (general), 100% threshold.
Voice (CS7, CS6, EF, VA, TOS4), 25% threshold, reduced Codel interval.
fwmark MASK
This options turns on fwmark-based overriding of CAKE's tin selection. If set, the
option specifies a bitmask that will be applied to the fwmark associated with each packet.
If the result of this masking is non-zero, the result will be right-shifted by the number
of least-significant unset bits in the mask value, and the result will be used as a the
tin number for that packet. This can be used to set policies in a firewall script that
will override CAKE's built-in tin selection.
OTHER PARAMETERS
memlimit LIMIT
Limit the memory consumed by Cake to LIMIT bytes. Note that this does not translate
directly to queue size (so do not size this based on bandwidth delay product considera?

tions, but rather on worst case acceptable memory consumption), as there is some overhead Page 8/12

in the data structures containing the packets, especially for small packets.

By default, the limit is calculated based on the bandwidth and RTT settings.
wash

Traffic entering your diffserv domain is frequently mis-marked in transit from the
perspective of your network, and traffic exiting yours may be mis-marked from the perspec?
tive of the transiting provider.
Apply the wash option to clear all extra diffserv (but not ECN bits), after priority queu?
ing has taken place.
If you are shaping inbound, and cannot trust the diffserv markings (as is the case for
Comcast Cable, among others), it is best to use a single queue "besteffort" mode with
wash.
split-gso

This option controls whether CAKE will split General Segmentation Offload (GSO) su?
per-packets into their on-the-wire components and dequeue them individually.
Super-packets are created by the networking stack to improve efficiency. However, because
they are larger they take longer to dequeue, which translates to higher latency for com?
peting flows, especially at lower bandwidths. CAKE defaults to splitting GSO packets to
achieve the lowest possible latency. At link speeds higher than 10 Gbps, setting the no-
split-gso parameter can increase the maximum achievable throughput by retaining the full

GSO packets.

OVERRIDING CLASSIFICATION WITH TC FILTERS

CAKE supports overriding of its internal classification of packets through the tc filter
mechanism. Packets can be assigned to different priority tins by setting the priority
field on the skb, and the flow hashing can be overridden by setting the classid parameter.
Tin override

To assign a priority tin, the major number of the priority field needs to match
the gdisc handle of the cake instance; if it does, the minor number will be interpreted as
the tin index. For example, to classify all ICMP packets as 'bulk’, the following filter
can be used:

tc qdisc replace dev ethO handle 1: root cake diffserv3

tc filter add dev ethO parent 1: protocol ip prio 1\

u32 match icmp type 0 0 action skbedit priority 1:1

Flow hash override Page 9/12

To override flow hashing, the classid can be set. CAKE will interpret the major
number of the classid as the host hash used in host isolation mode, and the minor number
as the flow hash used for flow-based queueing. One or both of those can be set, and will
be used if the relevant flow isolation parameter is set (i.e., the major number will be
ignored if CAKE is not configured in hosts mode, and the minor number will be ignored if
CAKE is not configured in flows mode).

This example will assign all ICMP packets to the first queue:
tc qdisc replace dev ethO handle 1: root cake
tc filter add dev ethO parent 1: protocol ip prio 1\
u32 match icmp type 0 O classid 0:1
If only one of the host and flow overrides is set, CAKE will compute the other hash from
the packet as normal. Note, however, that the host isolation mode works by assigning a
host ID to the flow queue; so if overriding both host and flow, the same flow cannot have
more than one host assigned. In addition, it is not possible to assign different source
and destination host IDs through the override mechanism; if a host ID is assigned, it will
be used as both source and destination host.
EXAMPLES
tc qdisc delete root dev ethO
tc qdisc add root dev ethO cake bandwidth 100Mbit ethernet
tc -s qdisc show dev ethO
gdisc cake 1: root refcnt 2 bandwidth 100Mbit diffserv3 triple-isolate rtt 100.0ms noatm
overhead 38 mpu 84
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog Ob Op requeues 0
memory used: Ob of 5000000b
capacity estimate: 100Mbit
min/max network layer size: 65535/ 0
min/max overhead-adjusted size: 65535/ 0
average network hdr offset: 0
Bulk Best Effort Voice
thresh 6250Kbit 100Mbit ~ 25Mbit
target 5.0ms 5.0ms 5.0ms

interval 100.0ms 100.0ms 100.0ms Page 10/12

pk_delay Ous Ous Ous

av_delay Ous Ous Ous
sp_delay Ous Ous Ous
pkts 0 0 0
bytes 0 0 0
way_inds 0 0 0
way_miss 0 0 0
way_cols 0 0 0
drops 0 0 0
marks 0 0 0
ack_drop 0 0 0
sp_flows 0 0 0
bk_flows 0 0 0
un_flows 0 0 0
max_len 0 0 0
quantum 300 1514 762

After some use:

tc -s qdisc show dev ethO

gdisc cake 1: root refcnt 2 bandwidth 100Mbit diffserv3 triple-isolate rtt 100.0ms noatm

overhead 38 mpu 84

Sent 44709231 bytes 31931 pkt (dropped 45, overlimits 93782 requeues 0)

backlog 33308b 22p requeues 0
memory used: 292352b of 5000000b

capacity estimate: 100Mbit

min/max network layer size: 28/ 1500
min/max overhead-adjusted size: 84/ 1538
average network hdr offset: 14

Bulk Best Effort Voice
thresh 6250Kbit 100Mbit ~ 25Mbit
target 5.0ms 5.0ms 5.0ms
interval 100.0ms 100.0ms 100.0ms
pk_delay 8.7ms 6.9ms 5.0ms

av_delay 4.9ms 5.3ms 3.8ms

Page 11/12

sp_delay 727us 1.4ms 511us
pkts 2590 21271 8137

bytes 3081804 30302659 11426206

way_inds 0 46 0
way_miss 3 17 4
way_cols 0 0 0
drops 20 15 10
marks 0 0 0
ack_drop 0 0 0
sp_flows 2 4 1
bk_flows 1 2 1
un_flows 0 0 0
max_len 1514 1514 1514
quantum 300 1514 762
SEE ALSO

tc(8), tc-codel(8), tc-fq_codel(8), tc-htb(8)

AUTHORS
Cake's principal author is Jonathan Morton, with contributions from Tony Ambardar, Kevin
Darbyshire-Bryant, Toke H?iland-J?rgensen, Sebastian Moeller, Ryan Mounce, Dean Scarff,
Nils Andreas Svee, and Dave T?ht.
This manual page was written by Loganaden Velvindron. Please report corrections to the
Linux Networking mailing list <netdev@vger.kernel.org>.

iproute2 19 July 2018 CAKE(8)

Page 12/12

