
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-cake.8'

$ man tc-cake.8

CAKE(8) Linux CAKE(8)

NAME

 CAKE - Common Applications Kept Enhanced (CAKE)

SYNOPSIS

 tc qdisc ... cake

 [bandwidth RATE | unlimited* | autorate-ingress]

 [rtt TIME | datacentre | lan | metro | regional | internet* | oceanic | satellite | in?

 terplanetary]

 [besteffort | diffserv8 | diffserv4 | diffserv3*]

 [flowblind | srchost | dsthost | hosts | flows | dual-srchost | dual-dsthost | triple-

 isolate*]

 [nat | nonat*]

 [wash | nowash*]

 [split-gso* | no-split-gso]

 [ack-filter | ack-filter-aggressive | no-ack-filter*]

 [memlimit LIMIT]

 [fwmark MASK]

 [ptm | atm | noatm*]

 [overhead N | conservative | raw*]

 [mpu N]

 [ingress | egress*]

 (* marks defaults)

DESCRIPTION Page 1/12

 CAKE (Common Applications Kept Enhanced) is a shaping-capable queue discipline which uses

 both AQM and FQ. It combines COBALT, which is an AQM algorithm combining Codel and BLUE,

 a shaper which operates in deficit mode, and a variant of DRR++ for flow isolation. 8-way

 set-associative hashing is used to virtually eliminate hash collisions. Priority queuing

 is available through a simplified diffserv implementation. Overhead compensation for var?

 ious encapsulation schemes is tightly integrated.

 All settings are optional; the default settings are chosen to be sensible in most common

 deployments. Most people will only need to set the bandwidth parameter to get useful re?

 sults, but reading the Overhead Compensation and Round Trip Time sections is strongly en?

 couraged.

SHAPER PARAMETERS

 CAKE uses a deficit-mode shaper, which does not exhibit the initial burst typical of to?

 ken-bucket shapers. It will automatically burst precisely as much as required to maintain

 the configured throughput. As such, it is very straightforward to configure.

 unlimited (default)

 No limit on the bandwidth.

 bandwidth RATE

 Set the shaper bandwidth. See tc(8) or examples below for details of the RATE value.

 autorate-ingress

 Automatic capacity estimation based on traffic arriving at this qdisc. This is most

 likely to be useful with cellular links, which tend to change quality randomly. A band?

 width parameter can be used in conjunction to specify an initial estimate. The shaper

 will periodically be set to a bandwidth slightly below the estimated rate. This estimator

 cannot estimate the bandwidth of links downstream of itself.

OVERHEAD COMPENSATION PARAMETERS

 The size of each packet on the wire may differ from that seen by Linux. The following pa?

 rameters allow CAKE to compensate for this difference by internally considering each

 packet to be bigger than Linux informs it. To assist users who are not expert network en?

 gineers, keywords have been provided to represent a number of common link technologies.

 Manual Overhead Specification

 overhead BYTES

 Adds BYTES to the size of each packet. BYTES may be negative; values between -64 and

 256 (inclusive) are accepted. Page 2/12

 mpu BYTES

 Rounds each packet (including overhead) up to a minimum length BYTES. BYTES may not

 be negative; values between 0 and 256 (inclusive) are accepted.

 atm

 Compensates for ATM cell framing, which is normally found on ADSL links. This is

 performed after the overhead parameter above. ATM uses fixed 53-byte cells, each of which

 can carry 48 bytes payload.

 ptm

 Compensates for PTM encoding, which is normally found on VDSL2 links and uses a

 64b/65b encoding scheme. It is even more efficient to simply derate the specified shaper

 bandwidth by a factor of 64/65 or 0.984. See ITU G.992.3 Annex N and IEEE 802.3 Section

 61.3 for details.

 noatm

 Disables ATM and PTM compensation.

 Failsafe Overhead Keywords

 These two keywords are provided for quick-and-dirty setup. Use them if you can't be both?

 ered to read the rest of this section.

 raw (default)

 Turns off all overhead compensation in CAKE. The packet size reported by Linux will

 be used directly.

 Other overhead keywords may be added after "raw". The effect of this is to make the

 overhead compensation operate relative to the reported packet size, not the underlying IP

 packet size.

 conservative

 Compensates for more overhead than is likely to occur on any widely-deployed link

 technology.

 Equivalent to overhead 48 atm.

 ADSL Overhead Keywords

 Most ADSL modems have a way to check which framing scheme is in use. Often this is also

 specified in the settings document provided by the ISP. The keywords in this section are

 intended to correspond with these sources of information. All of them implicitly set the

 atm flag.

 pppoa-vcmux Page 3/12

 Equivalent to overhead 10 atm

 pppoa-llc

 Equivalent to overhead 14 atm

 pppoe-vcmux

 Equivalent to overhead 32 atm

 pppoe-llcsnap

 Equivalent to overhead 40 atm

 bridged-vcmux

 Equivalent to overhead 24 atm

 bridged-llcsnap

 Equivalent to overhead 32 atm

 ipoa-vcmux

 Equivalent to overhead 8 atm

 ipoa-llcsnap

 Equivalent to overhead 16 atm

 See also the Ethernet Correction Factors section below.

 VDSL2 Overhead Keywords

 ATM was dropped from VDSL2 in favour of PTM, which is a much more straightforward framing

 scheme. Some ISPs retained PPPoE for compatibility with their existing back-end systems.

 pppoe-ptm

 Equivalent to overhead 30 ptm

 PPPoE: 2B PPP + 6B PPPoE +

 ETHERNET: 6B dest MAC + 6B src MAC + 2B ethertype + 4B Frame Check Sequence +

 PTM: 1B Start of Frame (S) + 1B End of Frame (Ck) + 2B TC-CRC (PTM-FCS)

 bridged-ptm

 Equivalent to overhead 22 ptm

 ETHERNET: 6B dest MAC + 6B src MAC + 2B ethertype + 4B Frame Check Sequence +

 PTM: 1B Start of Frame (S) + 1B End of Frame (Ck) + 2B TC-CRC (PTM-FCS)

 See also the Ethernet Correction Factors section below.

 DOCSIS Cable Overhead Keyword

 DOCSIS is the universal standard for providing Internet service over cable-TV infrastruc?

 ture.

 In this case, the actual on-wire overhead is less important than the packet size the head- Page 4/12

 end equipment uses for shaping and metering. This is specified to be an Ethernet frame

 including the CRC (aka FCS).

 docsis

 Equivalent to overhead 18 mpu 64 noatm

 Ethernet Overhead Keywords

 ethernet

 Accounts for Ethernet's preamble, inter-frame gap, and Frame Check Sequence. Use

 this keyword when the bottleneck being shaped for is an actual Ethernet cable.

 Equivalent to overhead 38 mpu 84 noatm

 ether-vlan

 Adds 4 bytes to the overhead compensation, accounting for an IEEE 802.1Q VLAN header

 appended to the Ethernet frame header. NB: Some ISPs use one or even two of these within

 PPPoE; this keyword may be repeated as necessary to express this.

ROUND TRIP TIME PARAMETERS

 Active Queue Management (AQM) consists of embedding congestion signals in the packet flow,

 which receivers use to instruct senders to slow down when the queue is persistently occu?

 pied. CAKE uses ECN signalling when available, and packet drops otherwise, according to a

 combination of the Codel and BLUE AQM algorithms called COBALT.

 Very short latencies require a very rapid AQM response to adequately control latency.

 However, such a rapid response tends to impair throughput when the actual RTT is rela?

 tively long. CAKE allows specifying the RTT it assumes for tuning various parameters.

 Actual RTTs within an order of magnitude of this will generally work well for both

 throughput and latency management.

 At the 'lan' setting and below, the time constants are similar in magnitude to the jitter

 in the Linux kernel itself, so congestion might be signalled prematurely. The flows will

 then become sparse and total throughput reduced, leaving little or no back-pressure for

 the fairness logic to work against. Use the "metro" setting for local lans unless you have

 a custom kernel.

 rtt TIME

 Manually specify an RTT.

 datacentre

 For extremely high-performance 10GigE+ networks only. Equivalent to rtt 100us.

 lan Page 5/12

 For pure Ethernet (not Wi-Fi) networks, at home or in the office. Don't use this

 when shaping for an Internet access link. Equivalent to rtt 1ms.

 metro

 For traffic mostly within a single city. Equivalent to rtt 10ms.

 regional

 For traffic mostly within a European-sized country. Equivalent to rtt 30ms.

 internet (default)

 This is suitable for most Internet traffic. Equivalent to rtt 100ms.

 oceanic

 For Internet traffic with generally above-average latency, such as that suffered by

 Australasian residents. Equivalent to rtt 300ms.

 satellite

 For traffic via geostationary satellites. Equivalent to rtt 1000ms.

 interplanetary

 So named because Jupiter is about 1 light-hour from Earth. Use this to (almost) com?

 pletely disable AQM actions. Equivalent to rtt 3600s.

FLOW ISOLATION PARAMETERS

 With flow isolation enabled, CAKE places packets from different flows into different

 queues, each of which carries its own AQM state. Packets from each queue are then deliv?

 ered fairly, according to a DRR++ algorithm which minimizes latency for "sparse" flows.

 CAKE uses a set-associative hashing algorithm to minimize flow collisions.

 These keywords specify whether fairness based on source address, destination address, in?

 dividual flows, or any combination of those is desired.

 flowblind

 Disables flow isolation; all traffic passes through a single queue for each tin.

 srchost

 Flows are defined only by source address. Could be useful on the egress path of an

 ISP backhaul.

 dsthost

 Flows are defined only by destination address. Could be useful on the ingress path

 of an ISP backhaul.

 hosts

 Flows are defined by source-destination host pairs. This is host isolation, rather Page 6/12

 than flow isolation.

 flows

 Flows are defined by the entire 5-tuple of source address, destination address,

 transport protocol, source port and destination port. This is the type of flow isolation

 performed by SFQ and fq_codel.

 dual-srchost

 Flows are defined by the 5-tuple, and fairness is applied first over source ad?

 dresses, then over individual flows. Good for use on egress traffic from a LAN to the in?

 ternet, where it'll prevent any one LAN host from monopolising the uplink, regardless of

 the number of flows they use.

 dual-dsthost

 Flows are defined by the 5-tuple, and fairness is applied first over destination ad?

 dresses, then over individual flows. Good for use on ingress traffic to a LAN from the

 internet, where it'll prevent any one LAN host from monopolising the downlink, regardless

 of the number of flows they use.

 triple-isolate (default)

 Flows are defined by the 5-tuple, and fairness is applied over source *and* destina?

 tion addresses intelligently (ie. not merely by host-pairs), and also over individual

 flows. Use this if you're not certain whether to use dual-srchost or dual-dsthost; it'll

 do both jobs at once, preventing any one host on *either* side of the link from monopolis?

 ing it with a large number of flows.

 nat

 Instructs Cake to perform a NAT lookup before applying flow-isolation rules, to de?

 termine the true addresses and port numbers of the packet, to improve fairness between

 hosts "inside" the NAT. This has no practical effect in "flowblind" or "flows" modes, or

 if NAT is performed on a different host.

 nonat (default)

 Cake will not perform a NAT lookup. Flow isolation will be performed using the ad?

 dresses and port numbers directly visible to the interface Cake is attached to.

PRIORITY QUEUE PARAMETERS

 CAKE can divide traffic into "tins" based on the Diffserv field. Each tin has its own in?

 dependent set of flow-isolation queues, and is serviced based on a WRR algorithm. To

 avoid perverse Diffserv marking incentives, tin weights have a "priority sharing" value Page 7/12

 when bandwidth used by that tin is below a threshold, and a lower "bandwidth sharing"

 value when above. Bandwidth is compared against the threshold using the same algorithm as

 the deficit-mode shaper.

 Detailed customisation of tin parameters is not provided. The following presets perform

 all necessary tuning, relative to the current shaper bandwidth and RTT settings.

 besteffort

 Disables priority queuing by placing all traffic in one tin.

 precedence

 Enables legacy interpretation of TOS "Precedence" field. Use of this preset on the

 modern Internet is firmly discouraged.

 diffserv4

 Provides a general-purpose Diffserv implementation with four tins:

 Bulk (CS1, LE in kernel v5.9+), 6.25% threshold, generally low priority.

 Best Effort (general), 100% threshold.

 Video (AF4x, AF3x, CS3, AF2x, CS2, TOS4, TOS1), 50% threshold.

 Voice (CS7, CS6, EF, VA, CS5, CS4), 25% threshold.

 diffserv3 (default)

 Provides a simple, general-purpose Diffserv implementation with three tins:

 Bulk (CS1, LE in kernel v5.9+), 6.25% threshold, generally low priority.

 Best Effort (general), 100% threshold.

 Voice (CS7, CS6, EF, VA, TOS4), 25% threshold, reduced Codel interval.

 fwmark MASK

 This options turns on fwmark-based overriding of CAKE's tin selection. If set, the

 option specifies a bitmask that will be applied to the fwmark associated with each packet.

 If the result of this masking is non-zero, the result will be right-shifted by the number

 of least-significant unset bits in the mask value, and the result will be used as a the

 tin number for that packet. This can be used to set policies in a firewall script that

 will override CAKE's built-in tin selection.

OTHER PARAMETERS

 memlimit LIMIT

 Limit the memory consumed by Cake to LIMIT bytes. Note that this does not translate

 directly to queue size (so do not size this based on bandwidth delay product considera?

 tions, but rather on worst case acceptable memory consumption), as there is some overhead Page 8/12

 in the data structures containing the packets, especially for small packets.

 By default, the limit is calculated based on the bandwidth and RTT settings.

 wash

 Traffic entering your diffserv domain is frequently mis-marked in transit from the

 perspective of your network, and traffic exiting yours may be mis-marked from the perspec?

 tive of the transiting provider.

 Apply the wash option to clear all extra diffserv (but not ECN bits), after priority queu?

 ing has taken place.

 If you are shaping inbound, and cannot trust the diffserv markings (as is the case for

 Comcast Cable, among others), it is best to use a single queue "besteffort" mode with

 wash.

 split-gso

 This option controls whether CAKE will split General Segmentation Offload (GSO) su?

 per-packets into their on-the-wire components and dequeue them individually.

 Super-packets are created by the networking stack to improve efficiency. However, because

 they are larger they take longer to dequeue, which translates to higher latency for com?

 peting flows, especially at lower bandwidths. CAKE defaults to splitting GSO packets to

 achieve the lowest possible latency. At link speeds higher than 10 Gbps, setting the no-

 split-gso parameter can increase the maximum achievable throughput by retaining the full

 GSO packets.

OVERRIDING CLASSIFICATION WITH TC FILTERS

 CAKE supports overriding of its internal classification of packets through the tc filter

 mechanism. Packets can be assigned to different priority tins by setting the priority

 field on the skb, and the flow hashing can be overridden by setting the classid parameter.

 Tin override

 To assign a priority tin, the major number of the priority field needs to match

 the qdisc handle of the cake instance; if it does, the minor number will be interpreted as

 the tin index. For example, to classify all ICMP packets as 'bulk', the following filter

 can be used:

 # tc qdisc replace dev eth0 handle 1: root cake diffserv3

 # tc filter add dev eth0 parent 1: protocol ip prio 1 \

 u32 match icmp type 0 0 action skbedit priority 1:1

 Flow hash override Page 9/12

 To override flow hashing, the classid can be set. CAKE will interpret the major

 number of the classid as the host hash used in host isolation mode, and the minor number

 as the flow hash used for flow-based queueing. One or both of those can be set, and will

 be used if the relevant flow isolation parameter is set (i.e., the major number will be

 ignored if CAKE is not configured in hosts mode, and the minor number will be ignored if

 CAKE is not configured in flows mode).

 This example will assign all ICMP packets to the first queue:

 # tc qdisc replace dev eth0 handle 1: root cake

 # tc filter add dev eth0 parent 1: protocol ip prio 1 \

 u32 match icmp type 0 0 classid 0:1

 If only one of the host and flow overrides is set, CAKE will compute the other hash from

 the packet as normal. Note, however, that the host isolation mode works by assigning a

 host ID to the flow queue; so if overriding both host and flow, the same flow cannot have

 more than one host assigned. In addition, it is not possible to assign different source

 and destination host IDs through the override mechanism; if a host ID is assigned, it will

 be used as both source and destination host.

EXAMPLES

 # tc qdisc delete root dev eth0

 # tc qdisc add root dev eth0 cake bandwidth 100Mbit ethernet

 # tc -s qdisc show dev eth0

 qdisc cake 1: root refcnt 2 bandwidth 100Mbit diffserv3 triple-isolate rtt 100.0ms noatm

 overhead 38 mpu 84

 Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)

 backlog 0b 0p requeues 0

 memory used: 0b of 5000000b

 capacity estimate: 100Mbit

 min/max network layer size: 65535 / 0

 min/max overhead-adjusted size: 65535 / 0

 average network hdr offset: 0

 Bulk Best Effort Voice

 thresh 6250Kbit 100Mbit 25Mbit

 target 5.0ms 5.0ms 5.0ms

 interval 100.0ms 100.0ms 100.0ms Page 10/12

 pk_delay 0us 0us 0us

 av_delay 0us 0us 0us

 sp_delay 0us 0us 0us

 pkts 0 0 0

 bytes 0 0 0

 way_inds 0 0 0

 way_miss 0 0 0

 way_cols 0 0 0

 drops 0 0 0

 marks 0 0 0

 ack_drop 0 0 0

 sp_flows 0 0 0

 bk_flows 0 0 0

 un_flows 0 0 0

 max_len 0 0 0

 quantum 300 1514 762

 After some use:

 # tc -s qdisc show dev eth0

 qdisc cake 1: root refcnt 2 bandwidth 100Mbit diffserv3 triple-isolate rtt 100.0ms noatm

 overhead 38 mpu 84

 Sent 44709231 bytes 31931 pkt (dropped 45, overlimits 93782 requeues 0)

 backlog 33308b 22p requeues 0

 memory used: 292352b of 5000000b

 capacity estimate: 100Mbit

 min/max network layer size: 28 / 1500

 min/max overhead-adjusted size: 84 / 1538

 average network hdr offset: 14

 Bulk Best Effort Voice

 thresh 6250Kbit 100Mbit 25Mbit

 target 5.0ms 5.0ms 5.0ms

 interval 100.0ms 100.0ms 100.0ms

 pk_delay 8.7ms 6.9ms 5.0ms

 av_delay 4.9ms 5.3ms 3.8ms Page 11/12

 sp_delay 727us 1.4ms 511us

 pkts 2590 21271 8137

 bytes 3081804 30302659 11426206

 way_inds 0 46 0

 way_miss 3 17 4

 way_cols 0 0 0

 drops 20 15 10

 marks 0 0 0

 ack_drop 0 0 0

 sp_flows 2 4 1

 bk_flows 1 2 1

 un_flows 0 0 0

 max_len 1514 1514 1514

 quantum 300 1514 762

SEE ALSO

 tc(8), tc-codel(8), tc-fq_codel(8), tc-htb(8)

AUTHORS

 Cake's principal author is Jonathan Morton, with contributions from Tony Ambardar, Kevin

 Darbyshire-Bryant, Toke H?iland-J?rgensen, Sebastian Moeller, Ryan Mounce, Dean Scarff,

 Nils Andreas Svee, and Dave T?ht.

 This manual page was written by Loganaden Velvindron. Please report corrections to the

 Linux Networking mailing list <netdev@vger.kernel.org>.

iproute2 19 July 2018 CAKE(8)

Page 12/12

