
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-fq_pie.8'

$ man tc-fq_pie.8

FQ-PIE(8)                                     Linux                                     FQ-PIE(8)

NAME

       FQ-PIE - Flow Queue Proportional Integral controller Enhanced

SYNOPSIS

       tc qdisc ... fq_pie [ limit PACKETS ] [ flows NUMBER ]

                           [ target TIME ] [ tupdate TIME ]

                           [ alpha NUMBER ] [ beta NUMBER ]

                           [ quantum BYTES ] [ memory_limit BYTES ]

                           [ ecn_prob PERENTAGE ] [ [no]ecn ]

                           [ [no]bytemode ] [ [no_]dq_rate_estimator ]

DESCRIPTION

       FQ-PIE  (Flow  Queuing with Proportional Integral controller Enhanced) is a queuing disci?

       pline that combines Flow Queuing with the PIE AQM scheme. FQ-PIE uses a Jenkins hash func?

       tion to classify incoming packets into different flows and is used to provide a fair share

       of the bandwidth to all the flows using the qdisc. Each such flow is managed  by  the  PIE

       algorithm.

ALGORITHM

       The  FQ-PIE  algorithm  consists  of  two logical parts: the scheduler which selects which

       queue to dequeue a packet from, and the PIE AQM which works on each of the queues. The ma?

       jor work of FQ-PIE is mostly in the scheduling part. The interaction between the scheduler

       and the PIE algorithm is straight forward.

       During the enqueue stage, a hashing-based scheme is used, where flows are  hashed  into  a

       number  of buckets with each bucket having its own queue. The number of buckets is config? Page 1/4



       urable, and presently defaults to 1024 in the implementation.  The flow  hashing  is  per?

       formed on the 5-tuple of source and destination IP addresses, port numbers and IP protocol

       number. Once the packet has been successfully classified into a queue, it is  handed  over

       to  the  PIE  algorithm for enqueuing. It is then added to the tail of the selected queue,

       and the queue's byte count is updated by the packet size. If the queue  is  not  currently

       active  (i.e.,  if  it is not in either the list of new or the list of old queues) , it is

       added to the end of the list of new queues, and its number of credits is initiated to  the

       configured quantum. Otherwise, the queue is left in its current queue list.

       During  the  dequeue  stage,  the scheduler first looks at the list of new queues; for the

       queue at the head of that list, if that queue has a negative number of credits  (i.e.,  it

       has  already  dequeued  at least a quantum of bytes), it is given an additional quantum of

       credits, the queue is put onto the end of the list of old queues, and the routine  selects

       the  next  queue and starts again. Otherwise, that queue is selected for dequeue again. If

       the list of new queues is empty, the scheduler proceeds down the list of old queues in the

       same  fashion  (checking  the  credits,  and  either selecting the queue for dequeuing, or

       adding credits and putting the queue back at the end of the list). After having selected a

       queue from which to dequeue a packet, the PIE algorithm is invoked on that queue.

       Finally,  if  the PIE algorithm does not return a packet, then the queue must be empty and

       the scheduler does one of two things:

       If the queue selected for dequeue came from the list of new queues, it is moved to the end

       of  the  list of old queues. If instead it came from the list of old queues, that queue is

       removed from the list, to be added back (as a new queue) the next time  a  packet  arrives

       that hashes to that queue. Then (since no packet was available for dequeue), the whole de?

       queue process is restarted from the beginning.

       If, instead, the scheduler did get a packet back from the PIE algorithm, it subtracts  the

       size  of the packet from the byte credits for the selected queue and returns the packet as

       the result of the dequeue operation.

PARAMETERS

   limit

       It is the limit on the queue size in packets. Incoming packets are dropped when the  limit

       is reached. The default value is 10240 packets.

   flows

       It  is the number of flows into which the incoming packets are classified. Due to the sto? Page 2/4



       chastic nature of hashing, multiple flows may end up being  hashed  into  the  same  slot.

       Newer  flows  have  priority  over older ones. This parameter can be set only at load time

       since memory has to be allocated for the hash table. The default value is 1024.

   target

       It is the queue delay which the PIE algorithm tries to maintain. The default target  delay

       is 15ms.

   tupdate

       It  is  the time interval at which the system drop probability is calculated.  The default

       is 15ms.

   alpha

   beta

       alpha and beta are parameters chosen to control the drop probability. These should  be  in

       the range between 0 and 32.

   quantum

       quantum  signifies  the number of bytes that may be dequeued from a queue before switching

       to the next queue in the deficit round robin scheme.

   memory_limit

       It is the maximum total memory allowed for packets of all flows. The default is 32Mb.

   ecn_prob

       It is the drop probability threshold below which packets will be  ECN  marked  instead  of

       getting dropped. The default is 10%. Setting this parameter requires ecn to be enabled.

   [no]ecn

       It has the same semantics as pie and can be used to mark packets instead of dropping them.

       If ecn has been enabled, noecn can be used to turn it off and vice-a-versa.

   [no]bytemode

       It is used to scale drop probability proportional to packet size bytemode to turn on byte?

       mode, nobytemode to turn off bytemode. By default, bytemode is turned off.

   [no_]dq_rate_estimator

       dq_rate_estimator  can be used to calculate queue delay using Little's Law, no_dq_rate_es?

       timator can be used to calculate queue delay using timestamp. By default,  dq_rate_estima?

       tor is turned off.

EXAMPLES

       # tc qdisc add dev eth0 root fq_pie Page 3/4



       # tc -s qdisc show dev eth0

       qdisc  fq_pie 8001: root refcnt 2 limit 10240p flows 1024 target 15.0ms tupdate 16.0ms al?

       pha 2 beta 20 quantum 1514b memory_limit 32Mb ecn_prob 10

        Sent 159173586 bytes 105261 pkt (dropped 24, overlimits 0 requeues 0)

        backlog 75700b 50p requeues 0

         pkts_in 105311 overlimit 0 overmemory 0 dropped 24 ecn_mark 0

         new_flow_count 7332 new_flows_len 0 old_flows_len 4 memory_used 108800

       # tc qdisc add dev eth0 root fq_pie dq_rate_estimator

       # tc -s qdisc show dev eth0

       qdisc fq_pie 8001: root refcnt 2 limit 10240p flows 1024 target 15.0ms tupdate 16.0ms  al?

       pha 2 beta 20 quantum 1514b memory_limit 32Mb ecn_prob 10 dq_rate_estimator

        Sent 8263620 bytes 5550 pkt (dropped 4, overlimits 0 requeues 0)

        backlog 805448b 532p requeues 0

         pkts_in 6082 overlimit 0 overmemory 0 dropped 4 ecn_mark 0

         new_flow_count 94 new_flows_len 0 old_flows_len 8 memory_used 1157632

SEE ALSO

       tc(8), tc-pie(8), tc-fq_codel(8)

SOURCES

       RFC 8033: https://tools.ietf.org/html/rfc8033

AUTHORS

       FQ-PIE  was implemented by Mohit P. Tahiliani. Please report corrections to the Linux Net?

       working mailing list <netdev@vger.kernel.org>.

iproute2                                 23 January 2020                                FQ-PIE(8)

Page 4/4


