
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-hfsc.7'

$ man tc-hfsc.7

TC-HFSC(7) Linux TC-HFSC(7)

NAME

 tc-hfcs - Hierarchical Fair Service Curve

HISTORY & INTRODUCTION

 HFSC (Hierarchical Fair Service Curve) is a network packet scheduling algorithm that was

 first presented at SIGCOMM'97. Developed as a part of ALTQ (ALTernative Queuing) on Net?

 BSD, found its way quickly to other BSD systems, and then a few years ago became part of

 the linux kernel. Still, it's not the most popular scheduling algorithm - especially if

 compared to HTB - and it's not well documented for the enduser. This introduction aims to

 explain how HFSC works without using too much math (although some math it will be in?

 evitable).

 In short HFSC aims to:

 1) guarantee precise bandwidth and delay allocation for all leaf classes (realtime

 criterion)

 2) allocate excess bandwidth fairly as specified by class hierarchy (linkshare & up?

 perlimit criterion)

 3) minimize any discrepancy between the service curve and the actual amount of ser?

 vice provided during linksharing

 The main "selling" point of HFSC is feature (1), which is achieved by using nonlinear ser?

 vice curves (more about what it actually is later). This is particularly useful in VoIP or

 games, where not only a guarantee of consistent bandwidth is important, but also limiting

 the initial delay of a data stream. Note that it matters only for leaf classes (where the

 actual queues are) - thus class hierarchy is ignored in the realtime case. Page 1/11

 Feature (2) is well, obvious - any algorithm featuring class hierarchy (such as HTB or

 CBQ) strives to achieve that. HFSC does that well, although you might end with unusual

 situations, if you define service curves carelessly - see section CORNER CASES for exam?

 ples.

 Feature (3) is mentioned due to the nature of the problem. There may be situations where

 it's either not possible to guarantee service of all curves at the same time, and/or it's

 impossible to do so fairly. Both will be explained later. Note that this is mainly related

 to interior (aka aggregate) classes, as the leafs are already handled by (1). Still, it's

 perfectly possible to create a leaf class without realtime service, and in such a case the

 caveats will naturally extend to leaf classes as well.

ABBREVIATIONS

 For the remaining part of the document, we'll use following shortcuts:

 RT - realtime

 LS - linkshare

 UL - upperlimit

 SC - service curve

BASICS OF HFSC

 To understand how HFSC works, we must first introduce a service curve. Overall, it's a

 nondecreasing function of some time unit, returning the amount of service (an allowed or

 allocated amount of bandwidth) at some specific point in time. The purpose of it should be

 subconsciously obvious: if a class was allowed to transfer not less than the amount speci?

 fied by its service curve, then the service curve is not violated.

 Still, we need more elaborate criterion than just the above (although in the most generic

 case it can be reduced to it). The criterion has to take two things into account:

 ? idling periods

 ? the ability to "look back", so if during current active period the service curve

 is violated, maybe it isn't if we count excess bandwidth received during earlier

 active period(s)

 Let's define the criterion as follows:

 (1) For each t1, there must exist t0 in set B, so S(t1-t0) <= w(t0,t1)

 Here 'w' denotes the amount of service received during some time period between t0 and t1.

 B is a set of all times, where a session becomes active after idling period (further de?

 noted as 'becoming backlogged'). For a clearer picture, imagine two situations: Page 2/11

 a) our session was active during two periods, with a small time gap between them

 b) as in (a), but with a larger gap

 Consider (a): if the service received during both periods meets (1), then all is well. But

 what if it doesn't do so during the 2nd period? If the amount of service received during

 the 1st period is larger than the service curve, then it might compensate for smaller ser?

 vice during the 2nd period and the gap - if the gap is small enough.

 If the gap is larger (b) - then it's less likely to happen (unless the excess bandwidth

 allocated during the 1st part was really large). Still, the larger the gap - the less in?

 teresting is what happened in the past (e.g. 10 minutes ago) - what matters is the current

 traffic that just started.

 From HFSC's perspective, more interesting is answering the following question: when should

 we start transferring packets, so a service curve of a class is not violated. Or rephras?

 ing it: How much X() amount of service should a session receive by time t, so the service

 curve is not violated. Function X() defined as below is the basic building block of HFSC,

 used in: eligible, deadline, virtual-time and fit-time curves. Of course, X() is based on

 equation (1) and is defined recursively:

 ? At the 1st backlogged period beginning function X is initialized to generic ser?

 vice curve assigned to a class

 ? At any subsequent backlogged period, X() is:

 min(X() from previous period ; w(t0)+S(t-t0) for t>=t0),

 ... where t0 denotes the beginning of the current backlogged period.

 HFSC uses either linear, or two-piece linear service curves. In case of linear or

 two-piece linear convex functions (first slope < second slope), min() in X's definition

 reduces to the 2nd argument. But in case of two-piece concave functions, the 1st argument

 might quickly become lesser for some t>=t0. Note, that for some backlogged period, X() is

 defined only from that period's beginning. We also define X^(-1)(w) as smallest t>=t0, for

 which X(t) = w. We have to define it this way, as X() is usually not an injection.

 The above generic X() can be one of the following:

 E() In realtime criterion, selects packets eligible for sending. If none are eligible,

 HFSC will use linkshare criterion. Eligible time 'et' is calculated with reference

 to packets' heads (et = E^(-1)(w)). It's based on RT service curve, but in case

 of a convex curve, uses its 2nd slope only.

 D() In realtime criterion, selects the most suitable packet from the ones chosen by Page 3/11

 E(). Deadline time 'dt' corresponds to packets' tails (dt = D^(-1)(w+l), where 'l'

 is packet's length). Based on RT service curve.

 V() In linkshare criterion, arbitrates which packet to send next. Note that V() is

 function of a virtual time - see LINKSHARE CRITERION section for details. Virtual

 time 'vt' corresponds to packets' heads (vt = V^(-1)(w)). Based on LS service

 curve.

 F() An extension to linkshare criterion, used to limit at which speed linkshare crite?

 rion is allowed to dequeue. Fit-time 'ft' corresponds to packets' heads as well

 (ft = F^(-1)(w)). Based on UL service curve.

 Be sure to make clean distinction between session's RT, LS and UL service curves and the

 above "utility" functions.

REALTIME CRITERION

 RT criterion ignores class hierarchy and guarantees precise bandwidth and delay alloca?

 tion. We say that a packet is eligible for sending, when the current real time is later

 than the eligible time of the packet. From all eligible packets, the one most suited for

 sending is the one with the shortest deadline time. This sounds simple, but consider the

 following example:

 Interface 10Mbit, two classes, both with two-piece linear service curves:

 ? 1st class - 2Mbit for 100ms, then 7Mbit (convex - 1st slope < 2nd slope)

 ? 2nd class - 7Mbit for 100ms, then 2Mbit (concave - 1st slope > 2nd slope)

 Assume for a moment, that we only use D() for both finding eligible packets, and choosing

 the most fitting one, thus eligible time would be computed as D^(-1)(w) and deadline time

 would be computed as D^(-1)(w+l). If the 2nd class starts sending packets 1 second after

 the 1st class, it's of course impossible to guarantee 14Mbit, as the interface capability

 is only 10Mbit. The only workaround in this scenario is to allow the 1st class to send

 the packets earlier that would normally be allowed. That's where separate E() comes to

 help. Putting all the math aside (see HFSC paper for details), E() for RT concave service

 curve is just like D(), but for the RT convex service curve - it's constructed using only

 RT service curve's 2nd slope (in our example

 7Mbit).

 The effect of such E() - packets will be sent earlier, and at the same time D() will be

 updated - so the current deadline time calculated from it will be later. Thus, when the

 2nd class starts sending packets later, both the 1st and the 2nd class will be eligible, Page 4/11

 but the 2nd session's deadline time will be smaller and its packets will be sent first.

 When the 1st class becomes idle at some later point, the 2nd class will be able to "buf?

 fer" up again for later active period of the 1st class.

 A short remark - in a situation, where the total amount of bandwidth available on the in?

 terface is larger than the allocated total realtime parts (imagine a 10 Mbit interface,

 but 1Mbit/2Mbit and 2Mbit/1Mbit classes), the sole speed of the interface could suffice to

 guarantee the times.

 Important part of RT criterion is that apart from updating its D() and E(), also V() used

 by LS criterion is updated. Generally the RT criterion is secondary to LS one, and used

 only if there's a risk of violating precise realtime requirements. Still, the "participa?

 tion" in bandwidth distributed by LS criterion is there, so V() has to be updated along

 the way. LS criterion can than properly compensate for non-ideal fair sharing situation,

 caused by RT scheduling. If you use UL service curve its F() will be updated as well (UL

 service curve is an extension to LS one - see UPPERLIMIT CRITERION section).

 Anyway - careless specification of LS and RT service curves can lead to potentially unde?

 sired situations (see CORNER CASES for examples). This wasn't the case in HFSC paper where

 LS and RT service curves couldn't be specified separately.

LINKSHARING CRITERION

 LS criterion's task is to distribute bandwidth according to specified class hierarchy.

 Contrary to RT criterion, there're no comparisons between current real time and virtual

 time - the decision is based solely on direct comparison of virtual times of all active

 subclasses - the one with the smallest vt wins and gets scheduled. One immediate conclu?

 sion from this fact is that absolute values don't matter - only ratios between them (so

 for example, two children classes with simple linear 1Mbit service curves will get the

 same treatment from LS criterion's perspective, as if they were 5Mbit). The other conclu?

 sion is, that in perfectly fluid system with linear curves, all virtual times across whole

 class hierarchy would be equal.

 Why is VC defined in term of virtual time (and what is it)?

 Imagine an example: class A with two children - A1 and A2, both with let's say 10Mbit SCs.

 If A2 is idle, A1 receives all the bandwidth of A (and update its V() in the process).

 When A2 becomes active, A1's virtual time is already far later than A2's one. Considering

 the type of decision made by LS criterion, A1 would become idle for a long time. We can

 workaround this situation by adjusting virtual time of the class becoming active - we do Page 5/11

 that by getting such time "up to date". HFSC uses a mean of the smallest and the biggest

 virtual time of currently active children fit for sending. As it's not real time anymore

 (excluding trivial case of situation where all classes become active at the same time, and

 never become idle), it's called virtual time.

 Such approach has its price though. The problem is analogous to what was presented in pre?

 vious section and is caused by non-linearity of service curves:

 1) either it's impossible to guarantee service curves and satisfy fairness during certain

 time periods:

 Recall the example from RT section, slightly modified (with 3Mbit slopes instead of

 2Mbit ones):

 ? 1st class - 3Mbit for 100ms, then 7Mbit (convex - 1st slope < 2nd slope)

 ? 2nd class - 7Mbit for 100ms, then 3Mbit (concave - 1st slope > 2nd slope)

 They sum up nicely to 10Mbit - the interface's capacity. But if we wanted to only use

 LS for guarantees and fairness - it simply won't work. In LS context, only V() is used

 for making decision which class to schedule. If the 2nd class becomes active when the

 1st one is in its second slope, the fairness will be preserved - ratio will be 1:1

 (7Mbit:7Mbit), but LS itself is of course unable to guarantee the absolute values

 themselves - as it would have to go beyond of what the interface is capable of.

 2) and/or it's impossible to guarantee service curves of all classes at the same time

 [fairly or not]:

 This is similar to the above case, but a bit more subtle. We will consider two sub?

 trees, arbitrated by their common (root here) parent:

 R (root) - 10Mbit

 A - 7Mbit, then 3Mbit

 A1 - 5Mbit, then 2Mbit

 A2 - 2Mbit, then 1Mbit

 B - 3Mbit, then 7Mbit

 R arbitrates between left subtree (A) and right (B). Assume that A2 and B are con?

 stantly backlogged, and at some later point A1 becomes backlogged (when all other

 classes are in their 2nd linear part).

 What happens now? B (choice made by R) will always get 7 Mbit as R is only (obviously)

 concerned with the ratio between its direct children. Thus A subtree gets 3Mbit, but

 its children would want (at the point when A1 became backlogged) 5Mbit + 1Mbit. That's Page 6/11

 of course impossible, as they can only get 3Mbit due to interface limitation.

 In the left subtree - we have the same situation as previously (fair split between A1

 and A2, but violated guarantees), but in the whole tree - there's no fairness (B got

 7Mbit, but A1 and A2 have to fit together in 3Mbit) and there's no guarantees for all

 classes (only B got what it wanted). Even if we violated fairness in the A subtree and

 set A2's service curve to 0, A1 would still not get the required bandwidth.

UPPERLIMIT CRITERION

 UL criterion is an extensions to LS one, that permits sending packets only if current real

 time is later than fit-time ('ft'). So the modified LS criterion becomes: choose the

 smallest virtual time from all active children, such that fit-time < current real time

 also holds. Fit-time is calculated from F(), which is based on UL service curve. As you

 can see, its role is kinda similar to E() used in RT criterion. Also, for obvious reasons

 - you can't specify UL service curve without LS one.

 The main purpose of the UL service curve is to limit HFSC to bandwidth available on the

 upstream router (think adsl home modem/router, and linux server as NAT/firewall/etc. with

 100Mbit+ connection to mentioned modem/router). Typically, it's used to create a single

 class directly under root, setting a linear UL service curve to available bandwidth - and

 then creating your class structure from that class downwards. Of course, you're free to

 add a UL service curve (linear or not) to any class with LS criterion.

 An important part about the UL service curve is that whenever at some point in time a

 class doesn't qualify for linksharing due to its fit-time, the next time it does qualify

 it will update its virtual time to the smallest virtual time of all active children fit

 for linksharing. This way, one of the main things the LS criterion tries to achieve -

 equality of all virtual times across whole hierarchy - is preserved (in perfectly fluid

 system with only linear curves, all virtual times would be equal).

 Without that, 'vt' would lag behind other virtual times, and could cause problems. Con?

 sider an interface with a capacity of 10Mbit, and the following leaf classes (just in case

 you're skipping this text quickly - this example shows behavior that doesn't happen):

 A - ls 5.0Mbit

 B - ls 2.5Mbit

 C - ls 2.5Mbit, ul 2.5Mbit

 If B was idle, while A and C were constantly backlogged, A and C would normally (as far as

 LS criterion is concerned) divide bandwidth in 2:1 ratio. But due to UL service curve in Page 7/11

 place, C would get at most 2.5Mbit, and A would get the remaining 7.5Mbit. The longer the

 backlogged period, the more the virtual times of A and C would drift apart. If B became

 backlogged at some later point in time, its virtual time would be set to

 (A's vt + C's vt)/2, thus blocking A from sending any traffic until B's virtual time

 catches up with A.

SEPARATE LS / RT SCs

 Another difference from the original HFSC paper is that RT and LS SCs can be specified

 separately. Moreover, leaf classes are allowed to have only either RT SC or LS SC. For in?

 terior classes, only LS SCs make sense: any RT SC will be ignored.

CORNER CASES

 Separate service curves for LS and RT criteria can lead to certain traps that come from

 "fighting" between ideal linksharing and enforced realtime guarantees. Those situations

 didn't exist in original HFSC paper, where specifying separate LS / RT service curves was

 not discussed.

 Consider an interface with a 10Mbit capacity, with the following leaf classes:

 A - ls 5.0Mbit, rt 8Mbit

 B - ls 2.5Mbit

 C - ls 2.5Mbit

 Imagine A and C are constantly backlogged. As B is idle, A and C would divide bandwidth in

 2:1 ratio, considering LS service curve (so in theory - 6.66 and 3.33). Alas RT criterion

 takes priority, so A will get 8Mbit and LS will be able to compensate class C for only 2

 Mbit - this will cause discrepancy between virtual times of A and C.

 Assume this situation lasts for a long time with no idle periods, and suddenly B becomes

 active. B's virtual time will be updated to (A's vt + C's vt)/2, effectively landing in

 the middle between A's and C's virtual time. The effect - B, having no RT guarantees, will

 be punished and will not be allowed to transfer until C's virtual time catches up.

 If the interface had a higher capacity, for example 100Mbit, this example would behave

 perfectly fine though.

 Let's look a bit closer at the above example - it "cleverly" invalidates one of the basic

 things LS criterion tries to achieve - equality of all virtual times across class hierar?

 chy. Leaf classes without RT service curves are literally left to their own fate (governed

 by messed up virtual times).

 Also, it doesn't make much sense. Class A will always be guaranteed up to 8Mbit, and this Page 8/11

 is more than any absolute bandwidth that could happen from its LS criterion (excluding

 trivial case of only A being active). If the bandwidth taken by A is smaller than absolute

 value from LS criterion, the unused part will be automatically assigned to other active

 classes (as A has idling periods in such case). The only "advantage" is, that even in case

 of low bandwidth on average, bursts would be handled at the speed defined by RT criterion.

 Still, if extra speed is needed (e.g. due to latency), non linear service curves should be

 used in such case.

 In the other words: the LS criterion is meaningless in the above example.

 You can quickly "workaround" it by making sure each leaf class has RT service curve as?

 signed (thus guaranteeing all of them will get some bandwidth), but it doesn't make it any

 more valid.

 Keep in mind - if you use nonlinear curves and irregularities explained above happen only

 in the first segment, then there's little wrong with "overusing" RT curve a bit:

 A - ls 5.0Mbit, rt 9Mbit/30ms, then 1Mbit

 B - ls 2.5Mbit

 C - ls 2.5Mbit

 Here, the vt of A will "spike" in the initial period, but then A will never get more than

 1Mbit until B & C catch up. Then everything will be back to normal.

LINUX AND TIMER RESOLUTION

 In certain situations, the scheduler can throttle itself and setup so called watchdog to

 wakeup dequeue function at some time later. In case of HFSC it happens when for example no

 packet is eligible for scheduling, and UL service curve is used to limit the speed at

 which LS criterion is allowed to dequeue packets. It's called throttling, and accuracy of

 it is dependent on how the kernel is compiled.

 There're 3 important options in modern kernels, as far as timers' resolution goes: 'tick?

 less system', 'high resolution timer support' and 'timer frequency'.

 If you have 'tickless system' enabled, then the timer interrupt will trigger as slowly as

 possible, but each time a scheduler throttles itself (or any other part of the kernel

 needs better accuracy), the rate will be increased as needed / possible. The ceiling is

 either 'timer frequency' if 'high resolution timer support' is not available or not com?

 piled in, or it's hardware dependent and can go far beyond the highest 'timer frequency'

 setting available.

 If 'tickless system' is not enabled, the timer will trigger at a fixed rate specified by Page 9/11

 'timer frequency' - regardless if high resolution timers are or aren't available.

 This is important to keep those settings in mind, as in scenario like: no tickless, no HR

 timers, frequency set to 100hz - throttling accuracy would be at 10ms. It doesn't automat?

 ically mean you would be limited to ~0.8Mbit/s (assuming packets at ~1KB) - as long as

 your queues are prepared to cover for timer inaccuracy. Of course, in case of e.g. locally

 generated UDP traffic - appropriate socket size is needed as well. Short example to make

 it more understandable (assume hardcore anti-schedule settings - HZ=100, no HR timers, no

 tickless):

 tc qdisc add dev eth0 root handle 1:0 hfsc default 1

 tc class add dev eth0 parent 1:0 classid 1:1 hfsc rt m2 10Mbit

 Assuming packet of ~1KB size and HZ=100, that averages to ~0.8Mbit - anything beyond it

 (e.g. the above example with specified rate over 10x larger) will require appropriate

 queuing and cause bursts every ~10 ms. As you can imagine, any HFSC's RT guarantees will

 be seriously invalidated by that. Aforementioned example is mainly important if you deal

 with old hardware - as is particularly popular for home server chores. Even then, you can

 easily set HZ=1000 and have very accurate scheduling for typical adsl speeds.

 Anything modern (apic or even hpet msi based timers + 'tickless system') will provide

 enough accuracy for superb 1Gbit scheduling. For example, on one of my cheap dual-core AMD

 boards I have the following settings:

 tc qdisc add dev eth0 parent root handle 1:0 hfsc default 1

 tc class add dev eth0 parent 1:0 classid 1:1 hfsc rt m2 300mbit

 And a simple:

 nc -u dst.host.com 54321 </dev/zero

 nc -l -p 54321 >/dev/null

 ...will yield the following effects over a period of ~10 seconds (taken from /proc/inter?

 rupts):

 319: 42124229 0 HPET_MSI-edge hpet2 (before)

 319: 42436214 0 HPET_MSI-edge hpet2 (after 10s.)

 That's roughly 31000/s. Now compare it with HZ=1000 setting. The obvious drawback of it is

 that cpu load can be rather high with servicing that many timer interrupts. The example

 with 300Mbit RT service curve on 1Gbit link is particularly ugly, as it requires a lot of

 throttling with minuscule delays.

 Also note that it's just an example showing the capabilities of current hardware. The Page 10/11

 above example (essentially a 300Mbit TBF emulator) is pointless on an internal interface

 to begin with: you will pretty much always want a regular LS service curve there, and in

 such a scenario HFSC simply doesn't throttle at all.

 300Mbit RT service curve (selected columns from mpstat -P ALL 1):

 10:56:43 PM CPU %sys %irq %soft %idle

 10:56:44 PM all 20.10 6.53 34.67 37.19

 10:56:44 PM 0 35.00 0.00 63.00 0.00

 10:56:44 PM 1 4.95 12.87 6.93 73.27

 So, in the rare case you need those speeds with only a RT service curve, or with a UL ser?

 vice curve: remember the drawbacks.

CAVEAT: RANDOM ONLINE EXAMPLES

 For reasons unknown (though well guessed), many examples you can google love to overuse UL

 criterion and stuff it in every node possible. This makes no sense and works against what

 HFSC tries to do (and does pretty damn well). Use UL where it makes sense: on the upper?

 most node to match upstream router's uplink capacity. Or in special cases, such as testing

 (limit certain subtree to some speed), or customers that must never get more than certain

 speed. In the last case you can usually achieve the same by just using a RT criterion

 without LS+UL on leaf nodes.

 As for the router case - remember it's good to differentiate between "traffic to router"

 (remote console, web config, etc.) and "outgoing traffic", so for example:

 tc qdisc add dev eth0 root handle 1:0 hfsc default 0x8002

 tc class add dev eth0 parent 1:0 classid 1:999 hfsc rt m2 50Mbit

 tc class add dev eth0 parent 1:0 classid 1:1 hfsc ls m2 2Mbit ul m2 2Mbit

 ... so "internet" tree under 1:1 and "router itself" as 1:999

LAYER2 ADAPTATION

 Please refer to tc-stab(8)

SEE ALSO

 tc(8), tc-hfsc(8), tc-stab(8)

 Please direct bugreports and patches to: <netdev@vger.kernel.org>

AUTHOR

 Manpage created by Michal Soltys (soltys@ziu.info)

iproute2 31 October 2011 TC-HFSC(7)

Page 11/11

