PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-pedit.8'
$ man tc-pedit.8
Generic packet editor action in tc(8) Linux Generic packet editor action in tc(8)
NAME
pedit - generic packet editor action
SYNOPSIS
tc ... action pedit [ex] munge { RAW_OP | LAYERED_OP | EXTENDED_LAYERED_OP } [CONTROL]
RAW_OP := offset OFFSET { u8 | u16 | u32 } [AT_SPEC] CMD_SPEC
AT_SPEC := at AT offmask MASK shift SHIFT
LAYERED_OP :={ip IPHDR_FIELD | ip BEYOND_IPHDR_FIELD } CMD_SPEC
EXTENDED_LAYERED_OP := { eth ETHHDR_FIELD | ip IPHDR_FIELD | ip EX_IPHDR_FIELD | ip6
IP6HDR_FIELD | tcp TCPHDR_FIELD | udp UDPHDR_FIELD } CMD_SPEC
ETHHDR_FIELD :={src | dst | type }
IPHDR_FIELD :={ src | dst | tos | dsfield | ihl | protocol | precedence | nofrag | first?
frag | ce | df }
BEYOND_IPHDR_FIELD := { dport | sport | icmp_type | icmp_code }
EX_IPHDR_FIELD :={ ttl }
IP6HDR_FIELD :={src | dst | traffic_class | flow_lIbl | payload_len | nexthdr | hoplimit
}
TCPHDR_FIELD := { sport | dport | flags }
UDPHDR_FIELD :={ sport | dport }
CMD_SPEC :={clear | invert | set VAL | add VAL | decrement | preserve } [retain RVAL]
CONTROL :={ reclassify | pipe | drop | shot | continue | pass | goto chain CHAIN_INDEX }
DESCRIPTION

The pedit action can be used to change arbitrary packet data. The location of data to Page 1/6

change can either be specified by giving an offset and size as in RAW_OP, or for header
values by naming the header and field to edit the size is then chosen automatically based
on the header field size.
OPTIONS
ex Use extended pedit. EXTENDED_LAYERED_OP and the add/decrement CMD_SPEC are allowed
only in this mode.
offset OFFSET { u32 | ul6 | us }
Specify the offset at which to change data. OFFSET is a signed integer, it's base
is automatically chosen (e.g. hex if prefixed by Ox or octal if prefixed by 0).
The second argument specifies the length of data to change, that is four bytes
(u32), two bytes (ul6) or a single byte (u8).
at AT offmask MASK shift SHIFT
This is an optional part of RAW_OP which allows to have a variable OFFSET depending
on packet data at offset AT, which is binary ANDed with MASK and right-shifted by
SHIFT before adding it to OFFSET.
eth ETHHDR_FIELD
Change an ETH header field. The supported keywords for ETHHDR_FIELD are:
src
dst Source or destination MAC address in the standard format: XX:XX:XX:XX:XX:XX
type Ether-type in numeric value
ip IPHDR_FIELD
Change an IPv4 header field. The supported keywords for IPHDR_FIELD are:
src
dst Source or destination IP address, a four-byte value.
tos
dsfield
precedence
Type Of Service field, an eight-bit value.
ihl Change the IP Header Length field, a four-bit value.
protocol
Next-layer Protocol field, an eight-bit value.
nofrag

firstfrag Page 2/6

ce
df
mf Change IP header flags. Note that the value to pass to the set command is
not just a bit value, but the full byte including the flags field. Though
only the relevant bits of that value are respected, the rest ignored.
ip BEYOND_IPHDR_FIELD
Supported only for non-extended layered op. It is passed to the kernel as offsets
relative to the beginning of the IP header and assumes the IP header is of minimum
size (20 bytes). The supported keywords for BEYOND_IPHDR_FIELD are:
dport
sport Destination or source port numbers, a 16-bit value. Indeed, IPv4 headers
don't contain this information. Instead, this will set an offset which suits
at least TCP and UDP if the IP header is of minimum size (20 bytes). If not,
this will do unexpected things.
icmp_type
icmp_code
Again, this allows to change data past the actual IP header itself. It as?
sumes an ICMP header is present immediately following the (minimal sized) IP
header. Ifitis not or the latter is bigger than the minimum of 20 bytes,
this will do unexpected things. These fields are eight-bit values.
ip EX_IPHDR_FIELD
Supported only when ex is used. The supported keywords for EX_IPHDR_FIELD are:
ttl
ip6 IP6HDR_FIELD
The supported keywords for IP6HDR_FIELD are:
src
dst
traffic_class
flow_lbl
payload_len
nexthdr
hoplimit

tcp TCPHDR_FIELD Page 3/6

The supported keywords for TCPHDR_FIELD are:
sport
dport Source or destination TCP port number, a 16-bit value.
flags
udp UDPHDR_FIELD
The supported keywords for UDPHDR_FIELD are:
sport
dport Source or destination TCP port number, a 16-bit value.
clear Clear the addressed data (i.e., set it to zero).
invert Swap every bit in the addressed data.
set VAL
Set the addressed data to a specific value. The size of VAL is defined by either
one of the u32, ul6 or u8 keywords in RAW_OP, or the size of the addressed header
field in LAYERED_OP.
add VAL
Add the addressed data by a specific value. The size of VAL is defined by the size
of the addressed header field in EXTENDED _LAYERED_OP. This operation is supported
only for extended layered op.
decrement
Decrease the addressed data by one. This operation is supported only for ip ttl
and ip6 hoplimit.
preserve
Keep the addressed data as is.
retain RVAL
This optional extra part of CMD_SPEC allows to exclude bits from being changed.
Supported only for 32 bits fields or smaller.
CONTROL
The following keywords allow to control how the tree of qdisc, classes, filters and
actions is further traversed after this action.
reclassify
Restart with the first filter in the current list.
pipe Continue with the next action attached to the same filter.

drop

Page 4/6

shot Drop the packet.
continue
Continue classification with the next filter in line.
pass Finish classification process and return to calling gdisc for further packet
processing. This is the default.
EXAMPLES
Being able to edit packet data, one could do all kinds of things, such as e.g. implement?
ing port redirection. Certainly not the most useful application, but as an example it
should do:
First, qdiscs need to be set up to attach filters to. For the receive path, a simple
ingress qgdisc will do, for transmit path a classful qdisc (HTB in this case) is necessary:
tc qdisc replace dev ethO root handle 1: htb
tc qdisc add dev ethO ingress handle ffff:
Finally, a filter with pedit action can be added for each direction. In this case, u32 is
used matching on the port number to redirect from, while pedit then does the actual
rewriting:
tc filter add dev eth0 parent 1: u32 \
match ip dport 23 Oxffff \
action pedit pedit munge ip dport set 22
tc filter add dev ethO parent ffff: u32 \
match ip sport 22 Oxffff \
action pedit pedit munge ip sport set 23
tc filter add dev ethO parent ffff: u32 \
match ip sport 22 Oxffff \
action pedit ex munge ip dst set 192.168.1.199
tc filter add dev ethO parent ffff: u32 \
match ip sport 22 Oxffff \
action pedit ex munge ip6 dst set fe80::dach:8aff:fec7:320e
tc filter add dev ethO parent ffff: u32 \
match ip sport 22 Oxffff \
action pedit ex munge eth dst set 11:22:33:44:55:66
tc filter add dev ethO parent ffff: u32 \

match ip dport 23 Oxffff \

Page 5/6

action pedit ex munge tcp dport set 22
To rewrite just part of a field, use the retain directive. E.g. to overwrite the DSCP part
of a dsfield with $DSCP, without touching ECN:
tc filter add dev ethO ingress flower ... \
action pedit ex munge ip dsfield set $((DSCP << 2)) retain Oxfc
And vice versa, to set ECN to e.g. 1 without impacting DSCP:
tc filter add dev ethO ingress flower ...\
action pedit ex munge ip dsfield set 1 retain 0x3
SEE ALSO
tc(8), tc-htb(8), tc-u32(8)

iproute2 12 Jan 2015 Generic packet editor action in tc(8)

Page 6/6

