
Rocky Enterprise Linux 9.2 Manual Pages on command 'tcp.7'

$ man tcp.7

TCP(7) Linux Programmer's Manual TCP(7)

NAME

 tcp - TCP protocol

SYNOPSIS

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <netinet/tcp.h>

 tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPTION

 This is an implementation of the TCP protocol defined in RFC 793, RFC 1122 and RFC 2001

 with the NewReno and SACK extensions. It provides a reliable, stream-oriented, full-du?

 plex connection between two sockets on top of ip(7), for both v4 and v6 versions. TCP

 guarantees that the data arrives in order and retransmits lost packets. It generates and

 checks a per-packet checksum to catch transmission errors. TCP does not preserve record

 boundaries.

 A newly created TCP socket has no remote or local address and is not fully specified. To

 create an outgoing TCP connection use connect(2) to establish a connection to another TCP

 socket. To receive new incoming connections, first bind(2) the socket to a local address

 and port and then call listen(2) to put the socket into the listening state. After that a

 new socket for each incoming connection can be accepted using accept(2). A socket which

 has had accept(2) or connect(2) successfully called on it is fully specified and may

 transmit data. Data cannot be transmitted on listening or not yet connected sockets.

 Linux supports RFC 1323 TCP high performance extensions. These include Protection Against Page 1/19

 Wrapped Sequence Numbers (PAWS), Window Scaling and Timestamps. Window scaling allows the

 use of large (> 64 kB) TCP windows in order to support links with high latency or band?

 width. To make use of them, the send and receive buffer sizes must be increased. They

 can be set globally with the /proc/sys/net/ipv4/tcp_wmem and /proc/sys/net/ipv4/tcp_rmem

 files, or on individual sockets by using the SO_SNDBUF and SO_RCVBUF socket options with

 the setsockopt(2) call.

 The maximum sizes for socket buffers declared via the SO_SNDBUF and SO_RCVBUF mechanisms

 are limited by the values in the /proc/sys/net/core/rmem_max and

 /proc/sys/net/core/wmem_max files. Note that TCP actually allocates twice the size of the

 buffer requested in the setsockopt(2) call, and so a succeeding getsockopt(2) call will

 not return the same size of buffer as requested in the setsockopt(2) call. TCP uses the

 extra space for administrative purposes and internal kernel structures, and the /proc file

 values reflect the larger sizes compared to the actual TCP windows. On individual connec?

 tions, the socket buffer size must be set prior to the listen(2) or connect(2) calls in

 order to have it take effect. See socket(7) for more information.

 TCP supports urgent data. Urgent data is used to signal the receiver that some important

 message is part of the data stream and that it should be processed as soon as possible.

 To send urgent data specify the MSG_OOB option to send(2). When urgent data is received,

 the kernel sends a SIGURG signal to the process or process group that has been set as the

 socket "owner" using the SIOCSPGRP or FIOSETOWN ioctls (or the POSIX.1-specified fcntl(2)

 F_SETOWN operation). When the SO_OOBINLINE socket option is enabled, urgent data is put

 into the normal data stream (a program can test for its location using the SIOCATMARK

 ioctl described below), otherwise it can be received only when the MSG_OOB flag is set for

 recv(2) or recvmsg(2).

 When out-of-band data is present, select(2) indicates the file descriptor as having an ex?

 ceptional condition and poll (2) indicates a POLLPRI event.

 Linux 2.4 introduced a number of changes for improved throughput and scaling, as well as

 enhanced functionality. Some of these features include support for zero-copy sendfile(2),

 Explicit Congestion Notification, new management of TIME_WAIT sockets, keep-alive socket

 options and support for Duplicate SACK extensions.

 Address formats

 TCP is built on top of IP (see ip(7)). The address formats defined by ip(7) apply to TCP.

 TCP supports point-to-point communication only; broadcasting and multicasting are not sup? Page 2/19

 ported.

 /proc interfaces

 System-wide TCP parameter settings can be accessed by files in the directory

 /proc/sys/net/ipv4/. In addition, most IP /proc interfaces also apply to TCP; see ip(7).

 Variables described as Boolean take an integer value, with a nonzero value ("true") mean?

 ing that the corresponding option is enabled, and a zero value ("false") meaning that the

 option is disabled.

 tcp_abc (Integer; default: 0; Linux 2.6.15 to Linux 3.8)

 Control the Appropriate Byte Count (ABC), defined in RFC 3465. ABC is a way of in?

 creasing the congestion window (cwnd) more slowly in response to partial acknowl?

 edgments. Possible values are:

 0 increase cwnd once per acknowledgment (no ABC)

 1 increase cwnd once per acknowledgment of full sized segment

 2 allow increase cwnd by two if acknowledgment is of two segments to compensate

 for delayed acknowledgments.

 tcp_abort_on_overflow (Boolean; default: disabled; since Linux 2.4)

 Enable resetting connections if the listening service is too slow and unable to

 keep up and accept them. It means that if overflow occurred due to a burst, the

 connection will recover. Enable this option only if you are really sure that the

 listening daemon cannot be tuned to accept connections faster. Enabling this op?

 tion can harm the clients of your server.

 tcp_adv_win_scale (integer; default: 2; since Linux 2.4)

 Count buffering overhead as bytes/2^tcp_adv_win_scale, if tcp_adv_win_scale is

 greater than 0; or bytes-bytes/2^(-tcp_adv_win_scale), if tcp_adv_win_scale is less

 than or equal to zero.

 The socket receive buffer space is shared between the application and kernel. TCP

 maintains part of the buffer as the TCP window, this is the size of the receive

 window advertised to the other end. The rest of the space is used as the "applica?

 tion" buffer, used to isolate the network from scheduling and application laten?

 cies. The tcp_adv_win_scale default value of 2 implies that the space used for the

 application buffer is one fourth that of the total.

 tcp_allowed_congestion_control (String; default: see text; since Linux 2.4.20)

 Show/set the congestion control algorithm choices available to unprivileged pro? Page 3/19

 cesses (see the description of the TCP_CONGESTION socket option). The items in the

 list are separated by white space and terminated by a newline character. The list

 is a subset of those listed in tcp_available_congestion_control. The default value

 for this list is "reno" plus the default setting of tcp_congestion_control.

 tcp_autocorking (Boolean; default: enabled; since Linux 3.14)

 If this option is enabled, the kernel tries to coalesce small writes (from consecu?

 tive write(2) and sendmsg(2) calls) as much as possible, in order to decrease the

 total number of sent packets. Coalescing is done if at least one prior packet for

 the flow is waiting in Qdisc queues or device transmit queue. Applications can

 still use the TCP_CORK socket option to obtain optimal behavior when they know

 how/when to uncork their sockets.

 tcp_available_congestion_control (String; read-only; since Linux 2.4.20)

 Show a list of the congestion-control algorithms that are registered. The items in

 the list are separated by white space and terminated by a newline character. This

 list is a limiting set for the list in tcp_allowed_congestion_control. More con?

 gestion-control algorithms may be available as modules, but not loaded.

 tcp_app_win (integer; default: 31; since Linux 2.4)

 This variable defines how many bytes of the TCP window are reserved for buffering

 overhead.

 A maximum of (window/2^tcp_app_win, mss) bytes in the window are reserved for the

 application buffer. A value of 0 implies that no amount is reserved.

 tcp_base_mss (Integer; default: 512; since Linux 2.6.17)

 The initial value of search_low to be used by the packetization layer Path MTU dis?

 covery (MTU probing). If MTU probing is enabled, this is the initial MSS used by

 the connection.

 tcp_bic (Boolean; default: disabled; Linux 2.4.27/2.6.6 to 2.6.13)

 Enable BIC TCP congestion control algorithm. BIC-TCP is a sender-side-only change

 that ensures a linear RTT fairness under large windows while offering both scala?

 bility and bounded TCP-friendliness. The protocol combines two schemes called ad?

 ditive increase and binary search increase. When the congestion window is large,

 additive increase with a large increment ensures linear RTT fairness as well as

 good scalability. Under small congestion windows, binary search increase provides

 TCP friendliness. Page 4/19

 tcp_bic_low_window (integer; default: 14; Linux 2.4.27/2.6.6 to 2.6.13)

 Set the threshold window (in packets) where BIC TCP starts to adjust the congestion

 window. Below this threshold BIC TCP behaves the same as the default TCP Reno.

 tcp_bic_fast_convergence (Boolean; default: enabled; Linux 2.4.27/2.6.6 to 2.6.13)

 Force BIC TCP to more quickly respond to changes in congestion window. Allows two

 flows sharing the same connection to converge more rapidly.

 tcp_congestion_control (String; default: see text; since Linux 2.4.13)

 Set the default congestion-control algorithm to be used for new connections. The

 algorithm "reno" is always available, but additional choices may be available de?

 pending on kernel configuration. The default value for this file is set as part of

 kernel configuration.

 tcp_dma_copybreak (integer; default: 4096; since Linux 2.6.24)

 Lower limit, in bytes, of the size of socket reads that will be offloaded to a DMA

 copy engine, if one is present in the system and the kernel was configured with the

 CONFIG_NET_DMA option.

 tcp_dsack (Boolean; default: enabled; since Linux 2.4)

 Enable RFC 2883 TCP Duplicate SACK support.

 tcp_ecn (Integer; default: see below; since Linux 2.4)

 Enable RFC 3168 Explicit Congestion Notification.

 This file can have one of the following values:

 0 Disable ECN. Neither initiate nor accept ECN. This was the default up to

 and including Linux 2.6.30.

 1 Enable ECN when requested by incoming connections and also request ECN on

 outgoing connection attempts.

 2 Enable ECN when requested by incoming connections, but do not request ECN on

 outgoing connections. This value is supported, and is the default, since

 Linux 2.6.31.

 When enabled, connectivity to some destinations could be affected due to older,

 misbehaving middle boxes along the path, causing connections to be dropped. How?

 ever, to facilitate and encourage deployment with option 1, and to work around such

 buggy equipment, the tcp_ecn_fallback option has been introduced.

 tcp_ecn_fallback (Boolean; default: enabled; since Linux 4.1)

 Enable RFC 3168, Section 6.1.1.1. fallback. When enabled, outgoing ECN-setup SYNs Page 5/19

 that time out within the normal SYN retransmission timeout will be resent with CWR

 and ECE cleared.

 tcp_fack (Boolean; default: enabled; since Linux 2.2)

 Enable TCP Forward Acknowledgement support.

 tcp_fin_timeout (integer; default: 60; since Linux 2.2)

 This specifies how many seconds to wait for a final FIN packet before the socket is

 forcibly closed. This is strictly a violation of the TCP specification, but re?

 quired to prevent denial-of-service attacks. In Linux 2.2, the default value was

 180.

 tcp_frto (integer; default: see below; since Linux 2.4.21/2.6)

 Enable F-RTO, an enhanced recovery algorithm for TCP retransmission timeouts

 (RTOs). It is particularly beneficial in wireless environments where packet loss

 is typically due to random radio interference rather than intermediate router con?

 gestion. See RFC 4138 for more details.

 This file can have one of the following values:

 0 Disabled. This was the default up to and including Linux 2.6.23.

 1 The basic version F-RTO algorithm is enabled.

 2 Enable SACK-enhanced F-RTO if flow uses SACK. The basic version can be used

 also when SACK is in use though in that case scenario(s) exists where F-RTO in?

 teracts badly with the packet counting of the SACK-enabled TCP flow. This value

 is the default since Linux 2.6.24.

 Before Linux 2.6.22, this parameter was a Boolean value, supporting just values 0

 and 1 above.

 tcp_frto_response (integer; default: 0; since Linux 2.6.22)

 When F-RTO has detected that a TCP retransmission timeout was spurious (i.e., the

 timeout would have been avoided had TCP set a longer retransmission timeout), TCP

 has several options concerning what to do next. Possible values are:

 0 Rate halving based; a smooth and conservative response, results in halved con?

 gestion window (cwnd) and slow-start threshold (ssthresh) after one RTT.

 1 Very conservative response; not recommended because even though being valid, it

 interacts poorly with the rest of Linux TCP; halves cwnd and ssthresh immedi?

 ately.

 2 Aggressive response; undoes congestion-control measures that are now known to be Page 6/19

 unnecessary (ignoring the possibility of a lost retransmission that would re?

 quire TCP to be more cautious); cwnd and ssthresh are restored to the values

 prior to timeout.

 tcp_keepalive_intvl (integer; default: 75; since Linux 2.4)

 The number of seconds between TCP keep-alive probes.

 tcp_keepalive_probes (integer; default: 9; since Linux 2.2)

 The maximum number of TCP keep-alive probes to send before giving up and killing

 the connection if no response is obtained from the other end.

 tcp_keepalive_time (integer; default: 7200; since Linux 2.2)

 The number of seconds a connection needs to be idle before TCP begins sending out

 keep-alive probes. Keep-alives are sent only when the SO_KEEPALIVE socket option

 is enabled. The default value is 7200 seconds (2 hours). An idle connection is

 terminated after approximately an additional 11 minutes (9 probes an interval of 75

 seconds apart) when keep-alive is enabled.

 Note that underlying connection tracking mechanisms and application timeouts may be

 much shorter.

 tcp_low_latency (Boolean; default: disabled; since Linux 2.4.21/2.6; obsolete since Linux

 4.14)

 If enabled, the TCP stack makes decisions that prefer lower latency as opposed to

 higher throughput. It this option is disabled, then higher throughput is pre?

 ferred. An example of an application where this default should be changed would be

 a Beowulf compute cluster. Since Linux 4.14, this file still exists, but its value

 is ignored.

 tcp_max_orphans (integer; default: see below; since Linux 2.4)

 The maximum number of orphaned (not attached to any user file handle) TCP sockets

 allowed in the system. When this number is exceeded, the orphaned connection is

 reset and a warning is printed. This limit exists only to prevent simple denial-

 of-service attacks. Lowering this limit is not recommended. Network conditions

 might require you to increase the number of orphans allowed, but note that each or?

 phan can eat up to ~64 kB of unswappable memory. The default initial value is set

 equal to the kernel parameter NR_FILE. This initial default is adjusted depending

 on the memory in the system.

 tcp_max_syn_backlog (integer; default: see below; since Linux 2.2) Page 7/19

 The maximum number of queued connection requests which have still not received an

 acknowledgement from the connecting client. If this number is exceeded, the kernel

 will begin dropping requests. The default value of 256 is increased to 1024 when

 the memory present in the system is adequate or greater (>= 128 MB), and reduced to

 128 for those systems with very low memory (<= 32 MB).

 Prior to Linux 2.6.20, it was recommended that if this needed to be increased above

 1024, the size of the SYNACK hash table (TCP_SYNQ_HSIZE) in include/net/tcp.h

 should be modified to keep

 TCP_SYNQ_HSIZE * 16 <= tcp_max_syn_backlog

 and the kernel should be recompiled. In Linux 2.6.20, the fixed sized

 TCP_SYNQ_HSIZE was removed in favor of dynamic sizing.

 tcp_max_tw_buckets (integer; default: see below; since Linux 2.4)

 The maximum number of sockets in TIME_WAIT state allowed in the system. This limit

 exists only to prevent simple denial-of-service attacks. The default value of

 NR_FILE*2 is adjusted depending on the memory in the system. If this number is ex?

 ceeded, the socket is closed and a warning is printed.

 tcp_moderate_rcvbuf (Boolean; default: enabled; since Linux 2.4.17/2.6.7)

 If enabled, TCP performs receive buffer auto-tuning, attempting to automatically

 size the buffer (no greater than tcp_rmem[2]) to match the size required by the

 path for full throughput.

 tcp_mem (since Linux 2.4)

 This is a vector of 3 integers: [low, pressure, high]. These bounds, measured in

 units of the system page size, are used by TCP to track its memory usage. The de?

 faults are calculated at boot time from the amount of available memory. (TCP can

 only use low memory for this, which is limited to around 900 megabytes on 32-bit

 systems. 64-bit systems do not suffer this limitation.)

 low TCP doesn't regulate its memory allocation when the number of pages it has

 allocated globally is below this number.

 pressure

 When the amount of memory allocated by TCP exceeds this number of pages, TCP

 moderates its memory consumption. This memory pressure state is exited once

 the number of pages allocated falls below the low mark.

 high The maximum number of pages, globally, that TCP will allocate. This value Page 8/19

 overrides any other limits imposed by the kernel.

 tcp_mtu_probing (integer; default: 0; since Linux 2.6.17)

 This parameter controls TCP Packetization-Layer Path MTU Discovery. The following

 values may be assigned to the file:

 0 Disabled

 1 Disabled by default, enabled when an ICMP black hole detected

 2 Always enabled, use initial MSS of tcp_base_mss.

 tcp_no_metrics_save (Boolean; default: disabled; since Linux 2.6.6)

 By default, TCP saves various connection metrics in the route cache when the con?

 nection closes, so that connections established in the near future can use these to

 set initial conditions. Usually, this increases overall performance, but it may

 sometimes cause performance degradation. If tcp_no_metrics_save is enabled, TCP

 will not cache metrics on closing connections.

 tcp_orphan_retries (integer; default: 8; since Linux 2.4)

 The maximum number of attempts made to probe the other end of a connection which

 has been closed by our end.

 tcp_reordering (integer; default: 3; since Linux 2.4)

 The maximum a packet can be reordered in a TCP packet stream without TCP assuming

 packet loss and going into slow start. It is not advisable to change this number.

 This is a packet reordering detection metric designed to minimize unnecessary back

 off and retransmits provoked by reordering of packets on a connection.

 tcp_retrans_collapse (Boolean; default: enabled; since Linux 2.2)

 Try to send full-sized packets during retransmit.

 tcp_retries1 (integer; default: 3; since Linux 2.2)

 The number of times TCP will attempt to retransmit a packet on an established con?

 nection normally, without the extra effort of getting the network layers involved.

 Once we exceed this number of retransmits, we first have the network layer update

 the route if possible before each new retransmit. The default is the RFC specified

 minimum of 3.

 tcp_retries2 (integer; default: 15; since Linux 2.2)

 The maximum number of times a TCP packet is retransmitted in established state be?

 fore giving up. The default value is 15, which corresponds to a duration of ap?

 proximately between 13 to 30 minutes, depending on the retransmission timeout. The Page 9/19

 RFC 1122 specified minimum limit of 100 seconds is typically deemed too short.

 tcp_rfc1337 (Boolean; default: disabled; since Linux 2.2)

 Enable TCP behavior conformant with RFC 1337. When disabled, if a RST is received

 in TIME_WAIT state, we close the socket immediately without waiting for the end of

 the TIME_WAIT period.

 tcp_rmem (since Linux 2.4)

 This is a vector of 3 integers: [min, default, max]. These parameters are used by

 TCP to regulate receive buffer sizes. TCP dynamically adjusts the size of the re?

 ceive buffer from the defaults listed below, in the range of these values, depend?

 ing on memory available in the system.

 min minimum size of the receive buffer used by each TCP socket. The default

 value is the system page size. (On Linux 2.4, the default value is 4 kB,

 lowered to PAGE_SIZE bytes in low-memory systems.) This value is used to

 ensure that in memory pressure mode, allocations below this size will still

 succeed. This is not used to bound the size of the receive buffer declared

 using SO_RCVBUF on a socket.

 default

 the default size of the receive buffer for a TCP socket. This value over?

 writes the initial default buffer size from the generic global

 net.core.rmem_default defined for all protocols. The default value is 87380

 bytes. (On Linux 2.4, this will be lowered to 43689 in low-memory systems.)

 If larger receive buffer sizes are desired, this value should be increased

 (to affect all sockets). To employ large TCP windows, the net.ipv4.tcp_win?

 dow_scaling must be enabled (default).

 max the maximum size of the receive buffer used by each TCP socket. This value

 does not override the global net.core.rmem_max. This is not used to limit

 the size of the receive buffer declared using SO_RCVBUF on a socket. The

 default value is calculated using the formula

 max(87380, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

 (On Linux 2.4, the default is 87380*2 bytes, lowered to 87380 in low-memory

 systems).

 tcp_sack (Boolean; default: enabled; since Linux 2.2)

 Enable RFC 2018 TCP Selective Acknowledgements. Page 10/19

 tcp_slow_start_after_idle (Boolean; default: enabled; since Linux 2.6.18)

 If enabled, provide RFC 2861 behavior and time out the congestion window after an

 idle period. An idle period is defined as the current RTO (retransmission time?

 out). If disabled, the congestion window will not be timed out after an idle pe?

 riod.

 tcp_stdurg (Boolean; default: disabled; since Linux 2.2)

 If this option is enabled, then use the RFC 1122 interpretation of the TCP urgent-

 pointer field. According to this interpretation, the urgent pointer points to the

 last byte of urgent data. If this option is disabled, then use the BSD-compatible

 interpretation of the urgent pointer: the urgent pointer points to the first byte

 after the urgent data. Enabling this option may lead to interoperability problems.

 tcp_syn_retries (integer; default: 6; since Linux 2.2)

 The maximum number of times initial SYNs for an active TCP connection attempt will

 be retransmitted. This value should not be higher than 255. The default value is

 6, which corresponds to retrying for up to approximately 127 seconds. Before Linux

 3.7, the default value was 5, which (in conjunction with calculation based on other

 kernel parameters) corresponded to approximately 180 seconds.

 tcp_synack_retries (integer; default: 5; since Linux 2.2)

 The maximum number of times a SYN/ACK segment for a passive TCP connection will be

 retransmitted. This number should not be higher than 255.

 tcp_syncookies (integer; default: 1; since Linux 2.2)

 Enable TCP syncookies. The kernel must be compiled with CONFIG_SYN_COOKIES. The

 syncookies feature attempts to protect a socket from a SYN flood attack. This

 should be used as a last resort, if at all. This is a violation of the TCP proto?

 col, and conflicts with other areas of TCP such as TCP extensions. It can cause

 problems for clients and relays. It is not recommended as a tuning mechanism for

 heavily loaded servers to help with overloaded or misconfigured conditions. For

 recommended alternatives see tcp_max_syn_backlog, tcp_synack_retries, and

 tcp_abort_on_overflow. Set to one of the following values:

 0 Disable TCP syncookies.

 1 Send out syncookies when the syn backlog queue of a socket overflows.

 2 (since Linux 3.12) Send out syncookies unconditionally. This can be useful for

 network testing. Page 11/19

 tcp_timestamps (integer; default: 1; since Linux 2.2)

 Set to one of the following values to enable or disable RFC 1323 TCP timestamps:

 0 Disable timestamps.

 1 Enable timestamps as defined in RFC1323 and use random offset for each connec?

 tion rather than only using the current time.

 2 As for the value 1, but without random offsets. Setting tcp_timestamps to this

 value is meaningful since Linux 4.10.

 tcp_tso_win_divisor (integer; default: 3; since Linux 2.6.9)

 This parameter controls what percentage of the congestion window can be consumed by

 a single TCP Segmentation Offload (TSO) frame. The setting of this parameter is a

 tradeoff between burstiness and building larger TSO frames.

 tcp_tw_recycle (Boolean; default: disabled; Linux 2.4 to 4.11)

 Enable fast recycling of TIME_WAIT sockets. Enabling this option is not recom?

 mended as the remote IP may not use monotonically increasing timestamps (devices

 behind NAT, devices with per-connection timestamp offsets). See RFC 1323 (PAWS)

 and RFC 6191.

 tcp_tw_reuse (Boolean; default: disabled; since Linux 2.4.19/2.6)

 Allow to reuse TIME_WAIT sockets for new connections when it is safe from protocol

 viewpoint. It should not be changed without advice/request of technical experts.

 tcp_vegas_cong_avoid (Boolean; default: disabled; Linux 2.2 to 2.6.13)

 Enable TCP Vegas congestion avoidance algorithm. TCP Vegas is a sender-side-only

 change to TCP that anticipates the onset of congestion by estimating the bandwidth.

 TCP Vegas adjusts the sending rate by modifying the congestion window. TCP Vegas

 should provide less packet loss, but it is not as aggressive as TCP Reno.

 tcp_westwood (Boolean; default: disabled; Linux 2.4.26/2.6.3 to 2.6.13)

 Enable TCP Westwood+ congestion control algorithm. TCP Westwood+ is a sender-side-

 only modification of the TCP Reno protocol stack that optimizes the performance of

 TCP congestion control. It is based on end-to-end bandwidth estimation to set con?

 gestion window and slow start threshold after a congestion episode. Using this es?

 timation, TCP Westwood+ adaptively sets a slow start threshold and a congestion

 window which takes into account the bandwidth used at the time congestion is expe?

 rienced. TCP Westwood+ significantly increases fairness with respect to TCP Reno

 in wired networks and throughput over wireless links. Page 12/19

 tcp_window_scaling (Boolean; default: enabled; since Linux 2.2)

 Enable RFC 1323 TCP window scaling. This feature allows the use of a large window

 (> 64 kB) on a TCP connection, should the other end support it. Normally, the 16

 bit window length field in the TCP header limits the window size to less than

 64 kB. If larger windows are desired, applications can increase the size of their

 socket buffers and the window scaling option will be employed. If tcp_window_scal?

 ing is disabled, TCP will not negotiate the use of window scaling with the other

 end during connection setup.

 tcp_wmem (since Linux 2.4)

 This is a vector of 3 integers: [min, default, max]. These parameters are used by

 TCP to regulate send buffer sizes. TCP dynamically adjusts the size of the send

 buffer from the default values listed below, in the range of these values, depend?

 ing on memory available.

 min Minimum size of the send buffer used by each TCP socket. The default value

 is the system page size. (On Linux 2.4, the default value is 4 kB.) This

 value is used to ensure that in memory pressure mode, allocations below this

 size will still succeed. This is not used to bound the size of the send

 buffer declared using SO_SNDBUF on a socket.

 default

 The default size of the send buffer for a TCP socket. This value overwrites

 the initial default buffer size from the generic global

 /proc/sys/net/core/wmem_default defined for all protocols. The default

 value is 16 kB. If larger send buffer sizes are desired, this value should

 be increased (to affect all sockets). To employ large TCP windows, the

 /proc/sys/net/ipv4/tcp_window_scaling must be set to a nonzero value (de?

 fault).

 max The maximum size of the send buffer used by each TCP socket. This value

 does not override the value in /proc/sys/net/core/wmem_max. This is not

 used to limit the size of the send buffer declared using SO_SNDBUF on a

 socket. The default value is calculated using the formula

 max(65536, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

 (On Linux 2.4, the default value is 128 kB, lowered 64 kB depending on low-

 memory systems.) Page 13/19

 tcp_workaround_signed_windows (Boolean; default: disabled; since Linux 2.6.26)

 If enabled, assume that no receipt of a window-scaling option means that the remote

 TCP is broken and treats the window as a signed quantity. If disabled, assume that

 the remote TCP is not broken even if we do not receive a window scaling option from

 it.

 Socket options

 To set or get a TCP socket option, call getsockopt(2) to read or setsockopt(2) to write

 the option with the option level argument set to IPPROTO_TCP. Unless otherwise noted,

 optval is a pointer to an int. In addition, most IPPROTO_IP socket options are valid on

 TCP sockets. For more information see ip(7).

 Following is a list of TCP-specific socket options. For details of some other socket op?

 tions that are also applicable for TCP sockets, see socket(7).

 TCP_CONGESTION (since Linux 2.6.13)

 The argument for this option is a string. This option allows the caller to set the

 TCP congestion control algorithm to be used, on a per-socket basis. Unprivileged

 processes are restricted to choosing one of the algorithms in tcp_allowed_conges?

 tion_control (described above). Privileged processes (CAP_NET_ADMIN) can choose

 from any of the available congestion-control algorithms (see the description of

 tcp_available_congestion_control above).

 TCP_CORK (since Linux 2.2)

 If set, don't send out partial frames. All queued partial frames are sent when the

 option is cleared again. This is useful for prepending headers before calling

 sendfile(2), or for throughput optimization. As currently implemented, there is a

 200 millisecond ceiling on the time for which output is corked by TCP_CORK. If

 this ceiling is reached, then queued data is automatically transmitted. This op?

 tion can be combined with TCP_NODELAY only since Linux 2.5.71. This option should

 not be used in code intended to be portable.

 TCP_DEFER_ACCEPT (since Linux 2.4)

 Allow a listener to be awakened only when data arrives on the socket. Takes an in?

 teger value (seconds), this can bound the maximum number of attempts TCP will make

 to complete the connection. This option should not be used in code intended to be

 portable.

 TCP_INFO (since Linux 2.4) Page 14/19

 Used to collect information about this socket. The kernel returns a struct

 tcp_info as defined in the file /usr/include/linux/tcp.h. This option should not

 be used in code intended to be portable.

 TCP_KEEPCNT (since Linux 2.4)

 The maximum number of keepalive probes TCP should send before dropping the connec?

 tion. This option should not be used in code intended to be portable.

 TCP_KEEPIDLE (since Linux 2.4)

 The time (in seconds) the connection needs to remain idle before TCP starts sending

 keepalive probes, if the socket option SO_KEEPALIVE has been set on this socket.

 This option should not be used in code intended to be portable.

 TCP_KEEPINTVL (since Linux 2.4)

 The time (in seconds) between individual keepalive probes. This option should not

 be used in code intended to be portable.

 TCP_LINGER2 (since Linux 2.4)

 The lifetime of orphaned FIN_WAIT2 state sockets. This option can be used to over?

 ride the system-wide setting in the file /proc/sys/net/ipv4/tcp_fin_timeout for

 this socket. This is not to be confused with the socket(7) level option SO_LINGER.

 This option should not be used in code intended to be portable.

 TCP_MAXSEG

 The maximum segment size for outgoing TCP packets. In Linux 2.2 and earlier, and

 in Linux 2.6.28 and later, if this option is set before connection establishment,

 it also changes the MSS value announced to the other end in the initial packet.

 Values greater than the (eventual) interface MTU have no effect. TCP will also im?

 pose its minimum and maximum bounds over the value provided.

 TCP_NODELAY

 If set, disable the Nagle algorithm. This means that segments are always sent as

 soon as possible, even if there is only a small amount of data. When not set, data

 is buffered until there is a sufficient amount to send out, thereby avoiding the

 frequent sending of small packets, which results in poor utilization of the net?

 work. This option is overridden by TCP_CORK; however, setting this option forces

 an explicit flush of pending output, even if TCP_CORK is currently set.

 TCP_QUICKACK (since Linux 2.4.4)

 Enable quickack mode if set or disable quickack mode if cleared. In quickack mode, Page 15/19

 acks are sent immediately, rather than delayed if needed in accordance to normal

 TCP operation. This flag is not permanent, it only enables a switch to or from

 quickack mode. Subsequent operation of the TCP protocol will once again en?

 ter/leave quickack mode depending on internal protocol processing and factors such

 as delayed ack timeouts occurring and data transfer. This option should not be

 used in code intended to be portable.

 TCP_SYNCNT (since Linux 2.4)

 Set the number of SYN retransmits that TCP should send before aborting the attempt

 to connect. It cannot exceed 255. This option should not be used in code intended

 to be portable.

 TCP_USER_TIMEOUT (since Linux 2.6.37)

 This option takes an unsigned int as an argument. When the value is greater than

 0, it specifies the maximum amount of time in milliseconds that transmitted data

 may remain unacknowledged before TCP will forcibly close the corresponding connec?

 tion and return ETIMEDOUT to the application. If the option value is specified as

 0, TCP will use the system default.

 Increasing user timeouts allows a TCP connection to survive extended periods with?

 out end-to-end connectivity. Decreasing user timeouts allows applications to "fail

 fast", if so desired. Otherwise, failure may take up to 20 minutes with the cur?

 rent system defaults in a normal WAN environment.

 This option can be set during any state of a TCP connection, but is effective only

 during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-

 WAIT-2, CLOSE-WAIT, CLOSING, and LAST-ACK). Moreover, when used with the TCP

 keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will override keepalive to deter?

 mine when to close a connection due to keepalive failure.

 The option has no effect on when TCP retransmits a packet, nor when a keepalive

 probe is sent.

 This option, like many others, will be inherited by the socket returned by ac?

 cept(2), if it was set on the listening socket.

 Further details on the user timeout feature can be found in RFC 793 and RFC 5482

 ("TCP User Timeout Option").

 TCP_WINDOW_CLAMP (since Linux 2.4)

 Bound the size of the advertised window to this value. The kernel imposes a mini? Page 16/19

 mum size of SOCK_MIN_RCVBUF/2. This option should not be used in code intended to

 be portable.

 Sockets API

 TCP provides limited support for out-of-band data, in the form of (a single byte of) ur?

 gent data. In Linux this means if the other end sends newer out-of-band data the older

 urgent data is inserted as normal data into the stream (even when SO_OOBINLINE is not

 set). This differs from BSD-based stacks.

 Linux uses the BSD compatible interpretation of the urgent pointer field by default. This

 violates RFC 1122, but is required for interoperability with other stacks. It can be

 changed via /proc/sys/net/ipv4/tcp_stdurg.

 It is possible to peek at out-of-band data using the recv(2) MSG_PEEK flag.

 Since version 2.4, Linux supports the use of MSG_TRUNC in the flags argument of recv(2)

 (and recvmsg(2)). This flag causes the received bytes of data to be discarded, rather

 than passed back in a caller-supplied buffer. Since Linux 2.4.4, MSG_TRUNC also has this

 effect when used in conjunction with MSG_OOB to receive out-of-band data.

 Ioctls

 The following ioctl(2) calls return information in value. The correct syntax is:

 int value;

 error = ioctl(tcp_socket, ioctl_type, &value);

 ioctl_type is one of the following:

 SIOCINQ

 Returns the amount of queued unread data in the receive buffer. The socket must

 not be in LISTEN state, otherwise an error (EINVAL) is returned. SIOCINQ is de?

 fined in <linux/sockios.h>. Alternatively, you can use the synonymous FIONREAD,

 defined in <sys/ioctl.h>.

 SIOCATMARK

 Returns true (i.e., value is nonzero) if the inbound data stream is at the urgent

 mark.

 If the SO_OOBINLINE socket option is set, and SIOCATMARK returns true, then the

 next read from the socket will return the urgent data. If the SO_OOBINLINE socket

 option is not set, and SIOCATMARK returns true, then the next read from the socket

 will return the bytes following the urgent data (to actually read the urgent data

 requires the recv(MSG_OOB) flag). Page 17/19

 Note that a read never reads across the urgent mark. If an application is informed

 of the presence of urgent data via select(2) (using the exceptfds argument) or

 through delivery of a SIGURG signal, then it can advance up to the mark using a

 loop which repeatedly tests SIOCATMARK and performs a read (requesting any number

 of bytes) as long as SIOCATMARK returns false.

 SIOCOUTQ

 Returns the amount of unsent data in the socket send queue. The socket must not be

 in LISTEN state, otherwise an error (EINVAL) is returned. SIOCOUTQ is defined in

 <linux/sockios.h>. Alternatively, you can use the synonymous TIOCOUTQ, defined in

 <sys/ioctl.h>.

 Error handling

 When a network error occurs, TCP tries to resend the packet. If it doesn't succeed after

 some time, either ETIMEDOUT or the last received error on this connection is reported.

 Some applications require a quicker error notification. This can be enabled with the IP?

 PROTO_IP level IP_RECVERR socket option. When this option is enabled, all incoming errors

 are immediately passed to the user program. Use this option with care ? it makes TCP less

 tolerant to routing changes and other normal network conditions.

ERRORS

 EAFNOTSUPPORT

 Passed socket address type in sin_family was not AF_INET.

 EPIPE The other end closed the socket unexpectedly or a read is executed on a shut down

 socket.

 ETIMEDOUT

 The other end didn't acknowledge retransmitted data after some time.

 Any errors defined for ip(7) or the generic socket layer may also be returned for TCP.

VERSIONS

 Support for Explicit Congestion Notification, zero-copy sendfile(2), reordering support

 and some SACK extensions (DSACK) were introduced in 2.4. Support for forward acknowledge?

 ment (FACK), TIME_WAIT recycling, and per-connection keepalive socket options were intro?

 duced in 2.3.

BUGS

 Not all errors are documented.

 IPv6 is not described. Page 18/19

SEE ALSO

 accept(2), bind(2), connect(2), getsockopt(2), listen(2), recvmsg(2), sendfile(2),

 sendmsg(2), socket(2), ip(7), socket(7)

 The kernel source file Documentation/networking/ip-sysctl.txt.

 RFC 793 for the TCP specification.

 RFC 1122 for the TCP requirements and a description of the Nagle algorithm.

 RFC 1323 for TCP timestamp and window scaling options.

 RFC 1337 for a description of TIME_WAIT assassination hazards.

 RFC 3168 for a description of Explicit Congestion Notification.

 RFC 2581 for TCP congestion control algorithms.

 RFC 2018 and RFC 2883 for SACK and extensions to SACK.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 TCP(7)

Page 19/19

