
Rocky Enterprise Linux 9.2 Manual Pages on command 'tcpdump.8'

$ man tcpdump.8

TCPDUMP(8) System Manager's Manual TCPDUMP(8)

NAME

 tcpdump - dump traffic on a network

SYNOPSIS

 tcpdump [-AbdDefhHIJKlLnNOpqStuUvxX#] [-B buffer_size]

 [-c count] [--count] [-C file_size]

 [-E spi@ipaddr algo:secret,...]

 [-F file] [-G rotate_seconds] [-i interface]

 [--immediate-mode] [-j tstamp_type] [-m module]

 [-M secret] [--number] [--print] [-Q in|out|inout]

 [-r file] [-s snaplen] [-T type] [--version]

 [-V file] [-w file] [-W filecount] [-y datalinktype]

 [-z postrotate-command] [-Z user]

 [--time-stamp-precision=tstamp_precision]

 [--micro] [--nano]

 [expression]

DESCRIPTION

 Tcpdump prints out a description of the contents of packets on a network interface that

 match the Boolean expression; the description is preceded by a time stamp, printed, by de?

 fault, as hours, minutes, seconds, and fractions of a second since midnight. It can also

 be run with the -w flag, which causes it to save the packet data to a file for later

 analysis, and/or with the -r flag, which causes it to read from a saved packet file rather

 than to read packets from a network interface. It can also be run with the -V flag, which Page 1/29

 causes it to read a list of saved packet files. In all cases, only packets that match ex?

 pression will be processed by tcpdump.

 Tcpdump will, if not run with the -c flag, continue capturing packets until it is inter?

 rupted by a SIGINT signal (generated, for example, by typing your interrupt character,

 typically control-C) or a SIGTERM signal (typically generated with the kill(1) command);

 if run with the -c flag, it will capture packets until it is interrupted by a SIGINT or

 SIGTERM signal or the specified number of packets have been processed.

 When tcpdump finishes capturing packets, it will report counts of:

 packets ``captured'' (this is the number of packets that tcpdump has received and

 processed);

 packets ``received by filter'' (the meaning of this depends on the OS on which

 you're running tcpdump, and possibly on the way the OS was configured - if a filter

 was specified on the command line, on some OSes it counts packets regardless of

 whether they were matched by the filter expression and, even if they were matched

 by the filter expression, regardless of whether tcpdump has read and processed them

 yet, on other OSes it counts only packets that were matched by the filter expres?

 sion regardless of whether tcpdump has read and processed them yet, and on other

 OSes it counts only packets that were matched by the filter expression and were

 processed by tcpdump);

 packets ``dropped by kernel'' (this is the number of packets that were dropped, due

 to a lack of buffer space, by the packet capture mechanism in the OS on which tcp?

 dump is running, if the OS reports that information to applications; if not, it

 will be reported as 0).

 On platforms that support the SIGINFO signal, such as most BSDs (including macOS) and Dig?

 ital/Tru64 UNIX, it will report those counts when it receives a SIGINFO signal (generated,

 for example, by typing your ``status'' character, typically control-T, although on some

 platforms, such as macOS, the ``status'' character is not set by default, so you must set

 it with stty(1) in order to use it) and will continue capturing packets. On platforms that

 do not support the SIGINFO signal, the same can be achieved by using the SIGUSR1 signal.

 Using the SIGUSR2 signal along with the -w flag will forcibly flush the packet buffer into

 the output file.

 Reading packets from a network interface may require that you have special privileges; see

 the pcap(3PCAP) man page for details. Reading a saved packet file doesn't require special Page 2/29

 privileges.

OPTIONS

 -A Print each packet (minus its link level header) in ASCII. Handy for capturing web

 pages.

 -b Print the AS number in BGP packets in ASDOT notation rather than ASPLAIN notation.

 -B buffer_size

 --buffer-size=buffer_size

 Set the operating system capture buffer size to buffer_size, in units of KiB (1024

 bytes).

 -c count

 Exit after receiving count packets.

 --count

 Print only on stderr the packet count when reading capture file(s) instead of pars?

 ing/printing the packets. If a filter is specified on the command line, tcpdump

 counts only packets that were matched by the filter expression.

 -C file_size

 Before writing a raw packet to a savefile, check whether the file is currently

 larger than file_size and, if so, close the current savefile and open a new one.

 Savefiles after the first savefile will have the name specified with the -w flag,

 with a number after it, starting at 1 and continuing upward. The units of

 file_size are millions of bytes (1,000,000 bytes, not 1,048,576 bytes).

 Note that when used with -Z option (enabled by default), privileges are dropped be?

 fore opening first savefile.

 -d Dump the compiled packet-matching code in a human readable form to standard output

 and stop.

 Please mind that although code compilation is always DLT-specific, typically it is

 impossible (and unnecessary) to specify which DLT to use for the dump because tcp?

 dump uses either the DLT of the input pcap file specified with -r, or the default

 DLT of the network interface specified with -i, or the particular DLT of the net?

 work interface specified with -y and -i respectively. In these cases the dump shows

 the same exact code that would filter the input file or the network interface with?

 out -d.

 However, when neither -r nor -i is specified, specifying -d prevents tcpdump from Page 3/29

 guessing a suitable network interface (see -i). In this case the DLT defaults to

 EN10MB and can be set to another valid value manually with -y.

 -dd Dump packet-matching code as a C program fragment.

 -ddd Dump packet-matching code as decimal numbers (preceded with a count).

 -D

 --list-interfaces

 Print the list of the network interfaces available on the system and on which tcp?

 dump can capture packets. For each network interface, a number and an interface

 name, possibly followed by a text description of the interface, are printed. The

 interface name or the number can be supplied to the -i flag to specify an interface

 on which to capture.

 This can be useful on systems that don't have a command to list them (e.g., Windows

 systems, or UNIX systems lacking ifconfig -a); the number can be useful on Windows

 2000 and later systems, where the interface name is a somewhat complex string.

 The -D flag will not be supported if tcpdump was built with an older version of

 libpcap that lacks the pcap_findalldevs(3PCAP) function.

 -e Print the link-level header on each dump line. This can be used, for example, to

 print MAC layer addresses for protocols such as Ethernet and IEEE 802.11.

 -E Use spi@ipaddr algo:secret for decrypting IPsec ESP packets that are addressed to

 addr and contain Security Parameter Index value spi. This combination may be re?

 peated with comma or newline separation.

 Note that setting the secret for IPv4 ESP packets is supported at this time.

 Algorithms may be des-cbc, 3des-cbc, blowfish-cbc, rc3-cbc, cast128-cbc, or none.

 The default is des-cbc. The ability to decrypt packets is only present if tcpdump

 was compiled with cryptography enabled.

 secret is the ASCII text for ESP secret key. If preceded by 0x, then a hex value

 will be read.

 The option assumes RFC2406 ESP, not RFC1827 ESP. The option is only for debugging

 purposes, and the use of this option with a true `secret' key is discouraged. By

 presenting IPsec secret key onto command line you make it visible to others, via

 ps(1) and other occasions.

 In addition to the above syntax, the syntax file name may be used to have tcpdump

 read the provided file in. The file is opened upon receiving the first ESP packet, Page 4/29

 so any special permissions that tcpdump may have been given should already have

 been given up.

 -f Print `foreign' IPv4 addresses numerically rather than symbolically (this option is

 intended to get around serious brain damage in Sun's NIS server ? usually it hangs

 forever translating non-local internet numbers).

 The test for `foreign' IPv4 addresses is done using the IPv4 address and netmask of

 the interface on which capture is being done. If that address or netmask are not

 available, available, either because the interface on which capture is being done

 has no address or netmask or because the capture is being done on the Linux "any"

 interface, which can capture on more than one interface, this option will not work

 correctly.

 -F file

 Use file as input for the filter expression. An additional expression given on the

 command line is ignored.

 -G rotate_seconds

 If specified, rotates the dump file specified with the -w option every rotate_sec?

 onds seconds. Savefiles will have the name specified by -w which should include a

 time format as defined by strftime(3). If no time format is specified, each new

 file will overwrite the previous. Whenever a generated filename is not unique,

 tcpdump will overwrite the pre-existing data; providing a time specification that

 is coarser than the capture period is therefore not advised.

 If used in conjunction with the -C option, filenames will take the form of

 `file<count>'.

 -h

 --help Print the tcpdump and libpcap version strings, print a usage message, and exit.

 --version

 Print the tcpdump and libpcap version strings and exit.

 -H Attempt to detect 802.11s draft mesh headers.

 -i interface

 --interface=interface

 Listen, report the list of link-layer types, report the list of time stamp types,

 or report the results of compiling a filter expression on interface. If unspeci?

 fied and if the -d flag is not given, tcpdump searches the system interface list Page 5/29

 for the lowest numbered, configured up interface (excluding loopback), which may

 turn out to be, for example, ``eth0''.

 On Linux systems with 2.2 or later kernels, an interface argument of ``any'' can be

 used to capture packets from all interfaces. Note that captures on the ``any'' de?

 vice will not be done in promiscuous mode.

 If the -D flag is supported, an interface number as printed by that flag can be

 used as the interface argument, if no interface on the system has that number as a

 name.

 -I

 --monitor-mode

 Put the interface in "monitor mode"; this is supported only on IEEE 802.11 Wi-Fi

 interfaces, and supported only on some operating systems.

 Note that in monitor mode the adapter might disassociate from the network with

 which it's associated, so that you will not be able to use any wireless networks

 with that adapter. This could prevent accessing files on a network server, or re?

 solving host names or network addresses, if you are capturing in monitor mode and

 are not connected to another network with another adapter.

 This flag will affect the output of the -L flag. If -I isn't specified, only those

 link-layer types available when not in monitor mode will be shown; if -I is speci?

 fied, only those link-layer types available when in monitor mode will be shown.

 --immediate-mode

 Capture in "immediate mode". In this mode, packets are delivered to tcpdump as

 soon as they arrive, rather than being buffered for efficiency. This is the de?

 fault when printing packets rather than saving packets to a ``savefile'' if the

 packets are being printed to a terminal rather than to a file or pipe.

 -j tstamp_type

 --time-stamp-type=tstamp_type

 Set the time stamp type for the capture to tstamp_type. The names to use for the

 time stamp types are given in pcap-tstamp(7); not all the types listed there will

 necessarily be valid for any given interface.

 -J

 --list-time-stamp-types

 List the supported time stamp types for the interface and exit. If the time stamp Page 6/29

 type cannot be set for the interface, no time stamp types are listed.

 --time-stamp-precision=tstamp_precision

 When capturing, set the time stamp precision for the capture to tstamp_precision.

 Note that availability of high precision time stamps (nanoseconds) and their actual

 accuracy is platform and hardware dependent. Also note that when writing captures

 made with nanosecond accuracy to a savefile, the time stamps are written with

 nanosecond resolution, and the file is written with a different magic number, to

 indicate that the time stamps are in seconds and nanoseconds; not all programs that

 read pcap savefiles will be able to read those captures.

 When reading a savefile, convert time stamps to the precision specified by time?

 stamp_precision, and display them with that resolution. If the precision specified

 is less than the precision of time stamps in the file, the conversion will lose

 precision.

 The supported values for timestamp_precision are micro for microsecond resolution

 and nano for nanosecond resolution. The default is microsecond resolution.

 --micro

 --nano Shorthands for --time-stamp-precision=micro or --time-stamp-precision=nano, adjust?

 ing the time stamp precision accordingly. When reading packets from a savefile,

 using --micro truncates time stamps if the savefile was created with nanosecond

 precision. In contrast, a savefile created with microsecond precision will have

 trailing zeroes added to the time stamp when --nano is used.

 -K

 --dont-verify-checksums

 Don't attempt to verify IP, TCP, or UDP checksums. This is useful for interfaces

 that perform some or all of those checksum calculation in hardware; otherwise, all

 outgoing TCP checksums will be flagged as bad.

 -l Make stdout line buffered. Useful if you want to see the data while capturing it.

 E.g.,

 tcpdump -l | tee dat

 or

 tcpdump -l > dat & tail -f dat

 Note that on Windows,``line buffered'' means ``unbuffered'', so that WinDump will

 write each character individually if -l is specified. Page 7/29

 -U is similar to -l in its behavior, but it will cause output to be ``packet-

 buffered'', so that the output is written to stdout at the end of each packet

 rather than at the end of each line; this is buffered on all platforms, including

 Windows.

 -L

 --list-data-link-types

 List the known data link types for the interface, in the specified mode, and exit.

 The list of known data link types may be dependent on the specified mode; for exam?

 ple, on some platforms, a Wi-Fi interface might support one set of data link types

 when not in monitor mode (for example, it might support only fake Ethernet headers,

 or might support 802.11 headers but not support 802.11 headers with radio informa?

 tion) and another set of data link types when in monitor mode (for example, it

 might support 802.11 headers, or 802.11 headers with radio information, only in

 monitor mode).

 -m module

 Load SMI MIB module definitions from file module. This option can be used several

 times to load several MIB modules into tcpdump.

 -M secret

 Use secret as a shared secret for validating the digests found in TCP segments with

 the TCP-MD5 option (RFC 2385), if present.

 -n Don't convert addresses (i.e., host addresses, port numbers, etc.) to names.

 -N Don't print domain name qualification of host names. E.g., if you give this flag

 then tcpdump will print ``nic'' instead of ``nic.ddn.mil''.

 -#

 --number

 Print an optional packet number at the beginning of the line.

 -O

 --no-optimize

 Do not run the packet-matching code optimizer. This is useful only if you suspect

 a bug in the optimizer.

 -p

 --no-promiscuous-mode

 Don't put the interface into promiscuous mode. Note that the interface might be in Page 8/29

 promiscuous mode for some other reason; hence, `-p' cannot be used as an abbrevia?

 tion for `ether host {local-hw-addr} or ether broadcast'.

 --print

 Print parsed packet output, even if the raw packets are being saved to a file with

 the -w flag.

 -Q direction

 --direction=direction

 Choose send/receive direction direction for which packets should be captured. Pos?

 sible values are `in', `out' and `inout'. Not available on all platforms.

 -q Quick (quiet?) output. Print less protocol information so output lines are

 shorter.

 -r file

 Read packets from file (which was created with the -w option or by other tools that

 write pcap or pcapng files). Standard input is used if file is ``-''.

 -S

 --absolute-tcp-sequence-numbers

 Print absolute, rather than relative, TCP sequence numbers.

 -s snaplen

 --snapshot-length=snaplen

 Snarf snaplen bytes of data from each packet rather than the default of 262144

 bytes. Packets truncated because of a limited snapshot are indicated in the output

 with ``[|proto]'', where proto is the name of the protocol level at which the trun?

 cation has occurred.

 Note that taking larger snapshots both increases the amount of time it takes to

 process packets and, effectively, decreases the amount of packet buffering. This

 may cause packets to be lost. Note also that taking smaller snapshots will discard

 data from protocols above the transport layer, which loses information that may be

 important. NFS and AFS requests and replies, for example, are very large, and much

 of the detail won't be available if a too-short snapshot length is selected.

 If you need to reduce the snapshot size below the default, you should limit snaplen

 to the smallest number that will capture the protocol information you're interested

 in. Setting snaplen to 0 sets it to the default of 262144, for backwards compati?

 bility with recent older versions of tcpdump. Page 9/29

 -T type

 Force packets selected by "expression" to be interpreted the specified type. Cur?

 rently known types are aodv (Ad-hoc On-demand Distance Vector protocol), carp (Com?

 mon Address Redundancy Protocol), cnfp (Cisco NetFlow protocol), domain (Domain

 Name System), lmp (Link Management Protocol), pgm (Pragmatic General Multicast),

 pgm_zmtp1 (ZMTP/1.0 inside PGM/EPGM), ptp (Precision Time Protocol), radius (RA?

 DIUS), resp (REdis Serialization Protocol), rpc (Remote Procedure Call), rtcp

 (Real-Time Applications control protocol), rtp (Real-Time Applications protocol),

 snmp (Simple Network Management Protocol), someip (SOME/IP), tftp (Trivial File

 Transfer Protocol), vat (Visual Audio Tool), vxlan (Virtual eXtensible Local Area

 Network), wb (distributed White Board) and zmtp1 (ZeroMQ Message Transport Protocol

 1.0).

 Note that the pgm type above affects UDP interpretation only, the native PGM is al?

 ways recognised as IP protocol 113 regardless. UDP-encapsulated PGM is often called

 "EPGM" or "PGM/UDP".

 Note that the pgm_zmtp1 type above affects interpretation of both native PGM and

 UDP at once. During the native PGM decoding the application data of an ODATA/RDATA

 packet would be decoded as a ZeroMQ datagram with ZMTP/1.0 frames. During the UDP

 decoding in addition to that any UDP packet would be treated as an encapsulated PGM

 packet.

 -t Don't print a timestamp on each dump line.

 -tt Print the timestamp, as seconds since January 1, 1970, 00:00:00, UTC, and fractions

 of a second since that time, on each dump line.

 -ttt Print a delta (microsecond or nanosecond resolution depending on the --time-stamp-

 precision option) between current and previous line on each dump line. The default

 is microsecond resolution.

 -tttt Print a timestamp, as hours, minutes, seconds, and fractions of a second since mid?

 night, preceded by the date, on each dump line.

 -ttttt Print a delta (microsecond or nanosecond resolution depending on the --time-stamp-

 precision option) between current and first line on each dump line. The default is

 microsecond resolution.

 -u Print undecoded NFS handles.

 -U Page 10/29

 --packet-buffered

 If the -w option is not specified, or if it is specified but the --print flag is

 also specified, make the printed packet output ``packet-buffered''; i.e., as the

 description of the contents of each packet is printed, it will be written to the

 standard output, rather than, when not writing to a terminal, being written only

 when the output buffer fills.

 If the -w option is specified, make the saved raw packet output ``packet-

 buffered''; i.e., as each packet is saved, it will be written to the output file,

 rather than being written only when the output buffer fills.

 The -U flag will not be supported if tcpdump was built with an older version of

 libpcap that lacks the pcap_dump_flush(3PCAP) function.

 -v When parsing and printing, produce (slightly more) verbose output. For example,

 the time to live, identification, total length and options in an IP packet are

 printed. Also enables additional packet integrity checks such as verifying the IP

 and ICMP header checksum.

 When writing to a file with the -w option and at the same time not reading from a

 file with the -r option, report to stderr, once per second, the number of packets

 captured. In Solaris, FreeBSD and possibly other operating systems this periodic

 update currently can cause loss of captured packets on their way from the kernel to

 tcpdump.

 -vv Even more verbose output. For example, additional fields are printed from NFS re?

 ply packets, and SMB packets are fully decoded.

 -vvv Even more verbose output. For example, telnet SB ... SE options are printed in

 full. With -X Telnet options are printed in hex as well.

 -V file

 Read a list of filenames from file. Standard input is used if file is ``-''.

 -w file

 Write the raw packets to file rather than parsing and printing them out. They can

 later be printed with the -r option. Standard output is used if file is ``-''.

 This output will be buffered if written to a file or pipe, so a program reading

 from the file or pipe may not see packets for an arbitrary amount of time after

 they are received. Use the -U flag to cause packets to be written as soon as they

 are received. Page 11/29

 The MIME type application/vnd.tcpdump.pcap has been registered with IANA for pcap

 files. The filename extension .pcap appears to be the most commonly used along with

 .cap and .dmp. Tcpdump itself doesn't check the extension when reading capture

 files and doesn't add an extension when writing them (it uses magic numbers in the

 file header instead). However, many operating systems and applications will use the

 extension if it is present and adding one (e.g. .pcap) is recommended.

 See pcap-savefile(5) for a description of the file format.

 -W filecount

 Used in conjunction with the -C option, this will limit the number of files created

 to the specified number, and begin overwriting files from the beginning, thus cre?

 ating a 'rotating' buffer. In addition, it will name the files with enough leading

 0s to support the maximum number of files, allowing them to sort correctly.

 Used in conjunction with the -G option, this will limit the number of rotated dump

 files that get created, exiting with status 0 when reaching the limit.

 If used in conjunction with both -C and -G, the -W option will currently be ig?

 nored, and will only affect the file name.

 -x When parsing and printing, in addition to printing the headers of each packet,

 print the data of each packet (minus its link level header) in hex. The smaller of

 the entire packet or snaplen bytes will be printed. Note that this is the entire

 link-layer packet, so for link layers that pad (e.g. Ethernet), the padding bytes

 will also be printed when the higher layer packet is shorter than the required pad?

 ding. In the current implementation this flag may have the same effect as -xx if

 the packet is truncated.

 -xx When parsing and printing, in addition to printing the headers of each packet,

 print the data of each packet, including its link level header, in hex.

 -X When parsing and printing, in addition to printing the headers of each packet,

 print the data of each packet (minus its link level header) in hex and ASCII. This

 is very handy for analysing new protocols. In the current implementation this flag

 may have the same effect as -XX if the packet is truncated.

 -XX When parsing and printing, in addition to printing the headers of each packet,

 print the data of each packet, including its link level header, in hex and ASCII.

 -y datalinktype

 --linktype=datalinktype Page 12/29

 Set the data link type to use while capturing packets (see -L) or just compiling

 and dumping packet-matching code (see -d) to datalinktype.

 -z postrotate-command

 Used in conjunction with the -C or -G options, this will make tcpdump run " postro?

 tate-command file " where file is the savefile being closed after each rotation.

 For example, specifying -z gzip or -z bzip2 will compress each savefile using gzip

 or bzip2.

 Note that tcpdump will run the command in parallel to the capture, using the lowest

 priority so that this doesn't disturb the capture process.

 And in case you would like to use a command that itself takes flags or different

 arguments, you can always write a shell script that will take the savefile name as

 the only argument, make the flags & arguments arrangements and execute the command

 that you want.

 -Z user

 --relinquish-privileges=user

 If tcpdump is running as root, after opening the capture device or input savefile,

 change the user ID to user and the group ID to the primary group of user.

 This behavior is enabled by default (-Z tcpdump), and can be disabled by -Z root.

 expression

 selects which packets will be dumped. If no expression is given, all packets on

 the net will be dumped. Otherwise, only packets for which expression is `true'

 will be dumped.

 For the expression syntax, see pcap-filter(7).

 The expression argument can be passed to tcpdump as either a single Shell argument,

 or as multiple Shell arguments, whichever is more convenient. Generally, if the

 expression contains Shell metacharacters, such as backslashes used to escape proto?

 col names, it is easier to pass it as a single, quoted argument rather than to es?

 cape the Shell metacharacters. Multiple arguments are concatenated with spaces be?

 fore being parsed.

EXAMPLES

 To print all packets arriving at or departing from sundown:

 tcpdump host sundown

 To print traffic between helios and either hot or ace: Page 13/29

 tcpdump host helios and \(hot or ace \)

 To print all IP packets between ace and any host except helios:

 tcpdump ip host ace and not helios

 To print all traffic between local hosts and hosts at Berkeley:

 tcpdump net ucb-ether

 To print all ftp traffic through internet gateway snup: (note that the expression is

 quoted to prevent the shell from (mis-)interpreting the parentheses):

 tcpdump 'gateway snup and (port ftp or ftp-data)'

 To print traffic neither sourced from nor destined for local hosts (if you gateway to one

 other net, this stuff should never make it onto your local net).

 tcpdump ip and not net localnet

 To print the start and end packets (the SYN and FIN packets) of each TCP conversation that

 involves a non-local host.

 tcpdump 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet'

 To print the TCP packets with flags RST and ACK both set. (i.e. select only the RST and

 ACK flags in the flags field, and if the result is "RST and ACK both set", match)

 tcpdump 'tcp[tcpflags] & (tcp-rst|tcp-ack) == (tcp-rst|tcp-ack)'

 To print all IPv4 HTTP packets to and from port 80, i.e. print only packets that contain

 data, not, for example, SYN and FIN packets and ACK-only packets. (IPv6 is left as an ex?

 ercise for the reader.)

 tcpdump 'tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)'

 To print IP packets longer than 576 bytes sent through gateway snup:

 tcpdump 'gateway snup and ip[2:2] > 576'

 To print IP broadcast or multicast packets that were not sent via Ethernet broadcast or

 multicast:

 tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224'

 To print all ICMP packets that are not echo requests/replies (i.e., not ping packets):

 tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply'

OUTPUT FORMAT

 The output of tcpdump is protocol dependent. The following gives a brief description and

 examples of most of the formats.

 Timestamps

 By default, all output lines are preceded by a timestamp. The timestamp is the current Page 14/29

 clock time in the form

 hh:mm:ss.frac

 and is as accurate as the kernel's clock. The timestamp reflects the time the kernel ap?

 plied a time stamp to the packet. No attempt is made to account for the time lag between

 when the network interface finished receiving the packet from the network and when the

 kernel applied a time stamp to the packet; that time lag could include a delay between the

 time when the network interface finished receiving a packet from the network and the time

 when an interrupt was delivered to the kernel to get it to read the packet and a delay be?

 tween the time when the kernel serviced the `new packet' interrupt and the time when it

 applied a time stamp to the packet.

 Link Level Headers

 If the '-e' option is given, the link level header is printed out. On Ethernets, the

 source and destination addresses, protocol, and packet length are printed.

 On FDDI networks, the '-e' option causes tcpdump to print the `frame control' field, the

 source and destination addresses, and the packet length. (The `frame control' field gov?

 erns the interpretation of the rest of the packet. Normal packets (such as those contain?

 ing IP datagrams) are `async' packets, with a priority value between 0 and 7; for example,

 `async4'. Such packets are assumed to contain an 802.2 Logical Link Control (LLC) packet;

 the LLC header is printed if it is not an ISO datagram or a so-called SNAP packet.

 On Token Ring networks, the '-e' option causes tcpdump to print the `access control' and

 `frame control' fields, the source and destination addresses, and the packet length. As

 on FDDI networks, packets are assumed to contain an LLC packet. Regardless of whether the

 '-e' option is specified or not, the source routing information is printed for source-

 routed packets.

 On 802.11 networks, the '-e' option causes tcpdump to print the `frame control' fields,

 all of the addresses in the 802.11 header, and the packet length. As on FDDI networks,

 packets are assumed to contain an LLC packet.

 (N.B.: The following description assumes familiarity with the SLIP compression algorithm

 described in RFC-1144.)

 On SLIP links, a direction indicator (``I'' for inbound, ``O'' for outbound), packet type,

 and compression information are printed out. The packet type is printed first. The three

 types are ip, utcp, and ctcp. No further link information is printed for ip packets. For

 TCP packets, the connection identifier is printed following the type. If the packet is Page 15/29

 compressed, its encoded header is printed out. The special cases are printed out as *S+n

 and *SA+n, where n is the amount by which the sequence number (or sequence number and ack)

 has changed. If it is not a special case, zero or more changes are printed. A change is

 indicated by U (urgent pointer), W (window), A (ack), S (sequence number), and I (packet

 ID), followed by a delta (+n or -n), or a new value (=n). Finally, the amount of data in

 the packet and compressed header length are printed.

 For example, the following line shows an outbound compressed TCP packet, with an implicit

 connection identifier; the ack has changed by 6, the sequence number by 49, and the packet

 ID by 6; there are 3 bytes of data and 6 bytes of compressed header:

 O ctcp * A+6 S+49 I+6 3 (6)

 ARP/RARP Packets

 ARP/RARP output shows the type of request and its arguments. The format is intended to be

 self explanatory. Here is a short sample taken from the start of an `rlogin' from host

 rtsg to host csam:

 arp who-has csam tell rtsg

 arp reply csam is-at CSAM

 The first line says that rtsg sent an ARP packet asking for the Ethernet address of inter?

 net host csam. Csam replies with its Ethernet address (in this example, Ethernet ad?

 dresses are in caps and internet addresses in lower case).

 This would look less redundant if we had done tcpdump -n:

 arp who-has 128.3.254.6 tell 128.3.254.68

 arp reply 128.3.254.6 is-at 02:07:01:00:01:c4

 If we had done tcpdump -e, the fact that the first packet is broadcast and the second is

 point-to-point would be visible:

 RTSG Broadcast 0806 64: arp who-has csam tell rtsg

 CSAM RTSG 0806 64: arp reply csam is-at CSAM

 For the first packet this says the Ethernet source address is RTSG, the destination is the

 Ethernet broadcast address, the type field contained hex 0806 (type ETHER_ARP) and the to?

 tal length was 64 bytes.

 IPv4 Packets

 If the link-layer header is not being printed, for IPv4 packets, IP is printed after the

 time stamp.

 If the -v flag is specified, information from the IPv4 header is shown in parentheses af? Page 16/29

 ter the IP or the link-layer header. The general format of this information is:

 tos tos, ttl ttl, id id, offset offset, flags [flags], proto proto, length length, options (options)

 tos is the type of service field; if the ECN bits are non-zero, those are reported as

 ECT(1), ECT(0), or CE. ttl is the time-to-live; it is not reported if it is zero. id is

 the IP identification field. offset is the fragment offset field; it is printed whether

 this is part of a fragmented datagram or not. flags are the MF and DF flags; + is re?

 ported if MF is set, and DF is reported if F is set. If neither are set, . is reported.

 proto is the protocol ID field. length is the total length field. options are the IP op?

 tions, if any.

 Next, for TCP and UDP packets, the source and destination IP addresses and TCP or UDP

 ports, with a dot between each IP address and its corresponding port, will be printed,

 with a > separating the source and destination. For other protocols, the addresses will

 be printed, with a > separating the source and destination. Higher level protocol infor?

 mation, if any, will be printed after that.

 For fragmented IP datagrams, the first fragment contains the higher level protocol header;

 fragments after the first contain no higher level protocol header. Fragmentation informa?

 tion will be printed only with the -v flag, in the IP header information, as described

 above.

 TCP Packets

 (N.B.:The following description assumes familiarity with the TCP protocol described in

 RFC-793. If you are not familiar with the protocol, this description will not be of much

 use to you.)

 The general format of a TCP protocol line is:

 src > dst: Flags [tcpflags], seq data-seqno, ack ackno, win window, urg urgent, options [opts], length len

 Src and dst are the source and destination IP addresses and ports. Tcpflags are some com?

 bination of S (SYN), F (FIN), P (PUSH), R (RST), U (URG), W (ECN CWR), E (ECN-Echo) or `.'

 (ACK), or `none' if no flags are set. Data-seqno describes the portion of sequence space

 covered by the data in this packet (see example below). Ackno is sequence number of the

 next data expected the other direction on this connection. Window is the number of bytes

 of receive buffer space available the other direction on this connection. Urg indicates

 there is `urgent' data in the packet. Opts are TCP options (e.g., mss 1024). Len is the

 length of payload data.

 Iptype, Src, dst, and flags are always present. The other fields depend on the contents Page 17/29

 of the packet's TCP protocol header and are output only if appropriate.

 Here is the opening portion of an rlogin from host rtsg to host csam.

 IP rtsg.1023 > csam.login: Flags [S], seq 768512:768512, win 4096, opts [mss 1024]

 IP csam.login > rtsg.1023: Flags [S.], seq, 947648:947648, ack 768513, win 4096, opts [mss 1024]

 IP rtsg.1023 > csam.login: Flags [.], ack 1, win 4096

 IP rtsg.1023 > csam.login: Flags [P.], seq 1:2, ack 1, win 4096, length 1

 IP csam.login > rtsg.1023: Flags [.], ack 2, win 4096

 IP rtsg.1023 > csam.login: Flags [P.], seq 2:21, ack 1, win 4096, length 19

 IP csam.login > rtsg.1023: Flags [P.], seq 1:2, ack 21, win 4077, length 1

 IP csam.login > rtsg.1023: Flags [P.], seq 2:3, ack 21, win 4077, urg 1, length 1

 IP csam.login > rtsg.1023: Flags [P.], seq 3:4, ack 21, win 4077, urg 1, length 1

 The first line says that TCP port 1023 on rtsg sent a packet to port login on csam. The S

 indicates that the SYN flag was set. The packet sequence number was 768512 and it con?

 tained no data. (The notation is `first:last' which means `sequence numbers first up to

 but not including last'.) There was no piggy-backed ACK, the available receive window was

 4096 bytes and there was a max-segment-size option requesting an MSS of 1024 bytes.

 Csam replies with a similar packet except it includes a piggy-backed ACK for rtsg's SYN.

 Rtsg then ACKs csam's SYN. The `.' means the ACK flag was set. The packet contained no

 data so there is no data sequence number or length. Note that the ACK sequence number is

 a small integer (1). The first time tcpdump sees a TCP `conversation', it prints the se?

 quence number from the packet. On subsequent packets of the conversation, the difference

 between the current packet's sequence number and this initial sequence number is printed.

 This means that sequence numbers after the first can be interpreted as relative byte posi?

 tions in the conversation's data stream (with the first data byte each direction being

 `1'). `-S' will override this feature, causing the original sequence numbers to be out?

 put.

 On the 6th line, rtsg sends csam 19 bytes of data (bytes 2 through 20 in the rtsg ? csam

 side of the conversation). The PUSH flag is set in the packet. On the 7th line, csam

 says it's received data sent by rtsg up to but not including byte 21. Most of this data

 is apparently sitting in the socket buffer since csam's receive window has gotten 19 bytes

 smaller. Csam also sends one byte of data to rtsg in this packet. On the 8th and 9th

 lines, csam sends two bytes of urgent, pushed data to rtsg.

 If the snapshot was small enough that tcpdump didn't capture the full TCP header, it in? Page 18/29

 terprets as much of the header as it can and then reports ``[|tcp]'' to indicate the re?

 mainder could not be interpreted. If the header contains a bogus option (one with a

 length that's either too small or beyond the end of the header), tcpdump reports it as

 ``[bad opt]'' and does not interpret any further options (since it's impossible to tell

 where they start). If the header length indicates options are present but the IP datagram

 length is not long enough for the options to actually be there, tcpdump reports it as

 ``[bad hdr length]''.

 Capturing TCP packets with particular flag combinations (SYN-ACK, URG-ACK, etc.)

 There are 8 bits in the control bits section of the TCP header:

 CWR | ECE | URG | ACK | PSH | RST | SYN | FIN

 Let's assume that we want to watch packets used in establishing a TCP connection. Recall

 that TCP uses a 3-way handshake protocol when it initializes a new connection; the connec?

 tion sequence with regard to the TCP control bits is

 1) Caller sends SYN

 2) Recipient responds with SYN, ACK

 3) Caller sends ACK

 Now we're interested in capturing packets that have only the SYN bit set (Step 1). Note

 that we don't want packets from step 2 (SYN-ACK), just a plain initial SYN. What we need

 is a correct filter expression for tcpdump.

 Recall the structure of a TCP header without options:

 0 15 31

 | source port | destination port |

 | sequence number |

 | acknowledgment number |

 | HL | rsvd |C|E|U|A|P|R|S|F| window size |

 | TCP checksum | urgent pointer |

 A TCP header usually holds 20 octets of data, unless options are present. The first line Page 19/29

 of the graph contains octets 0 - 3, the second line shows octets 4 - 7 etc.

 Starting to count with 0, the relevant TCP control bits are contained in octet 13:

 0 7| 15| 23| 31

 ----------------|---------------|---------------|----------------

 | HL | rsvd |C|E|U|A|P|R|S|F| window size |

 ----------------|---------------|---------------|----------------

 | | 13th octet | | |

 Let's have a closer look at octet no. 13:

 | |

 |---------------|

 |C|E|U|A|P|R|S|F|

 |---------------|

 |7 5 3 0|

 These are the TCP control bits we are interested in. We have numbered the bits in this

 octet from 0 to 7, right to left, so the PSH bit is bit number 3, while the URG bit is

 number 5.

 Recall that we want to capture packets with only SYN set. Let's see what happens to octet

 13 if a TCP datagram arrives with the SYN bit set in its header:

 |C|E|U|A|P|R|S|F|

 |---------------|

 |0 0 0 0 0 0 1 0|

 |---------------|

 |7 6 5 4 3 2 1 0|

 Looking at the control bits section we see that only bit number 1 (SYN) is set.

 Assuming that octet number 13 is an 8-bit unsigned integer in network byte order, the bi?

 nary value of this octet is

 00000010

 and its decimal representation is

 7 6 5 4 3 2 1 0

 0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 1*2 + 0*2 = 2

 We're almost done, because now we know that if only SYN is set, the value of the 13th

 octet in the TCP header, when interpreted as a 8-bit unsigned integer in network byte or?

 der, must be exactly 2. Page 20/29

 This relationship can be expressed as

 tcp[13] == 2

 We can use this expression as the filter for tcpdump in order to watch packets which have

 only SYN set:

 tcpdump -i xl0 tcp[13] == 2

 The expression says "let the 13th octet of a TCP datagram have the decimal value 2", which

 is exactly what we want.

 Now, let's assume that we need to capture SYN packets, but we don't care if ACK or any

 other TCP control bit is set at the same time. Let's see what happens to octet 13 when a

 TCP datagram with SYN-ACK set arrives:

 |C|E|U|A|P|R|S|F|

 |---------------|

 |0 0 0 1 0 0 1 0|

 |---------------|

 |7 6 5 4 3 2 1 0|

 Now bits 1 and 4 are set in the 13th octet. The binary value of octet 13 is

 00010010

 which translates to decimal

 7 6 5 4 3 2 1 0

 0*2 + 0*2 + 0*2 + 1*2 + 0*2 + 0*2 + 1*2 + 0*2 = 18

 Now we can't just use 'tcp[13] == 18' in the tcpdump filter expression, because that would

 select only those packets that have SYN-ACK set, but not those with only SYN set. Remem?

 ber that we don't care if ACK or any other control bit is set as long as SYN is set.

 In order to achieve our goal, we need to logically AND the binary value of octet 13 with

 some other value to preserve the SYN bit. We know that we want SYN to be set in any case,

 so we'll logically AND the value in the 13th octet with the binary value of a SYN:

 00010010 SYN-ACK 00000010 SYN

 AND 00000010 (we want SYN) AND 00000010 (we want SYN)

 -------- --------

 = 00000010 = 00000010

 We see that this AND operation delivers the same result regardless whether ACK or another

 TCP control bit is set. The decimal representation of the AND value as well as the result

 of this operation is 2 (binary 00000010), so we know that for packets with SYN set the Page 21/29

 following relation must hold true:

 ((value of octet 13) AND (2)) == (2)

 This points us to the tcpdump filter expression

 tcpdump -i xl0 'tcp[13] & 2 == 2'

 Some offsets and field values may be expressed as names rather than as numeric values. For

 example tcp[13] may be replaced with tcp[tcpflags]. The following TCP flag field values

 are also available: tcp-fin, tcp-syn, tcp-rst, tcp-push, tcp-ack, tcp-urg.

 This can be demonstrated as:

 tcpdump -i xl0 'tcp[tcpflags] & tcp-push != 0'

 Note that you should use single quotes or a backslash in the expression to hide the AND

 ('&') special character from the shell.

 UDP Packets

 UDP format is illustrated by this rwho packet:

 actinide.who > broadcast.who: udp 84

 This says that port who on host actinide sent a UDP datagram to port who on host broad?

 cast, the Internet broadcast address. The packet contained 84 bytes of user data.

 Some UDP services are recognized (from the source or destination port number) and the

 higher level protocol information printed. In particular, Domain Name service requests

 (RFC-1034/1035) and Sun RPC calls (RFC-1050) to NFS.

 TCP or UDP Name Server Requests

 (N.B.:The following description assumes familiarity with the Domain Service protocol de?

 scribed in RFC-1035. If you are not familiar with the protocol, the following description

 will appear to be written in Greek.)

 Name server requests are formatted as

 src > dst: id op? flags qtype qclass name (len)

 h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)

 Host h2opolo asked the domain server on helios for an address record (qtype=A) associated

 with the name ucbvax.berkeley.edu. The query id was `3'. The `+' indicates the recursion

 desired flag was set. The query length was 37 bytes, excluding the TCP or UDP and IP pro?

 tocol headers. The query operation was the normal one, Query, so the op field was omit?

 ted. If the op had been anything else, it would have been printed between the `3' and the

 `+'. Similarly, the qclass was the normal one, C_IN, and omitted. Any other qclass would

 have been printed immediately after the `A'. Page 22/29

 A few anomalies are checked and may result in extra fields enclosed in square brackets:

 If a query contains an answer, authority records or additional records section, ancount,

 nscount, or arcount are printed as `[na]', `[nn]' or `[nau]' where n is the appropriate

 count. If any of the response bits are set (AA, RA or rcode) or any of the `must be zero'

 bits are set in bytes two and three, `[b2&3=x]' is printed, where x is the hex value of

 header bytes two and three.

 TCP or UDP Name Server Responses

 Name server responses are formatted as

 src > dst: id op rcode flags a/n/au type class data (len)

 helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)

 helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)

 In the first example, helios responds to query id 3 from h2opolo with 3 answer records, 3

 name server records and 7 additional records. The first answer record is type A (address)

 and its data is internet address 128.32.137.3. The total size of the response was 273

 bytes, excluding TCP or UDP and IP headers. The op (Query) and response code (NoError)

 were omitted, as was the class (C_IN) of the A record.

 In the second example, helios responds to query 2 with a response code of non-existent do?

 main (NXDomain) with no answers, one name server and no authority records. The `*' indi?

 cates that the authoritative answer bit was set. Since there were no answers, no type,

 class or data were printed.

 Other flag characters that might appear are `-' (recursion available, RA, not set) and `|'

 (truncated message, TC, set). If the `question' section doesn't contain exactly one en?

 try, `[nq]' is printed.

 SMB/CIFS decoding

 tcpdump now includes fairly extensive SMB/CIFS/NBT decoding for data on UDP/137, UDP/138

 and TCP/139. Some primitive decoding of IPX and NetBEUI SMB data is also done.

 By default a fairly minimal decode is done, with a much more detailed decode done if -v is

 used. Be warned that with -v a single SMB packet may take up a page or more, so only use

 -v if you really want all the gory details.

 For information on SMB packet formats and what all the fields mean see

 https://download.samba.org/pub/samba/specs/ and other online resources. The SMB patches

 were written by Andrew Tridgell (tridge@samba.org).

 NFS Requests and Replies Page 23/29

 Sun NFS (Network File System) requests and replies are printed as:

 src.sport > dst.nfs: NFS request xid xid len op args

 src.nfs > dst.dport: NFS reply xid xid reply stat len op results

 sushi.1023 > wrl.nfs: NFS request xid 26377

 112 readlink fh 21,24/10.73165

 wrl.nfs > sushi.1023: NFS reply xid 26377

 reply ok 40 readlink "../var"

 sushi.1022 > wrl.nfs: NFS request xid 8219

 144 lookup fh 9,74/4096.6878 "xcolors"

 wrl.nfs > sushi.1022: NFS reply xid 8219

 reply ok 128 lookup fh 9,74/4134.3150

 In the first line, host sushi sends a transaction with id 26377 to wrl. The request was

 112 bytes, excluding the UDP and IP headers. The operation was a readlink (read symbolic

 link) on file handle (fh) 21,24/10.731657119. (If one is lucky, as in this case, the file

 handle can be interpreted as a major,minor device number pair, followed by the inode num?

 ber and generation number.) In the second line, wrl replies `ok' with the same transaction

 id and the contents of the link.

 In the third line, sushi asks (using a new transaction id) wrl to lookup the name `xcol?

 ors' in directory file 9,74/4096.6878. In the fourth line, wrl sends a reply with the re?

 spective transaction id.

 Note that the data printed depends on the operation type. The format is intended to be

 self explanatory if read in conjunction with an NFS protocol spec. Also note that older

 versions of tcpdump printed NFS packets in a slightly different format: the transaction id

 (xid) would be printed instead of the non-NFS port number of the packet.

 If the -v (verbose) flag is given, additional information is printed. For example:

 sushi.1023 > wrl.nfs: NFS request xid 79658

 148 read fh 21,11/12.195 8192 bytes @ 24576

 wrl.nfs > sushi.1023: NFS reply xid 79658

 reply ok 1472 read REG 100664 ids 417/0 sz 29388

 (-v also prints the IP header TTL, ID, length, and fragmentation fields, which have been

 omitted from this example.) In the first line, sushi asks wrl to read 8192 bytes from

 file 21,11/12.195, at byte offset 24576. Wrl replies `ok'; the packet shown on the second

 line is the first fragment of the reply, and hence is only 1472 bytes long (the other Page 24/29

 bytes will follow in subsequent fragments, but these fragments do not have NFS or even UDP

 headers and so might not be printed, depending on the filter expression used). Because

 the -v flag is given, some of the file attributes (which are returned in addition to the

 file data) are printed: the file type (``REG'', for regular file), the file mode (in oc?

 tal), the UID and GID, and the file size.

 If the -v flag is given more than once, even more details are printed.

 NFS reply packets do not explicitly identify the RPC operation. Instead, tcpdump keeps

 track of ``recent'' requests, and matches them to the replies using the transaction ID.

 If a reply does not closely follow the corresponding request, it might not be parsable.

 AFS Requests and Replies

 Transarc AFS (Andrew File System) requests and replies are printed as:

 src.sport > dst.dport: rx packet-type

 src.sport > dst.dport: rx packet-type service call call-name args

 src.sport > dst.dport: rx packet-type service reply call-name args

 elvis.7001 > pike.afsfs:

 rx data fs call rename old fid 536876964/1/1 ".newsrc.new"

 new fid 536876964/1/1 ".newsrc"

 pike.afsfs > elvis.7001: rx data fs reply rename

 In the first line, host elvis sends a RX packet to pike. This was a RX data packet to the

 fs (fileserver) service, and is the start of an RPC call. The RPC call was a rename, with

 the old directory file id of 536876964/1/1 and an old filename of `.newsrc.new', and a new

 directory file id of 536876964/1/1 and a new filename of `.newsrc'. The host pike re?

 sponds with a RPC reply to the rename call (which was successful, because it was a data

 packet and not an abort packet).

 In general, all AFS RPCs are decoded at least by RPC call name. Most AFS RPCs have at

 least some of the arguments decoded (generally only the `interesting' arguments, for some

 definition of interesting).

 The format is intended to be self-describing, but it will probably not be useful to people

 who are not familiar with the workings of AFS and RX.

 If the -v (verbose) flag is given twice, acknowledgement packets and additional header in?

 formation is printed, such as the RX call ID, call number, sequence number, serial number,

 and the RX packet flags.

 If the -v flag is given twice, additional information is printed, such as the RX call ID, Page 25/29

 serial number, and the RX packet flags. The MTU negotiation information is also printed

 from RX ack packets.

 If the -v flag is given three times, the security index and service id are printed.

 Error codes are printed for abort packets, with the exception of Ubik beacon packets (be?

 cause abort packets are used to signify a yes vote for the Ubik protocol).

 AFS reply packets do not explicitly identify the RPC operation. Instead, tcpdump keeps

 track of ``recent'' requests, and matches them to the replies using the call number and

 service ID. If a reply does not closely follow the corresponding request, it might not be

 parsable.

 KIP AppleTalk (DDP in UDP)

 AppleTalk DDP packets encapsulated in UDP datagrams are de-encapsulated and dumped as DDP

 packets (i.e., all the UDP header information is discarded). The file /etc/atalk.names is

 used to translate AppleTalk net and node numbers to names. Lines in this file have the

 form

 number name

 1.254 ether

 16.1 icsd-net

 1.254.110 ace

 The first two lines give the names of AppleTalk networks. The third line gives the name

 of a particular host (a host is distinguished from a net by the 3rd octet in the number -

 a net number must have two octets and a host number must have three octets.) The number

 and name should be separated by whitespace (blanks or tabs). The /etc/atalk.names file

 may contain blank lines or comment lines (lines starting with a `#').

 AppleTalk addresses are printed in the form

 net.host.port

 144.1.209.2 > icsd-net.112.220

 office.2 > icsd-net.112.220

 jssmag.149.235 > icsd-net.2

 (If the /etc/atalk.names doesn't exist or doesn't contain an entry for some AppleTalk

 host/net number, addresses are printed in numeric form.) In the first example, NBP (DDP

 port 2) on net 144.1 node 209 is sending to whatever is listening on port 220 of net icsd

 node 112. The second line is the same except the full name of the source node is known

 (`office'). The third line is a send from port 235 on net jssmag node 149 to broadcast on Page 26/29

 the icsd-net NBP port (note that the broadcast address (255) is indicated by a net name

 with no host number - for this reason it's a good idea to keep node names and net names

 distinct in /etc/atalk.names).

 NBP (name binding protocol) and ATP (AppleTalk transaction protocol) packets have their

 contents interpreted. Other protocols just dump the protocol name (or number if no name

 is registered for the protocol) and packet size.

 NBP packets are formatted like the following examples:

 icsd-net.112.220 > jssmag.2: nbp-lkup 190: "=:LaserWriter@*"

 jssmag.209.2 > icsd-net.112.220: nbp-reply 190: "RM1140:LaserWriter@*" 250

 techpit.2 > icsd-net.112.220: nbp-reply 190: "techpit:LaserWriter@*" 186

 The first line is a name lookup request for laserwriters sent by net icsd host 112 and

 broadcast on net jssmag. The nbp id for the lookup is 190. The second line shows a reply

 for this request (note that it has the same id) from host jssmag.209 saying that it has a

 laserwriter resource named "RM1140" registered on port 250. The third line is another re?

 ply to the same request saying host techpit has laserwriter "techpit" registered on port

 186.

 ATP packet formatting is demonstrated by the following example:

 jssmag.209.165 > helios.132: atp-req 12266<0-7> 0xae030001

 helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:4 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000

 jssmag.209.165 > helios.132: atp-req 12266<3,5> 0xae030001

 helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000

 jssmag.209.165 > helios.132: atp-rel 12266<0-7> 0xae030001

 jssmag.209.133 > helios.132: atp-req* 12267<0-7> 0xae030002

 Jssmag.209 initiates transaction id 12266 with host helios by requesting up to 8 packets

 (the `<0-7>'). The hex number at the end of the line is the value of the `userdata' field Page 27/29

 in the request.

 Helios responds with 8 512-byte packets. The `:digit' following the transaction id gives

 the packet sequence number in the transaction and the number in parens is the amount of

 data in the packet, excluding the ATP header. The `*' on packet 7 indicates that the EOM

 bit was set.

 Jssmag.209 then requests that packets 3 & 5 be retransmitted. Helios resends them then

 jssmag.209 releases the transaction. Finally, jssmag.209 initiates the next request. The

 `*' on the request indicates that XO (`exactly once') was not set.

SEE ALSO

 stty(1), pcap(3PCAP), bpf(4), nit(4P), pcap-savefile(5), pcap-filter(7), pcap-tstamp(7)

 https://www.iana.org/assignments/media-types/application/vnd.tcpdump.pcap

AUTHORS

 The original authors are:

 Van Jacobson, Craig Leres and Steven McCanne, all of the Lawrence Berkeley National Labo?

 ratory, University of California, Berkeley, CA.

 It is currently being maintained by tcpdump.org.

 The current version is available via HTTPS:

 https://www.tcpdump.org/

 The original distribution is available via anonymous ftp:

 ftp://ftp.ee.lbl.gov/old/tcpdump.tar.Z

 IPv6/IPsec support is added by WIDE/KAME project. This program uses OpenSSL/LibreSSL, un?

 der specific configurations.

BUGS

 To report a security issue please send an e-mail to security@tcpdump.org.

 To report bugs and other problems, contribute patches, request a feature, provide generic

 feedback etc. please see the file CONTRIBUTING in the tcpdump source tree root.

 NIT doesn't let you watch your own outbound traffic, BPF will. We recommend that you use

 the latter.

 On Linux systems with 2.0[.x] kernels:

 packets on the loopback device will be seen twice;

 packet filtering cannot be done in the kernel, so that all packets must be copied

 from the kernel in order to be filtered in user mode;

 all of a packet, not just the part that's within the snapshot length, will be Page 28/29

 copied from the kernel (the 2.0[.x] packet capture mechanism, if asked to copy only

 part of a packet to userspace, will not report the true length of the packet; this

 would cause most IP packets to get an error from tcpdump);

 capturing on some PPP devices won't work correctly.

 We recommend that you upgrade to a 2.2 or later kernel.

 Some attempt should be made to reassemble IP fragments or, at least to compute the right

 length for the higher level protocol.

 Name server inverse queries are not dumped correctly: the (empty) question section is

 printed rather than real query in the answer section. Some believe that inverse queries

 are themselves a bug and prefer to fix the program generating them rather than tcpdump.

 A packet trace that crosses a daylight savings time change will give skewed time stamps

 (the time change is ignored).

 Filter expressions on fields other than those in Token Ring headers will not correctly

 handle source-routed Token Ring packets.

 Filter expressions on fields other than those in 802.11 headers will not correctly handle

 802.11 data packets with both To DS and From DS set.

 ip6 proto should chase header chain, but at this moment it does not. ip6 protochain is

 supplied for this behavior.

 Arithmetic expression against transport layer headers, like tcp[0], does not work against

 IPv6 packets. It only looks at IPv4 packets.

 21 December 2020 TCPDUMP(8)

Page 29/29

