
Rocky Enterprise Linux 9.2 Manual Pages on command 'term.5'

$ man term.5

term(5) File Formats Manual term(5)

NAME

 term - format of compiled term file.

SYNOPSIS

 term

DESCRIPTION

 STORAGE LOCATION

 Compiled terminfo descriptions are placed under the directory /etc/terminfo. Two configu?

 rations are supported (when building the ncurses libraries):

 directory tree

 A two-level scheme is used to avoid a linear search of a huge UNIX system directory:

 /etc/terminfo/c/name where name is the name of the terminal, and c is the first char?

 acter of name. Thus, act4 can be found in the file /etc/terminfo/a/act4. Synonyms

 for the same terminal are implemented by multiple links to the same compiled file.

 hashed database

 Using Berkeley database, two types of records are stored: the terminfo data in the

 same format as stored in a directory tree with the terminfo's primary name as a key,

 and records containing only aliases pointing to the primary name.

 If built to write hashed databases, ncurses can still read terminfo databases orga?

 nized as a directory tree, but cannot write entries into the directory tree. It can

 write (or rewrite) entries in the hashed database.

 ncurses distinguishes the two cases in the TERMINFO and TERMINFO_DIRS environment

 variable by assuming a directory tree for entries that correspond to an existing di? Page 1/7

 rectory, and hashed database otherwise.

 LEGACY STORAGE FORMAT

 The format has been chosen so that it will be the same on all hardware. An 8 or more bit

 byte is assumed, but no assumptions about byte ordering or sign extension are made.

 The compiled file is created with the tic program, and read by the routine setupterm(3X).

 The file is divided into six parts:

 a) header,

 b) terminal names,

 c) boolean flags,

 d) numbers,

 e) strings, and

 f) string table.

 The header section begins the file. This section contains six short integers in the for?

 mat described below. These integers are

 (1) the magic number (octal 0432);

 (2) the size, in bytes, of the terminal names section;

 (3) the number of bytes in the boolean flags section;

 (4) the number of short integers in the numbers section;

 (5) the number of offsets (short integers) in the strings section;

 (6) the size, in bytes, of the string table.

 The capabilities in the boolean flags, numbers, and strings sections are in the same order

 as the file <term.h>.

 Short integers are signed, in the range -32768 to 32767. They are stored as two 8-bit

 bytes. The first byte contains the least significant 8 bits of the value, and the second

 byte contains the most significant 8 bits. (Thus, the value represented is 256*sec?

 ond+first.) This format corresponds to the hardware of the VAX and PDP-11 (that is, lit?

 tle-endian machines). Machines where this does not correspond to the hardware must read

 the integers as two bytes and compute the little-endian value.

 Numbers in a terminal description, whether they are entries in the numbers or strings ta?

 ble, are positive integers. Boolean flags are treated as positive one-byte integers. In

 each case, those positive integers represent a terminal capability. The terminal compiler

 tic uses negative integers to handle the cases where a capability is not available:

 ? If a capability is absent from this terminal, tic stores a -1 in the corresponding ta? Page 2/7

 ble.

 The integer value -1 is represented by two bytes 0377, 0377.

 Absent boolean values are represented by the byte 0 (false).

 ? If a capability has been canceled from this terminal, tic stores a -2 in the corre?

 sponding table.

 The integer value -2 is represented by two bytes 0377, 0376.

 The boolean value -2 is represented by the byte 0376.

 ? Other negative values are illegal.

 The terminal names section comes after the header. It contains the first line of the ter?

 minfo description, listing the various names for the terminal, separated by the ?|? char?

 acter. The terminal names section is terminated with an ASCII NUL character.

 The boolean flags section has one byte for each flag. Boolean capabilities are either 1

 or 0 (true or false) according to whether the terminal supports the given capability or

 not.

 Between the boolean flags section and the number section, a null byte will be inserted, if

 necessary, to ensure that the number section begins on an even byte This is a relic of the

 PDP-11's word-addressed architecture, originally designed to avoid traps induced by ad?

 dressing a word on an odd byte boundary. All short integers are aligned on a short word

 boundary.

 The numbers section is similar to the boolean flags section. Each capability takes up two

 bytes, and is stored as a little-endian short integer.

 The strings section is also similar. Each capability is stored as a short integer. The

 capability value is an index into the string table.

 The string table is the last section. It contains all of the values of string capabili?

 ties referenced in the strings section. Each string is null-terminated. Special charac?

 ters in ^X or \c notation are stored in their interpreted form, not the printing represen?

 tation. Padding information $<nn> and parameter information %x are stored intact in unin?

 terpreted form.

 EXTENDED STORAGE FORMAT

 The previous section describes the conventional terminfo binary format. With some minor

 variations of the offsets (see PORTABILITY), the same binary format is used in all modern

 UNIX systems. Each system uses a predefined set of boolean, number or string capabili?

 ties. Page 3/7

 The ncurses libraries and applications support extended terminfo binary format, allowing

 users to define capabilities which are loaded at runtime. This extension is made possible

 by using the fact that the other implementations stop reading the terminfo data when they

 have reached the end of the size given in the header. ncurses checks the size, and if it

 exceeds that due to the predefined data, continues to parse according to its own scheme.

 First, it reads the extended header (5 short integers):

 (1) count of extended boolean capabilities

 (2) count of extended numeric capabilities

 (3) count of extended string capabilities

 (4) count of the items in extended string table

 (5) size of the extended string table in bytes

 The count- and size-values for the extended string table include the extended capability

 names as well as extended capability values.

 Using the counts and sizes, ncurses allocates arrays and reads data for the extended capa?

 bilities in the same order as the header information.

 The extended string table contains values for string capabilities. After the end of these

 values, it contains the names for each of the extended capabilities in order, e.g., bool?

 eans, then numbers and finally strings.

 Applications which manipulate terminal data can use the definitions described in

 term_variables(3X) which associate the long capability names with members of a TERMTYPE

 structure.

 EXTENDED NUMBER FORMAT

 On occasion, 16-bit signed integers are not large enough. With ncurses 6.1, a new format

 was introduced by making a few changes to the legacy format:

 ? a different magic number (octal 01036)

 ? changing the type for the number array from signed 16-bit integers to signed 32-bit

 integers.

 To maintain compatibility, the library presents the same data structures to direct users

 of the TERMTYPE structure as in previous formats. However, that cannot provide callers

 with the extended numbers. The library uses a similar but hidden data structure TERMTYPE2

 to provide data for the terminfo functions.

PORTABILITY

 setupterm Page 4/7

 Note that it is possible for setupterm to expect a different set of capabilities than are

 actually present in the file. Either the database may have been updated since setupterm

 was recompiled (resulting in extra unrecognized entries in the file) or the program may

 have been recompiled more recently than the database was updated (resulting in missing en?

 tries). The routine setupterm must be prepared for both possibilities - this is why the

 numbers and sizes are included. Also, new capabilities must always be added at the end of

 the lists of boolean, number, and string capabilities.

 Binary format

 X/Open Curses does not specify a format for the terminfo database. UNIX System V curses

 used a directory-tree of binary files, one per terminal description.

 Despite the consistent use of little-endian for numbers and the otherwise self-describing

 format, it is not wise to count on portability of binary terminfo entries between commer?

 cial UNIX versions. The problem is that there are at least three versions of terminfo

 (under HP-UX, AIX, and OSF/1) which diverged from System V terminfo after SVr1, and have

 added extension capabilities to the string table that (in the binary format) collide with

 System V and XSI Curses extensions. See terminfo(5) for detailed discussion of terminfo

 source compatibility issues.

 This implementation is by default compatible with the binary terminfo format used by So?

 laris curses, except in a few less-used details where it was found that the latter did not

 match X/Open Curses. The format used by the other Unix versions can be matched by build?

 ing ncurses with different configuration options.

 Magic codes

 The magic number in a binary terminfo file is the first 16-bits (two bytes). Besides mak?

 ing it more reliable for the library to check that a file is terminfo, utilities such as

 file also use that to tell what the file-format is. System V defined more than one magic

 number, with 0433, 0435 as screen-dumps (see scr_dump(5)). This implementation uses 01036

 as a continuation of that sequence, but with a different high-order byte to avoid confu?

 sion.

 The TERMTYPE structure

 Direct access to the TERMTYPE structure is provided for legacy applications. Portable ap?

 plications should use the tigetflag and related functions described in curs_terminfo(3X)

 for reading terminal capabilities.

 Mixed-case terminal names Page 5/7

 A small number of terminal descriptions use uppercase characters in their names. If the

 underlying filesystem ignores the difference between uppercase and lowercase, ncurses rep?

 resents the ?first character? of the terminal name used as the intermediate level of a di?

 rectory tree in (two-character) hexadecimal form.

EXAMPLE

 As an example, here is a description for the Lear-Siegler ADM-3, a popular though rather

 stupid early terminal:

 adm3a|lsi adm3a,

 am,

 cols#80, lines#24,

 bel=^G, clear= 32$<1>, cr=^M, cub1=^H, cud1=^J,

 cuf1=^L, cup=\E=%p1%{32}%+%c%p2%{32}%+%c, cuu1=^K,

 home=^^, ind=^J,

 and a hexadecimal dump of the compiled terminal description:

 0000 1a 01 10 00 02 00 03 00 82 00 31 00 61 64 6d 33 1.adm3

 0010 61 7c 6c 73 69 20 61 64 6d 33 61 00 00 01 50 00 a|lsi ad m3a...P.

 0020 ff ff 18 00 ff ff 00 00 02 00 ff ff ff ff 04 00

 0030 ff ff ff ff ff ff ff ff 0a 00 25 00 27 00 ff ff %.'...

 0040 29 00 ff ff ff ff 2b 00 ff ff 2d 00 ff ff ff ff).....+. ..-.....

 0050 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 0060 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 0070 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 0080 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 0090 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 00a0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 00b0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 00c0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 00d0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 00e0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 00f0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 0100 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 0110 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 0120 ff ff ff ff ff ff 2f 00 07 00 0d 00 1a 24 3c 31 /.$<1 Page 6/7

 0130 3e 00 1b 3d 25 70 31 25 7b 33 32 7d 25 2b 25 63 >..=%p1% {32}%+%c

 0140 25 70 32 25 7b 33 32 7d 25 2b 25 63 00 0a 00 1e %p2%{32} %+%c....

 0150 00 08 00 0c 00 0b 00 0a 00

LIMITS

 Some limitations:

 ? total compiled entries cannot exceed 4096 bytes in the legacy format.

 ? total compiled entries cannot exceed 32768 bytes in the extended format.

 ? the name field cannot exceed 128 bytes.

 Compiled entries are limited to 32768 bytes because offsets into the strings table use

 two-byte integers. The legacy format could have supported 32768-byte entries, but was

 limited a virtual memory page's 4096 bytes.

FILES

 /etc/terminfo/*/* compiled terminal capability database

SEE ALSO

 ncurses(3NCURSES), terminfo(5).

AUTHORS

 Thomas E. Dickey

 extended terminfo format for ncurses 5.0

 hashed database support for ncurses 5.6

 extended number support for ncurses 6.1

 Eric S. Raymond

 documented legacy terminfo format, e.g., from pcurses.

 term(5)

Page 7/7

