PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'terminfo.5’
$ man terminfo.5
terminfo(5) File Formats terminfo(5)
NAME
terminfo - terminal capability database
SYNOPSIS
[etc/terminfo/*/*
DESCRIPTION
Terminfo is a database describing terminals, used by screen-oriented programs such as
nvi(1), lynx(1), mutt(1), and other curses applications, using high-level calls to Ii?
braries such as ncurses(SNCURSES). It is also used via low-level calls by non-curses ap?
plications which may be screen-oriented (such as clear(1)) or non-screen (such as
tabs(1)).
Terminfo describes terminals by giving a set of capabilities which they have, by specify?
ing how to perform screen operations, and by specifying padding requirements and initial?
ization sequences.
This manual describes ncurses version 6.3 (patch 20211021).
Terminfo Entry Syntax
Entries in terminfo consist of a sequence of fields:
? Each field ends with a comma ?,? (embedded commas may be escaped with a backslash or
written as ?\0547?).
? White space between fields is ignored.
? The first field in a terminfo entry begins in the first column.
? Newlines and leading whitespace (spaces or tabs) may be used for formatting entries

for readability. These are removed from parsed entries.

FPDF Library

Page 1/59



The infocmp -f and -W options rely on this to format if-then-else expressions, or to
enforce maximum line-width. The resulting formatted terminal description can be read
by tic.
? The first field for each terminal gives the names which are known for the terminal,
separated by ?|? characters.
The first name given is the most common abbreviation for the terminal (its primary
name), the last name given should be a long name fully identifying the terminal (see
longname(3X)), and all others are treated as synonyms (aliases) for the primary termi?
nal name.
X/Open Curses advises that all names but the last should be in lower case and contain
no blanks; the last name may well contain upper case and blanks for readability.
This implementation is not so strict; it allows mixed case in the primary name and
aliases. If the last name has no embedded blanks, it allows that to be both an alias
and a verbose name (but will warn about this ambiguity).
? Lines beginning with a ?#? in the first column are treated as comments.
While comment lines are legal at any point, the output of captoinfo and infotocap
(aliases for tic) will move comments so they occur only between entries.
Terminal names (except for the last, verbose entry) should be chosen using the following
conventions. The particular piece of hardware making up the terminal should have a root
name, thus ?hp2621?. This name should not contain hyphens. Modes that the hardware can
be in, or user preferences, should be indicated by appending a hyphen and a mode suffix.
Thus, a vt100 in 132-column mode would be vt100-w. The following suffixes should be used

where possible:

Suffix Meaning Example
-nn  Number of lines on the screen aaa-60
-np  Number of pages of memory c100-4p

-am  With automargins (usually the default) vt100-am
-m Mono mode; suppress color ansi-m

-mc  Magic cookie; spaces when highlighting wy30-mc
-na  No arrow keys (leave themin local)  ¢100-na
-nam  Without automatic margins vt100-nam
-nl  No status line att4415-nl

-ns  No status line hp2626-ns

Page 2/59



-rv Reverse video c100-rv
-S Enable status line vt100-s
-vb  Use visible bell instead of beep wy370-vb
-w Wide mode (> 80 columns, usually 132) vt100-w
For more on terminal naming conventions, see the term(7) manual page.
Terminfo Capabilities Syntax
The terminfo entry consists of several capabilities, i.e., features that the terminal has,
or methods for exercising the terminal's features.
After the first field (giving the name(s) of the terminal entry), there should be one or
more capability fields. These are boolean, numeric or string names with corresponding
values:
? Boolean capabilities are true when present, false when absent. There is no explicit
value for boolean capabilities.
? Numeric capabilities have a ?#? following the name, then an unsigned decimal integer
value.
? String capabilities have a ?=? following the name, then an string of characters making
up the capability value.
String capabilities can be split into multiple lines, just as the fields comprising a
terminal entry can be split into multiple lines. While blanks between fields are ig?
nored, blanks embedded within a string value are retained, except for leading blanks
on aline.
Any capability can be canceled, i.e., suppressed from the terminal entry, by following its
name with ?@? rather than a capability value.
Similar Terminals
If there are two very similar terminals, one (the variant) can be defined as being just
like the other (the base) with certain exceptions. In the definition of the variant, the
string capability use can be given with the name of the base terminal:
? The capabilities given before use override those in the base type named by use.
? If there are multiple use capabilities, they are merged in reverse order. That is,
the rightmost use reference is processed first, then the one to its left, and so
forth.

? Capabilities given explicitly in the entry override those brought in by use refer?

ences. Page 3/59



A capability can be canceled by placing xx@ to the left of the use reference that imports
it, where xx is the capability. For example, the entry
2621-nl, smkx@, rmkx@, use=2621,
defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does not
turn on the function key labels when in visual mode. This is useful for different modes
for a terminal, or for different user preferences.
An entry included via use can contain canceled capabilities, which have the same effect as
if those cancels were inline in the using terminal entry.
Predefined Capabilities
The following is a complete table of the capabilities included in a terminfo description
block and available to terminfo-using code. In each line of the table,
The variable is the name by which the programmer (at the terminfo level) accesses the ca?
pability.
The capname is the short name used in the text of the database, and is used by a person
updating the database. Whenever possible, capnames are chosen to be the same as or simi?
lar to the ANSI X3.64-1979 standard (how superseded by ECMA-48, which uses identical or
very similar names). Semantics are also intended to match those of the specification.
The termcap code is the old termcap capability name (some capabilities are new, and have
names which termcap did not originate).
Capability names have no hard length limit, but an informal limit of 5 characters has been
adopted to keep them short and to allow the tabs in the source file Caps to line up
nicely.
Finally, the description field attempts to convey the semantics of the capability. You
may find some codes in the description field:
(P) indicates that padding may be specified
#[1-9] in the description field indicates that the string is passed through tparm(3X) with
parameters as given (#i).
If no parameters are listed in the description, passing the string through
tparm(3X) may give unexpected results, e.g., if it contains percent (%%) signs.
(P*) indicates that padding may vary in proportion to the number of lines affected
(#) indicates the ith parameter.
These are the boolean capabilities:

Variable Cap- TCap Description



Booleans name  Code

auto_left_ margin bw bw  cubl wraps from col?
umn O to last column

auto_right_margin am am terminal has auto?
matic margins

back_color_erase bce ut screen erased with
background color

can_change cce cc terminal can re-de?
fine existing colors

ceol_standout_glitch xhp Xs  standout not erased

by overwriting (hp)

col_addr_glitch xhpa YA only positive motion
for hpa/mhpa caps
cpi_changes_res cpix  YF changing character

pitch changes reso?
lution
cr_cancels_micro_mode crxm  YB  using cr turns off
micro mode
dest_tabs magic_smso xt xt  tabs destructive,
magic so char
(t1061)
eat_newline_glitch xenl  xn newline ignored af?
ter 80 cols (con?
cept)
erase_overstrike €o eo can erase over?

strikes with a blank

generic_type gn gn generic line type

hard_copy hc hc  hardcopy terminal

hard_cursor chts  HC cursoris hard to
see

has_meta_key km km Has a meta key

(i.e., sets 8th-bit)

has_print_wheel daisy YC printer needs opera?

Page 5/59



has_status_line

tor to change char?

acter set

hs hs has extra status

line

hue_lightness_saturation hls hl  terminal uses only

insert_null_glitch

Ipi_changes_res

memory_above

memory_below

move_insert_mode

move_standout_mode

needs_xon_xoff

no_esc_ctlc

no_pad_char

non_dest_scroll_region

non_rev_rmcup

over_strike 0s

in

HLS color notation
(Tektronix)
in  insert mode distin?
guishes nulls
Ipix YG changing line pitch
changes resolution
da da display may be re?
tained above the
screen
db db display may be re?
tained below the
screen
mir mi  safe to move while
in insert mode
msgr ms safe to move while
in standout mode
nxon nx padding will not
work, xon/xoff re?

quired

xsh xb  beehive (fl=escape,

f2=ctrl C)

npc NP  pad character does

not exist
ndscr ND scrolling region is
non-destructive
nrrmc  NR  smcup does not re?
verse rmcup

os terminal can over?

Page 6/59



prtr_silent

row_addr_glitch

strike
mc5i  5i  printer will not
echo on screen
xvpa YD only positive motion

for vpa/mvpa caps

semi_auto_right_margin ~ sam YE printing in last

status_line_esc_ok

column causes cr
eslok es escape can be used

on the status line

tilde_glitch hz hz  cannot print ~'s
(Hazeltine)

transparent_underline ul ul  underline character
overstrikes

xon_xoff xon X0  terminal uses

xon/xoff handshaking

These are the numeric capabilities:

Variable Cap- TCap Description
Numeric name  Code
columns cols co number of columns in
aline
init_tabs it it tabs initially every
# spaces
label_height Ih Ih  rows in each label
label width Iw lw  columns in each la?
bel
lines lines li  number of lines on

lines_of_memory

magic_cookie_glitch

max_attributes

screen or page

Im Im  lines of memory if >
line. 0 means varies

Xxmc sg number of blank
characters left by
SMSO Or rmso

ma ma maximum combined at?

Page 7/59



tributes terminal
can handle

max_colors colors Co maximum number of
colors on screen

max_pairs pairs pa maximum number of
color-pairs on the
screen

maximum_windows wnum MW  maximum number of
definable windows

no_color_video ncv NC video attributes

that cannot be used

with colors
num_labels nlab NI number of labels on
screen
padding_baud_rate pb pb lowest baud rate

where padding needed
virtual_terminal vt vt  virtual terminal
number (CB/unix)
width_status_line wsl ws  number of columns in
status line
The following numeric capabilities are present in the SVr4.0 term structure, but are not

yet documented in the man page. They came in with SVr4's printer support.

Variable Cap- TCap Description
Numeric name  Code
bit_image_entwining bitwin Yo number of passes for

each bit-image row

bit_image_type bitype Yp type of bit-image
device
buffer_capacity bufsz Ya numbers of bytes

buffered before
printing
buttons btns BT number of buttons on

mouse Page 8/59



dot_horz_spacing

dot_vert_spacing

max_micro_address

max_micro_jump

micro_col_size

micro_line_size

number_of pins

output_res_char

output_res_horz_inch

output_res_line

output_res_vert_inch

print_rate

wide_char_size

spinh  Yc  spacing of dots hor?
izontally in dots
per inch
spinv  Yb  spacing of pins ver?
tically in pins per
inch
maddr Yd maximum value in mi?
cro_..._address
mjump  Ye maximum value in
parm_..._micro
mcs Yf character step size
when in micro mode
mis Yg line step size when
in micro mode
npins  Yh numbers of pins in
print-head
orc Yi  horizontal resolu?
tion in units per
line
orhi Yk horizontal resolu?
tion in units per

inch

orl Yj vertical resolution

in units per line
orvi Yl vertical resolution

in units per inch

cps Ym  print rate in char?

acters per second
widcs Yn character step size
when in double wide

mode

These are the string capabilities:

Variable

Cap- TCap Description

Page 9/59



String name  Code
acs_chars acsc ac graphics charset
pairs, based on
vt100
back_tab cbt bt back tab (P)
bell bel bl audible signal

carriage_return

change_char_pitch

change_line_pitch

change _res_horz

change _res_vert

(bell) (P)
cr cr  carriage return (P*)

(P*)

cpi ZA  Change number of
characters per inch
to #1

Ipi ZB  Change number of
lines per inch to #1

chr ZC Change horizontal
resolution to #1

cvr ZD Change vertical res?

olution to #1

change_scroll_region csr cs change region to

char_padding

clear_all_tabs

clear_margins

clear_screen

clr_bol

clr_eol

line #1 to line #2
(P)
rmp rP  like ip but when in
insert mode
tbc ct clear all tab stops
(P)
mgc MC  clear right and left
soft margins
clear cl clear screen and
home cursor (P*)
ell cb  Clear to beginning
of line

el ce clearto end of line

(P)

Page 10/59



clr_eos e

column_address

command_character

create_window

cursor_address

cursor_down

cursor_home

cursor_invisible

d cd clear to end of
screen (P*)
hpa ch  horizontal position
#1, absolute (P)
cmdch CC  terminal settable
cmd character in
prototype !?
cwin  CW  define a window #1
from #2,#3 to #4,#5
cup cm  move to row #1 col?
umns #2
cudl do down one line
home ho home cursor (if no
cup)
civis vi  make cursor invisi?

ble

cursor_left cubl le move left one space

cursor_mem_address

cursor_normal

cursor_right

cursor_to_lI

cursor_up

cursor_visible

define_char

mrcup CM  memory relative cur?

sor addressing, move
to row #1 columns #2
cnorm ve make cursor appear

normal (undo
civis/cwvis)

cufl  nd non-destructive
space (move right
one space)

I [l lastline, first
column (if no cup)

cuul up uponeline

cwis vs make cursor very
visible

defc ZE Define a character

#1, #2 dots wide,

Page 11/59



descender #3

delete_character dchl dc delete character
(P
delete_line dil dl  delete line (P*)
dial_phone dial DI dial number #1
dis_status_line dsl ds disable status line
display_clock dclk DK display clock
down_half_line hd hd half a line down
ena_acs enacs eA enable alternate
char set

enter_alt_charset_mode

enter_am_mode

enter_blink_mode

enter_bold_mode

enter_ca_mode

enter_delete_mode

enter_dim_mode

enter_doublewide_mode

smacs as start alternate
character set (P)

smam  SA turn on automatic
margins

blink mb  turn on blinking

bold md turn on bold (extra
bright) mode

smcup ti  string to start pro?
grams using cup

smdc dm enter delete mode

dim mh  turn on half-bright

mode

swidm ZF Enter double-wide

mode

enter_draft_quality sdrfg  ZG Enter draft-quality

enter_insert_mode
enter_italics_mode

enter_leftward_mode

enter_micro_mode

mode
smir im  enter insert mode
sitm ZH  Enter italic mode
slm ZI  Start leftward car?
riage motion
smicm ZJ  Start micro-motion

mode

enter_near_letter_quality snlg ZK Enter NLQ mode

Page 12/59



enter_normal_quality

enter_protected_mode

enter_reverse_mode

enter_secure_mode

enter_shadow_mode

enter_standout_mode

enter_subscript_mode

enter_superscript_mode

enter_underline_mode

enter_upward_mode

enter_xon_mode

erase_chars

exit_alt_charset_mode

exit_am_mode

exit_attribute_mode

exit_ca_mode

exit_delete_mode

exit_doublewide _mode

exit_insert_mode

snrmq ZL  Enter normal-quality
mode
prot mp turn on protected
mode
rev mr  turn on reverse
video mode
invis mk turn on blank mode

(characters invisi?

ble)
sshm ZM  Enter shadow-print
mode
smso so begin standout mode

ssubm ZN  Enter subscript mode

ssupm ZO  Enter superscript
mode
smul  us begin underline mode
sum ZP  Start upward car?
riage motion
smxon SX turn on xon/xoff
handshaking
ech ec erase #1 characters
(P)
rmacs ae end alternate char?

acter set (P)

rmam  RA turn off automatic
margins
sgr0  me turn off all at?
tributes
rmcup te  strings to end pro?

grams using cup

rmdc ed end delete mode

rwidm ZQ End double-wide mode
exit insert mode

rmir  ei

Page 13/59



exit_italics_mode ritim ZR End italic mode

exit_leftward_mode

exit_micro_mode

exit_shadow_mode

exit_standout_mode
exit_subscript_mode
exit_superscript_mode
exit_underline_mode

exit_upward_mode

exit_xon_mode

rim ZS End left-motion mode

rmicm ZT  End micro-motion

mode
rshm  ZU End shadow-print
mode
rmso se exit standout mode

rsubm ZV  End subscript mode

rsupm ZW  End superscript mode

rmul ue exit underline mode

rum ZX End reverse charac?

ter motion

rmxon RX turn off xon/xoff

handshaking
fixed_pause pause PA pause for 2-3 sec?
onds
flash_hook hook fh flash switch hook
flash_screen flash  vb visible bell (may

not move cursor)

form_feed ff ff  hardcopy terminal
page eject (P*)
from_status_line fsl fs  return from status
line
goto_window wingo WG go to window #1
hangup hup HU  hang-up phone
init_1string is1 i1 initialization
string
init_2string is2 is initialization
string
init_3string is3 i3 initialization
string
init_file if if  name of initializa?

tion file

Page 14/59



init_prog iprog iP  path name of program
for initialization
initialize_color initc Ic initialize color #1
to (#2,#3,#4)
initialize_pair initp  Ip Initialize color
pair #1 to
fg=(#2,#3,#4),

bg=(#5,#6,#7)

insert_character ichl ic insert character (P)
insert_line i1 al insert line (P*)
insert_padding ip ip insert padding after

inserted character

key al kal K1 upper left of keypad

key a3 ka3 K3  upper right of key?
pad

key b2 kb2 K2 center of keypad

key backspace kbs kb  backspace key

key beg kbeg @1 begin key

key btab kcbt kB  back-tab key

key c1 kcl K4  lower left of keypad

key c3 kec3 K5 lower right of key?
pad

key_ cancel kcan @2 cancel key

key catab ktbc ka clear-all-tabs key

key clear kclr  kC  clear-screen or
erase key

key close kclo @3 close key

key _command kemd @4 command key

key copy kcpy @5 copy key

key create kert @6 create key

key ctab kctab kt clear-tab key

key dc kdchl kD delete-character key

key_dl kdll kL delete-line key Page 15/59



key down

key eic

key end
key_enter

key eol

key eos

key_exit
key fO

key f1

key f10
key f11
key f12
key f13
key f14
key f15
key f16
key f17
key f18
key f19
key f2

key f20
key f21
key f22
key f23
key f24
key f25
key f26
key f27
key f28

key f29

kcudl

krmir

kend

kent

kel

ked

kext

kfo

kfl

kf10

kfll

kf12

kf13

kf14

kf15

kf16

kfl7

kf18

kf19

kf2

kf20

kf21

kf22

kf23

kf24

kf25

kf26

kf27

kf28

kf29

kd down-arrow key
kM  sent by rmir or smir
in insert mode
@7 end key
@8 enter/send key
KE clear-to-end-of-line
key
kS clear-to-end-of-
screen key
@9 exit key
kO  FO function key
k1 F1 function key
k;  F10 function key
F1  F11 function key
F2 F12 function key
F3  F13 function key
F4  F14 function key
F5 F15 function key
F6 F16 function key
F7  F17 function key
F8 F18 function key
F9  F19 function key
k2  F2 function key
FA  F20 function key
FB  F21 function key
FC F22 function key
FD F23 function key
FE F24 function key
FF  F25 function key
FG F26 function key
FH  F27 function key
FI  F28 function key
FJ  F29 function key

Page 16/59



key f3 kf3 k3  F3function key

key_f30 kf30 FK F30 function key
key f31 kf31 FL F31 function key
key f32 kf32 FM  F32 function key
key f33 kf33 FN F33 function key
key 34 ki34  FO F34 function key
key f35 kf35 FP  F35 function key
key f36 kf36 FQ F36 function key
key f37 kf37 FR  F37 function key
key f38 kf38 FS  F38 function key
key f39 kf39 FT  F39 function key
key f4 kf4 k4  F4 function key
key f40 kf40 FU  F40 function key
key f41 kfAl FV  F41 function key
key f42 kf42 FW F42 function key
key f43 kf4A3  FX  F43 function key
key f44 kf44 FY F44 function key
key_f45 kfA5 FZ F45 function key
key f46 kf46 Fa F46 function key
key f47 kfd7  Fb  FA47 function key
key f48 kf48 Fc F48 function key
key f49 kf49  Fd F49 function key
key f5 kfb k5  F5 function key
key f50 kf50 Fe F50 function key
key f51 kf61 Ff F51 function key
key f52 kf52 Fg F52 function key
key f53 kf63  Fh  F53 function key
key f54 kf54  Fi  F54 function key
key f55 kf65 Fj F55 function key
key f56 kf56  Fk F56 function key
key f57 kf67  FlI  F57 function key
key f58 kf58 Fm  F58 function key

key 59 kf59  Fn  F59 function key Page 17/59



key f6
key f60
key f61
key f62
key f63
key f7
key f8
key f9
key find
key_help
key home
key ic
key_il
key left

key Il

key mark

key message
key _move
key_next

key npage
key open
key_options
key_ppage
key previous
key_print

key redo
key_reference
key refresh
key replace
key restart
key resume

key_right

kf6 k6 F6 function key
kfe0 Fo F60 function key
kf61 Fp F61 function key
kf62 Fg F62 function key
kf63  Fr F63 function key
kf7 k7  F7 function key
kf8 k8 F8 function key
kf9 k9  F9 function key
kfnd @0 find key
khip %1 help key
khome kh home key
kichl kI insert-character key
kill kA insert-line key
kcubl kI left-arrow key
kil kH lower-left key (home
down)
kmrk %2 mark key
kmsg %3 message key
kmov %4 move key
knxt %5 next key
knp kKN  next-page key
kopn %6 open key
kopt %7 options key
kpp kP  previous-page key
kprv. %8 previous key
kprt %9  print key
krdo %0 redo key
kref &1 reference key
krfr &2 refresh key
krpl &3  replace key
krst &4 restart key
kres &5 resume key

kcufl  kr right-arrow key

Page 18/59



key save

key sbeg
key_scancel
key_scommand
key_scopy

key_ screate

key sdc

key sdl

key_select
key send

key seol

key_sexit
key sf
key_sfind
key_shelp
key shome

key_sic

key_sleft

key smessage
key smove
key snext
key_soptions
key_sprevious
key_sprint

key sr

key sredo
key sreplace

key_sright

ksav &6 save key
kBEG &9 shifted begin key
kCAN &0 shifted cancel key
kCMD *1  shifted command key
kCPY  *2  shifted copy key
kCRT  *3 shifted create key
kDC *4  shifted delete-char?
acter key
kDL *5  shifted delete-line
key
kslt *6 select key
KEND  *7 shifted end key
KEOL *8 shifted clear-to-
end-of-line key
KEXT *9 shifted exit key
kind  kF  scroll-forward key
KFND  *0 shifted find key
kHLP  #1 shifted help key
kHOM  #2 shifted home key
kiC #3  shifted insert-char?
acter key
KLFT  #4  shifted left-arrow
key
kMSG  %a shifted message key
kMOV  %b shifted move key
KNXT  %c shifted next key
kOPT  %d shifted options key
kPRV  %e shifted previous key
kPRT  %f shifted print key
kri kR  scroll-backward key
kRDO %g shifted redo key
kKRPL  %h shifted replace key

KRIT  %i shifted right-arrow

Page 19/59



key srsume

key ssave

key ssuspend

key_ stab

key_ sundo

key suspend

key undo

key up

keypad_local

keypad_xmit

lab_fO

lab_f1

lab_f10

lab_f2

lab_f3

lab_f4

lab_f5

lab_f6

lab_f7

lab_f8

key

kRES

kSAV

kSPD

khts
kUND
kspd
kund
kcuul

rmkx

%j shifted resume key

11 shifted save key

12 shifted suspend key

KT set-tab key

I3 shifted undo key
&7  suspend key
&8 undo key
ku up-arrow key

ke leave 'key?

board_transmit' mode

smkx

ks enter 'key?

board_transmit' mode

IfO 10

label on function

key f0 if not fO

If1 11

label on function

key f1 if not f1

f10 la

label on function

key f10 if not f10

If2 12

label on function

key f2 if not f2

If3 13

label on function

key f3 if not f3

If4 14

label on function

key f4 if not f4

If5 15

label on function

key f5 if not f5

If6 16

label on function

key f6 if not f6

If7 17

label on function

key f7 if not f7

If8 18

label on function

key f8 if not f8

Page 20/59



lab_f9 Ifo 19 label on function

key 9 if not f9

label_format fln Lf label format
label_off rmin - LF  turn off soft labels
label_on smin  LO turn on soft labels
meta_off rmm mo  turn off meta mode
meta_on smm mm  turn on meta mode
(8th-bit on)
micro_column_address mhpa  ZY Like column_address

in micro mode

micro_down mcudl ZZ Like cursor_down in
micro mode

micro_left mcubl Za Like cursor_leftin
micro mode

micro_right mcufl Zb  Like cursor_right in
micro mode

micro_row_address mvpa Zc Like row_address #1

in micro mode

micro_up mcuul Zd Like cursor_upin
micro mode
newline nel nw newline (behave like

cr followed by If)
order_of_pins porder Ze Match software bits
to print-head pins
orig_colors oc oc Set all color pairs
to the original ones
orig_pair op op Set default pair to
its original value
pad_char pad pc padding char (in?
stead of null)
parm_dch dch DC delete #1 characters
(P

parm_delete line dl DL delete #1 lines (P*)

Page 21/59



parm_down_cursor

parm_down_micro

parm_ich

parm_index

parm_insert_line

parm_left_cursor

parm_left_micro

parm_right_cursor

parm_right_micro

parm_rindex

parm_up_cursor

parm_up_micro

pkey_key

pkey local

pkey_ xmit

plab_norm

print_screen

cud DO down #1 lines (P*)

mcud  Zf  Like parm_down_cur?

sor in micro mode
ich IC insert #1 characters
(P*)
indn  SF  scroll forward #1
lines (P)
il AL insert #1 lines (P*)
cub LE move #1 characters
to the left (P)
mcub  Zg Like parm_left_cur?
sor in micro mode
cuf Rl move #1 characters
to the right (P*)
mcuf  Zh  Like parm_right_cur?
sor in micro mode
rin SR scroll back #1 lines
(P)
cuu UP  up#1 lines (P*)
mcuu  Zi Like parm_up_cursor
in micro mode
pfkey pk program function key
#1 to type string #2
pfloc pl program function key
#1 to execute string
#2
pfx px program function key
#1 to transmit
string #2
pin pn program label #1 to
show string #2
mcO ps print contents of

screen

Page 22/59



prtr_non
prtr_off
prtr_on
pulse

quick_dial

remove_clock

repeat_char

req_for_input

reset_1string

reset_2string

reset_3string

reset_file

restore_cursor

row_address

save_cursor

scroll_forward

scroll_reverse

select_char_set

set_attributes

set_background

set_bottom_margin

mc5p  pO  turn on printer for
#1 bytes
mc4 pf  turn off printer
mc5 po turn on printer
pulse PU select pulse dialing
gdial QD dial number #1 with?
out checking
rmclk  RC  remove clock
rep rp repeat char #1 #2
times (P*)
rfi RF  send next input char
(for ptys)
rsl rl reset string
rs2 r2  reset string
rs3 r3 reset string
rf rf  name of reset file
rc rc restore cursor to
position of last
save_cursor
vpa cv  vertical position #1
absolute (P)
sc SC  save current cursor
position (P)
ind sf  scroll text up (P)
ri sr  scroll text down (P)
scs Zj  Select character
set, #1
sgr sa define video at?
tributes #1-#9 (PG9)
setb Sb  Set background color
#1
smgb  Zk Set bottom margin at

current line

Page 23/59



set_bottom_margin_parm  smgbp ZlI  Set bottom margin at

set_clock

set_color_pair

set_foreground

set_left_margin

line #1 or (if smgtp
is not given) #2
lines from bottom
sclk  SC setclock, #1 hrs #2

mins #3 secs

scp  sp Set current color
pair to #1

setf ~ Sf  Set foreground color
#1

smgl ML set left soft margin
at current col?
umn. (ML is not

in BSD termcap).

set_left_margin_parm smglp Zm  Set left (right)

set_right_margin

set_right_margin_parm smgrp Zn  Setright margin at

set_tab

set_top_margin

set_top_margin_parm smgtp Zp  Set top (bottom)

set_window

start_bit_image

start_char_set_def

margin at column #1
smgr MR setright soft mar?
gin at current col?

umn

column #1
hts st setatabin every
row, current columns
smgt Zo Settop margin at

current line

margin at row #1

wind  wi current window is
lines #1-#2 cols
#3-#4

sbim Zq Start printing bit
image graphics

scsd Zr  Start character set

Page 24/59



stop_bit_image

stop_char_set_def

definition #1, with
#2 characters in the
set
rbim  Zs  Stop printing bit
image graphics
rcsd Zt End definition of

character set #1

subscript_characters subcs Zu  List of subscript?

able characters

superscript_characters  supcs Zv  List of superscript?

tab

these_cause_cr

to_status_line

tone

underline_char

up_half_line
user0
userl
user2
user3
user4
users
user6
user7
user8

user9

able characters

ht ta tab to next 8-space

hardware tab stop
docr Zw  Printing any of
these characters
causes CR
tsl ts  move to status line,

column #1

tone TO select touch tone
dialing

uc uc underline char and
move past it
hu hu halfaline up

uo u0  User string #0

ul ul User string #1

u2 u2 User string #2

u3 u3  User string #3

u4d u4  User string #4

u5 u5  User string #5

u6 u6  User string #6

u7 u7  User string #7

u8 u8  User string #8

u9 u9  User string #9

Page 25/59



wait_tone wait WA  wait for dial-tone

xoff_character xoffc  XF  XOFF character
xon_character xonc XN  XON character
zero_motion zerom Zx  No motion for subse?

qguent character
The following string capabilities are present in the SVr4.0 term structure, but were orig?

inally not documented in the man page.

Variable Cap- TCap  Description
String name Code
alt_scancode_esc scesa S8 Alternate escape

for scancode emu?
lation
bit_image_carriage_return bicr Yv  Move to beginning
of same row
bit_image_newline binel Zz Move to next row
of the bit image
bit_image_repeat birep Xy Repeat bitimage
cell #1 #2 times
char_set_names csnm Zy Produce #1'th item
from list of char?
acter set names
code_set_init csin ci Init sequence for
multiple codesets
color_names colornm Yw  Give name for
color #1
define_bit_image_region defbi  Yx Define rectangular
bit image region
device_type devt dv Indicate lan?
guage/codeset sup?
port
display_pc_char dispc S1 Display PC charac?
ter #1

end_bit_image_region endbi Yy End a bit-image Page 26/59



enter_pc_charset_mode

enter_scancode_mode

exit_pc_charset_mode

exit_scancode_mode

get_mouse g

region
smpch S22  Enter PC character
display mode

smsc S4  Enter PC scancode
mode

rmpch ~ S3  Exit PC character
display mode

rmsc S5  Exit PC scancode
mode

etm Gm  Curses should get

button events, pa?

rameter #1 not

documented.

key _mouse kmous Km Mouse event has
occurred

mouse_info minfo  Mi  Mouse status in?
formation

pc_term_options

pctrm  S6 PC terminal op?

tions

pkey_plab pfxl xI  Program function

req_mouse_pos

scancode_escape

set0_des_seq

setl des_seq

set2_des_seq

set3 _des_seq

set_a_ background

key #1 to type
string #2 and show
string #3
reqmp RQ Request mouse po?
sition
scesc S7 Escape for scan?
code emulation
sOds sO  Shift to codeset 0
(EUC set 0, ASCII)
slds sl  Shift to codeset 1
s2ds s2  Shift to codeset 2
s3ds s3  Shift to codeset 3

setab AB Set background

Page 27/59



color to #1, using
ANSI escape
set_a_ foreground setaf AF  Set foreground

color to #1, using

ANSI escape
set_color_band setcolor Yz  Change to ribbon
color #1
set_Ir_margin smglr ML  Set both left and

right margins to
#1, #2. (ML is

not in BSD term?

cap).

set_page_length slines YZ Set page length to
#1 lines

set_tb_margin smgtb  MT  Sets both top and

bottom margins to
#1, #2
The XSI Curses standard added these hardcopy capabilities. They were used in some
post-4.1 versions of System V curses, e.g., Solaris 2.5 and IRIX 6.x. Except for YI, the
ncurses termcap names for them are invented. According to the XSI Curses standard, they
have no termcap names. If your compiled terminfo entries use these, they may not be bi?
nary-compatible with System V terminfo entries after SVr4.1; beware!
Variable Cap- TCap Description
String name  Code
enter_horizontal_hl_mode ehhim Xh Enter horizontal

highlight mode

enter_left_hl_mode elhnim Xl  Enter left highlight
mode

enter_low_hl_mode elohnim Xo Enter low highlight
mode

enter_right_hl_mode erhim  Xr  Enter right high?
light mode

enter_top_hl_mode ethim Xt Enter top highlight Page 28/59



mode
enter_vertical hl_mode evhim Xv Enter vertical high?

light mode
set_a_attributes sgrl  sA Define second set of

video attributes

#1-#6
set_pglen_inch slength YI  Set page length to

#1 hundredth of an

inch (some implemen?

tations use sL for

termcap).
User-Defined Capabilities
The preceding section listed the predefined capabilities. They deal with some special
features for terminals no longer (or possibly never) produced. Occasionally there are
special features of newer terminals which are awkward or impossible to represent by
reusing the predefined capabilities.
ncurses addresses this limitation by allowing user-defined capabilities. The tic and in?
focmp programs provide the -x option for this purpose. When -x is set, tic treats unknown
capabilities as user-defined. That is, if tic encounters a capability name which it does

not recognize, it infers its type (boolean, number or string) from the syntax and makes an

extended table entry for that capability. The use_extended _names(3X) function makes this

information conditionally available to applications. The ncurses library provides the

data leaving most of the behavior to applications:

? User-defined capability strings whose name begins with ?k? are treated as function
keys.

? The types (boolean, number, string) determined by tic can be inferred by successful
calls on tigetflag, etc.

? If the capability name happens to be two characters, the capability is also available
through the termcap interface.

While termcap is said to be extensible because it does not use a predefined set of capa?

bilities, in practice it has been limited to the capabilities defined by terminfo imple?

mentations. As a rule, user-defined capabilities intended for use by termcap applications

should be limited to booleans and numbers to avoid running past the 1023 byte limit as?

Page 29/59



sumed by termcap implementations and their applications. In particular, providing ex?
tended sets of function keys (past the 60 numbered keys and the handful of special named
keys) is best done using the longer names available using terminfo.
A Sample Entry
The following entry, describing an ANSI-standard terminal, is representative of what a
terminfo entry for a modern terminal typically looks like.
ansilansi/pc-term compatible with color,
am, mc5i, mir, msgr,
colors#8, cols#80, it#8, lines#24, ncv#3, pairs#64,
acsc=+\020\,\021-\030."Y0\333"\004a\2611\3709\361h\260
\331k\2771\332m\300n\3050~p\304\3041\304s_1\303
u\264v\301w\302x\263y\3632\362{\343|\330}\234~\376,
bel="G, blink=\E[5m, bold=\E[1m, cbt=\E[Z, clear=\E[H\E[J,
cr="M, cub=\E[%p1%dD, cub1=\E[D, cud=\E[%p1%dB, cud1=\E[B,
cuf=\E[%p1%dC, cufl=\E[C, cup=\E[%i%p1%d;%p2%dH,
cuu=\E[%p1%dA, cuul=\E[A, dch=\E[%p1%dP, dch1=\E[P,
dI=\E[%p1%dM, dI1=\E[M, ech=\E[%p1%dX, ed=\E[J, el=\E[K,
el1=\E[1K, home=\E[H, hpa=\E[%i%p1%dG, ht=\E[l, hts=\EH,
ich=\E[%p1%d@, iI=\E[%p1%dL, il1=\E[L, ind="J,
indn=\E[%p1%dS, invis=\E[8m, kbs="H, kcbt=\E[Z, kcub1=\E[D,
kcud1=\E[B, kcufl=\E[C, kcuul=\E[A, khome=\E[H, kich1=\E[L,
mc4=\E[4i, mc5=\E[5i, nel=\\E[S, op=\E[39;49m,
rep=%pl%c\E[%p2%{1}%-%db, rev=\E[7m, rin=\E[%p1%dT,
rmacs=\E[10m, rmpch=\E[10m, rmso=\E[m, rmul=\E[m,
s0ds=\E(B, s1ds=\E)B, s2ds=\E*B, s3ds=\E+B,
setab=\E[4%p1%dm, setaf=\E[3%p1%dm,
sgr=\E[0;10%?%p1%t;7%);
%?%p2%t;4%;
%?%p3%it;7%;
%?%p4%t;5%;
%?%p6%t;1%;
%?%p7%t;8%;

%?%p9%it;11%;m, Page 30/59



sgrO=\E[0;10m, smacs=\E[11m, smpch=\E[11m, smso=\E[7m,
smul=\E[4m, tbc=\E[3g, u6=\E[%i%d;%dR, u7=\E[6n,
u8=\E[?%[;0123456789]c, u9=\E[c, vpa=\E[%i%p1%dd,
Entries may continue onto multiple lines by placing white space at the beginning of each
line except the first. Comments may be included on lines beginning with ?#?. Capabili?
ties in terminfo are of three types:
? Boolean capabilities which indicate that the terminal has some particular feature,
? numeric capabilities giving the size of the terminal or the size of particular delays,
and
? string capabilities, which give a sequence which can be used to perform particular
terminal operations.
Types of Capabilities
All capabilities have names. For instance, the fact that ANSI-standard terminals have au?
tomatic margins (i.e., an automatic return and line-feed when the end of a line is
reached) is indicated by the capability am. Hence the description of ansi includes am.
Numeric capabilities are followed by the character ?#? and then a positive value. Thus
cols, which indicates the number of columns the terminal has, gives the value ?807? for
ansi. Values for numeric capabilities may be specified in decimal, octal or hexadecimal,
using the C programming language conventions (e.g., 255, 0377 and Oxff or OxFF).
Finally, string valued capabilities, such as el (clear to end of line sequence) are given
by the two-character code, an ?=?, and then a string ending at the next following ?,?.
A number of escape sequences are provided in the string valued capabilities for easy en?
coding of characters there:
? Both \E and \e map to an ESCAPE character,
? X maps to a control-x for any appropriate x, and
? the sequences
\n, L\, \b, f, and \s
produce
newline, line-feed, return, tab, backspace, form-feed, and space,
respectively.
X/Open Curses does not say what ?appropriate x? might be. In practice, thatis a print?
able ASCII graphic character. The special case ?"?? is interpreted as DEL (127). In all

other cases, the character value is AND'd with Ox1f, mapping to ASCII control codes in the Page 31/59



range O through 31.

Other escapes include

? \"“for A,

? \\for\,

? \, for comma,

? \:for:,

? and \O for null.

\O will produce \200, which does not terminate a string but behaves as a null charac?
ter on most terminals, providing CS7 is specified. See stty(1).

The reason for this quirk is to maintain binary compatibility of the compiled terminfo
files with other implementations, e.g., the SVr4 systems, which document this. Com?
piled terminfo files use null-terminated strings, with no lengths. Modifying this
would require a new binary format, which would not work with other implementations.

Finally, characters may be given as three octal digits after a \.

A delay in milliseconds may appear anywhere in a string capability, enclosed in $<..>

brackets, as in el=\EK$<5>, and padding characters are supplied by tputs(3X) to provide

this delay.

? The delay must be a number with at most one decimal place of precision; it may be fol?
lowed by suffixes ?*? or ?/? or both.

? A ?*? indicates that the padding required is proportional to the number of lines af?
fected by the operation, and the amount given is the per-affected-unit padding re?
quired. (In the case of insert character, the factor is still the number of lines af?
fected.)

Normally, padding is advisory if the device has the xon capability; it is used for
cost computation but does not trigger delays.

? A ?/? suffix indicates that the padding is mandatory and forces a delay of the given
number of milliseconds even on devices for which xon is present to indicate flow con?
trol.

Sometimes individual capabilities must be commented out. To do this, put a period before

the capability name. For example, see the second ind in the example above.

Fetching Compiled Descriptions
The ncurses library searches for terminal descriptions in several places. It uses only

the first description found. The library has a compiled-in list of places to search which Page 32/59



can be overridden by environment variables. Before starting to search, ncurses eliminates

duplicates in its search list.

? If the environment variable TERMINFO is set, it is interpreted as the pathname of a
directory containing the compiled description you are working on. Only that directory
is searched.

? If TERMINFO is not set, ncurses will instead look in the directory $HOME/.terminfo for
a compiled description.

? Next, if the environment variable TERMINFO_DIRS is set, ncurses will interpret the
contents of that variable as a list of colon-separated directories (or database files)
to be searched.

An empty directory name (i.e., if the variable begins or ends with a colon, or con?
tains adjacent colons) is interpreted as the system location /etc/terminfo.

? Finally, ncurses searches these compiled-in locations:

? alist of directories (no default value), and
? the system terminfo directory, /etc/terminfo (the compiled-in default).
Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to pre?

pare a terminal description is by imitating the description of a similar terminal in ter?

minfo and to build up a description gradually, using partial descriptions with vi or some
other screen-oriented program to check that they are correct. Be aware that a very un?
usual terminal may expose deficiencies in the ability of the terminfo file to describe it

or bugs in the screen-handling code of the test program.

To get the padding for insert line right (if the terminal manufacturer did not document

it) a severe test is to edit a large file at 9600 baud, delete 16 or so lines from the

middle of the screen, then hit the ?u? key several times quickly. If the terminal messes

up, more padding is usually needed. A similar test can be used for insert character.
Basic Capabilities

The number of columns on each line for the terminal is given by the cols numeric capabil?

ity. If the terminal is a CRT, then the number of lines on the screen is given by the

lines capability. If the terminal wraps around to the beginning of the next line when it
reaches the right margin, then it should have the am capability. If the terminal can
clear its screen, leaving the cursor in the home position, then this is given by the clear

string capability. If the terminal overstrikes (rather than clearing a position when a Page 33/59



character is struck over) then it should have the os capability. If the terminal is a
printing terminal, with no soft copy unit, give it both hc and os. (os applies to storage
scope terminals, such as TEKTRONIX 4010 series, as well as hard copy and APL terminals.)
If there is a code to move the cursor to the left edge of the current row, give this as

cr. (Normally this will be carriage return, control/M.) If there is a code to produce an
audible signal (bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left (such as backspace) that
capability should be given as cubl. Similarly, codes to move to the right, up, and down
should be given as cufl, cuul, and cudl. These local cursor motions should not alter the
text they pass over, for example, you would not normally use ?cufl= ? because the space
would erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo are unde?
fined at the left and top edges of a CRT terminal. Programs should never attempt to
backspace around the left edge, unless bw is given, and never attempt to go up locally off
the top. In order to scroll text up, a program will go to the bottom left corner of the
screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri
(reverse index) string. The strings ind and ri are undefined when not on their respective
corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin which have the same se?
mantics as ind and ri except that they take one parameter, and scroll that many lines.
They are also undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when
text is output, but this does not necessarily apply to a cufl from the last column. The
only local motion which is defined from the left edge is if bw is given, then a cubl from
the left edge will move to the right edge of the previous row. If bwis not given, the
effect is undefined. This is useful for drawing a box around the edge of the screen, for
example. If the terminal has switch selectable automatic margins, the terminfo file usu?
ally assumes that this is on; i.e., am. If the terminal has a command which moves to the
first column of the next line, that command can be given as nel (newline). It does not
matter if the command clears the remainder of the current line, so if the terminal has no
cr and If it may still be possible to craft a working nel out of one or both of them.

These capabilities suffice to describe hard-copy and ?glass-tty? terminals. Thus the Page 34/59



model 33 teletype is described as
33|tty33|tty|model 33 teletype,
bel="G, cols#72, cr="M, cud1="J, hc, ind="J, os,
while the Lear Siegler ADM-3 is described as
adm3|3|lsi adm3,
am, bel="G, clear="Z, cols#80, cr="M, cub1="H, cud1="J,
ind="J, lines#24,
Parameterized Strings
Cursor addressing and other strings requiring parameters in the terminal are described by
a parameterized string capability, with printf-like escapes such as %x in it. For exam?
ple, to address the cursor, the cup capability is given, using two parameters: the row and
column to address to. (Rows and columns are numbered from zero and refer to the physical
screen visible to the user, not to any unseen memory.) If the terminal has memory rela?
tive cursor addressing, that can be indicated by mrcup.
The parameter mechanism uses a stack and special % codes to manipulate it. Typically a
sequence will push one of the parameters onto the stack and then print it in some format.
Print (e.g., ?%d?) is a special case. Other operations, including ?%t? pop their operand
from the stack. Itis noted that more complex operations are often necessary, e.g., in
the sgr string.
The % encodings have the following meanings:
%% outputs ?%7?
% [[:]flags][width[.precision]][doxXs]
as in printf(3), flags are [-+#] and space. Use a ?:? to allow the next character to
be a ?-? flag, avoiding interpreting ?%-? as an operator.
%c print pop() like %c in printf
%s print pop() like %s in printf
%p[1-9]
push i'th parameter
%P[a-z]
set dynamic variable [a-z] to pop()
%g[a-z]/
get dynamic variable [a-z] and push it

%P[A-Z] Page 35/59



set static variable [a-z] to pop()
%g[A-Z]

get static variable [a-z] and push it

The terms ?static? and ?dynamic? are misleading. Historically, these are simply two

different sets of variables, whose values are not reset between calls to tparm(3X).

However, that fact is not documented in other implementations. Relying on it will

adversely impact portability to other implementations:

? SVr2 curses supported dynamic variables. Those are set only by a %P operator. A
%g for a given variable without first setting it with %P will give unpredictable
results, because dynamic variables are an uninitialized local array on the stack
in the tparm function.

? SVr3.2 curses supported static variables. Those are an array in the TERMINAL
structure (declared in term.h), and are zeroed automatically when the setupterm
function allocates the data.

? SVr4 curses made no further improvements to the dynamic/static variable feature.

? Solaris XPG4 curses does not distinguish between dynamic and static variables.
They are the same. Like SVr4 curses, XPG4 curses does not initialize these ex?
plicitly.

? Before version 6.3, ncurses stores both dynamic and static variables in persis?
tent storage, initialized to zeros.

? Beginning with version 6.3, ncurses stores static and dynamic variables in the
same manner as SVr4. Unlike other implementations, ncurses zeros dynamic vari?
ables before the first %g or %P operator.

%'c' char constant ¢
%{nn}
integer constant nn
%I push strlen(pop)
%+, %-, %*, %/, %om
arithmetic (%om is mod): push(pop() op pop())
%&, %|, %"
bit operations (AND, OR and exclusive-OR): push(pop() op pop())
%=, %>, %<

logical operations: push(pop() op pop())

Page 36/59



%A, %0

logical AND and OR operations (for conditionals)
%!, %~

unary operations (logical and bit complement): push(op pop())
%i add 1 to first two parameters (for ANSI terminals)
%? expr %t thenpart %e elsepart %;

This forms an if-then-else. The %e elsepart is optional. Usually the %? expr part

pushes a value onto the stack, and %t pops it from the stack, testing if it is non?

zero (true). Ifitis zero (false), control passes to the %e (else) part.

It is possible to form else-if's a la Algol 68:

%7? cl %t b1l %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %;

where ci are conditions, bi are bodies.

Use the -f option of tic or infocmp to see the structure of if-then-else's. Some

strings, e.g., sgr can be very complicated when written on one line. The -f option

splits the string into lines with the parts indented.
Binary operations are in postfix form with the operands in the usual order. That is, to
get x-5 one would use ?%gx%{5}%-?. %P and %g variables are persistent across escape-
string evaluations.
Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&al2c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here,
and that the row and column are printed as two digits. Thus its cup capability is
2cup=6\E&%p2%2dc%p1%2dY?.
The Microterm ACT-IV needs the current row and column sent preceded by a ~T, with the row
and column simply encoded in binary, ?cup="T%p1%c%p2%c?. Terminals which use ?%c? need to
be able to backspace the cursor (cubl), and to move the cursor up one line on the screen
(cuul). This is necessary because it is not always safe to transmit \n ~D and \r, as the
system may change or discard them. (The library routines dealing with terminfo set tty
modes so that tabs are never expanded, so \t is safe to send. This turns out to be essen?
tial for the Ann Arbor 4080.)
A final example is the LSI ADM-3a, which uses row and column offset by a blank character,
thus ?cup=\E=%p1%' '%+%c%p2%' '%+%c?. After sending ?\E=?, this pushes the first parame?
ter, pushes the ASCII value for a space (32), adds them (pushing the sum on the stack in

place of the two previous values) and outputs that value as a character. Then the same is

Page 37/59



done for the second parameter. More complex arithmetic is possible using the stack.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner of screen)

then this can be given as home; similarly a fast way of getting to the lower left-hand
corner can be given as lI; this may involve going up with cuul from the home position, but

a program should never do this itself (unless Il does) because it can make no assumption
about the effect of moving up from the home position. Note that the home position is the
same as addressing to (0,0): to the top left corner of the screen, not of memory. (Thus,

the \EH sequence on HP terminals cannot be used for home.)

If the terminal has row or column absolute cursor addressing, these can be given as single
parameter capabilities hpa (horizontal position absolute) and vpa (vertical position abso?
lute). Sometimes these are shorter than the more general two parameter sequence (as with
the hp2645) and can be used in preference to cup. If there are parameterized local mo?
tions (e.g., move n spaces to the right) these can be given as cud, cub, cuf, and cuu with

a single parameter indicating how many spaces to move. These are primarily useful if the
terminal does not have cup, such as the TEKTRONIX 4025.

If the terminal needs to be in a special mode when running a program that uses these capa?
bilities, the codes to enter and exit this mode can be given as smcup and rmcup. This
arises, for example, from terminals like the Concept with more than one page of memory.
If the terminal has only memory relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the terminal for cursor address?
ing to work properly. This is also used for the TEKTRONIX 4025, where smcup sets the com?
mand character to be the one used by terminfo. If the smcup sequence will not restore the
screen after an rmcup sequence is output (to the state prior to outputting rmcup), specify

nrrmec.

Margins

SVr4 (and X/Open Curses) list several string capabilities for setting margins. Two were
intended for use with terminals, and another six were intended for use with printers.
? The two terminal capabilities assume that the terminal may have the capability of set?
ting the left and/or right margin at the current cursor column position.
? The printer capabilities assume that the printer may have two types of capability:
? the ability to set a top and/or bottom margin using the current line position, and

? parameterized capabilities for setting the top, bottom, left, right margins given

Page 38/59



the number of rows or columns.

In practice, the categorization into ?terminal? and ?printer? is not suitable:

? The AT&T SVr4 terminal database uses smgl four times, for AT&T hardware.
Three of the four are printers. They lack the ability to set left/right margins by
specifying the column.

? Other (non-AT&T) terminals may support margins but using different assumptions from
AT&T.
For instance, the DEC VT420 supports left/right margins, but only using a column pa?
rameter. As an added complication, the VT420 uses two settings to fully enable
left/right margins (left/right margin mode, and origin mode). The former enables the
margins, which causes printed text to wrap within margins, but the latter is needed to
prevent cursor-addressing outside those margins.

? Both DEC VT420 left/right margins are set with a single control sequence. If either
is omitted, the corresponding margin is set to the left or right edge of the display
(rather than leaving the margin unmodified).

These are the margin-related capabilities:

Name Description

P07 7??7?7?72?7?7???72?77???7?7?77?7?7?7?7?77?7

smgl Set left margin at current column

smgr Set right margin at current column

smgb Set bottom margin at current line

smgt Set top margin at current line

smgbp  Set bottom margin at line N

smglp  Set left margin at column N

smgrp  Set right margin at column N

smgtp  Set top margin at line N

smglr  Set both left and right margins to L and R

smgtb  Set both top and bottom margins to T and B
When writing an application that uses these string capabilities, the pairs should be first
checked to see if each capability in the pair is set or only one is set:
? If both smglp and smgrp are set, each is used with a single argument, N, that gives

the column number of the left and right margin, respectively.

? If both smgtp and smgbp are set, each is used to set the top and bottom margin, re? Page 39/59



spectively:

? smgtp is used with a single argument, N, the line number of the top margin.

? smgbp is used with two arguments, N and M, that give the line number of the bottom
margin, the first counting from the top of the page and the second counting from
the bottom. This accommodates the two styles of specifying the bottom margin in
different manufacturers' printers.

When designing a terminfo entry for a printer that has a settable bottom margin, only

the first or second argument should be used, depending on the printer. When develop?

ing an application that uses smgbp to set the bottom margin, both arguments must be
given.

Conversely, when only one capability in the pair is set:

? If only one of smglp and smgrp is set, then it is used with two arguments, the column
number of the left and right margins, in that order.

? Likewise, if only one of smgtp and smgbp is set, then it is used with two arguments
that give the top and bottom margins, in that order, counting from the top of the
page.

When designing a terminfo entry for a printer that requires setting both left and

right or top and bottom margins simultaneously, only one capability in the pairs smglp

and smgrp or smgtp and smgbp should be defined, leaving the other unset.

Except for very old terminal descriptions, e.g., those developed for SVr4, the scheme just

described should be considered obsolete. An improved set of capabilities was added late

in the SVr4 releases (smglr and smgtb), which explicitly use two parameters for setting
the left/right or top/bottom margins.

When setting margins, the line- and column-values are zero-based.

The mgc string capability should be defined. Applications such as tabs(1) rely upon this

to reset all margins.

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the

cursor where it is, this should be given as el. If the terminal can clear from the begin?

ning of the line to the current position inclusive, leaving the cursor where it is, this
should be given as ell. If the terminal can clear from the current position to the end of
the display, then this should be given as ed. Ed is only defined from the first column of

a line. (Thus, it can be simulated by a request to delete a large number of lines, if a Page 40/59



true ed is not available.)

Insert/delete line and vertical motions
If the terminal can open a new blank line before the line where the cursor is, this should
be given as il1; this is done only from the first position of a line. The cursor must
then appear on the newly blank line. If the terminal can delete the line which the cursor
is on, then this should be given as dI1; this is done only from the first position on the
line to be deleted. Versions of il1 and dI1 which take a single parameter and insert or
delete that many lines can be given as il and dl.
If the terminal has a settable scrolling region (like the vt100) the command to set this
can be described with the csr capability, which takes two parameters: the top and bottom
lines of the scrolling region. The cursor position is, alas, undefined after using this
command.
It is possible to get the effect of insert or delete line using csr on a properly chosen
region; the sc and rc (save and restore cursor) commands may be useful for ensuring that
your synthesized insert/delete string does not move the cursor. (Note that the
ncurses(3NCURSES) library does this synthesis automatically, so you need not compose in?
sert/delete strings for an entry with csr).
Yet another way to construct insert and delete might be to use a combination of index with
the memory-lock feature found on some terminals (like the HP-700/90 series, which however
also has insert/delete).
Inserting lines at the top or bottom of the screen can also be done using ri or ind on
many terminals without a true insert/delete line, and is often faster even on terminals
with those features.
The boolean non_dest_scroll_region should be set if each scrolling window is effectively a
view port on a screen-sized canvas. To test for this capability, create a scrolling re?
gion in the middle of the screen, write something to the bottom line, move the cursor to
the top of the region, and do ri followed by dI1 or ind. If the data scrolled off the
bottom of the region by the ri re-appears, then scrolling is non-destructive. System V
and XSI Curses expect thatind, ri, indn, and rin will simulate destructive scrolling;
their documentation cautions you not to define csr unless this is true. This curses im?
plementation is more liberal and will do explicit erases after scrolling if ndsrc is de?
fined.

If the terminal has the ability to define a window as part of memory, which all commands Page 41/59



affect, it should be given as the parameterized string wind. The four parameters are the
starting and ending lines in memory and the starting and ending columns in memory, in that
order.
If the terminal can retain display memory above, then the da capability should be given;
if display memory can be retained below, then db should be given. These indicate that
deleting a line or scrolling may bring non-blank lines up from below or that scrolling
back with ri may bring down non-blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to insert/delete character
which can be described using terminfo. The most common insert/delete character operations
affect only the characters on the current line and shift characters off the end of the
line rigidly. Other terminals, such as the Concept 100 and the Perkin EImer Owl, make a
distinction between typed and untyped blanks on the screen, shifting upon an insert or
delete only to an untyped blank on the screen which is either eliminated, or expanded to
two untyped blanks.
You can determine the kind of terminal you have by clearing the screen and then typing
text separated by cursor motions. Type ?abc def? using local cursor motions (not spa?
ces) between the ?abc? and the ?def?. Then position the cursor before the ?abc? and put
the terminal in insert mode. If typing characters causes the rest of the line to shift
rigidly and characters to fall off the end, then your terminal does not distinguish be?
tween blanks and untyped positions. If the ?abc? shifts over to the ?def? which then move
together around the end of the current line and onto the next as you insert, you have the
second type of terminal, and should give the capability in, which stands for ?insert
null?.
While these are two logically separate attributes (one line versus multi-line insert mode,
and special treatment of untyped spaces) we have seen no terminals whose insert mode can?
not be described with the single attribute.
Terminfo can describe both terminals which have an insert mode, and terminals which send a
simple sequence to open a blank position on the current line. Give as smir the sequence
to get into insert mode. Give as rmir the sequence to leave insert mode. Now give as
ichl any sequence needed to be sent just before sending the character to be inserted.
Most terminals with a true insert mode will not give ichl; terminals which send a sequence

to open a screen position should give it here. Page 42/59



If your terminal has both, insert mode is usually preferable to ichl. Technically, you
should not give both unless the terminal actually requires both to be used in combination.
Accordingly, some non-curses applications get confused if both are present; the symptom is
doubled characters in an update using insert. This requirement is now rare; most ich se?
guences do not require previous smir, and most smir insert modes do not require ichl be?
fore each character. Therefore, the new curses actually assumes this is the case and uses
either rmir/smir or ich/ichl as appropriate (but not both). If you have to write an entry
to be used under new curses for a terminal old enough to need both, include the rmir/smir
sequences inichl.
If post insert padding is needed, give this as a number of milliseconds in ip (a string
option). Any other sequence which may need to be sent after an insert of a single charac?
ter may also be given inip. If your terminal needs both to be placed into an ?insert
mode? and a special code to precede each inserted character, then both smir/rmir and ichl
can be given, and both will be used. The ich capability, with one parameter, n, will re?
peat the effects of ichl n times.
If padding is necessary between characters typed while not in insert mode, give this as a
number of milliseconds padding in rmp.
It is occasionally necessary to move around while in insert mode to delete characters on
the same line (e.g., if there is a tab after the insertion position). If your terminal
allows motion while in insert mode you can give the capability mir to speed up inserting
in this case. Omitting mir will affect only speed. Some terminals (notably Datamedia’s)
must not have mir because of the way their insert mode works.
Finally, you can specify dchl to delete a single character, dch with one parameter, n, to
delete n characters, and delete mode by giving smdc and rmdc to enter and exit delete mode
(any mode the terminal needs to be placed in for dchl to work).
A command to erase n characters (equivalent to outputting n blanks without moving the cur?
sor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these can be represented in
a number of different ways. You should choose one display form as standout mode, repre?
senting a good, high contrast, easy-on-the-eyes, format for highlighting error messages
and other attention getters. (If you have a choice, reverse video plus half-bright is

good, or reverse video alone.) The sequences to enter and exit standout mode are given as Page 43/59



smso and rmso, respectively. If the code to change into or out of standout mode leaves
one or even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then xmc
should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul respectively.
If the terminal has a code to underline the current character and move the cursor one
space to the right, such as the Microterm Mime, this can be given as uc.

Other capabilities to enter various highlighting modes include blink (blinking) bold (bold

or extra bright) dim (dim or half-bright) invis (blanking or invisible text) prot (pro?

tected) rev (reverse video) sgrO (turn off all attribute modes) smacs (enter alternate
character set mode) and rmacs (exit alternate character set mode). Turning on any of
these modes singly may or may not turn off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr
(set attributes), taking 9 parameters. Each parameter is either O or nonzero, as the cor?
responding attribute is on or off. The 9 parameters are, in order: standout, underline,
reverse, blink, dim, bold, blank, protect, alternate character set. Not all modes need be
supported by sgr, only those for which corresponding separate attribute commands exist.
For example, the DEC vt220 supports most of the modes:

tparm parameter  attribute escape sequence

none none \E[Om

pl standout \E[0;1;7m

p2 underline \E[0;4m

p3 reverse \E[0;7m

p4 blink \E[0;5m

p5 dim not available

p6 bold \E[0;1m

p7 invis \E[0;8m

p8 protect not used

p9 altcharset O (off) "N (on)

We begin each escape sequence by turning off any existing modes, since there is no quick
way to determine whether they are active. Standout is set up to be the combination of re?
verse and bold. The vt220 terminal has a protect mode, though it is not commonly used in
sgr because it protects characters on the screen from the host's erasures. The altcharset

mode also is different in that it is either O or N, depending on whether it is off or

Page 44/59



on. If all modes are turned on, the resulting sequence is \E[0;1;4;5;7;8m"N.
Some sequences are common to different modes. For example, ;7 is output when either p1 or
p3 is true, that is, if either standout or reverse modes are turned on.

Writing out the above sequences, along with their dependencies yields

sequence when to output  terminfo translation
\E[O always \E[O

1 if p1 or p6 %?%p1%p6%|%ot; 1%;

4 if p2 %?%p2%)|%t;4%;

5 if p4 %7?%p4%]| %t;5%;

)7 if p1 or p3 %?%p1%p3%|%t;7%;

8 if p7 %7?%p7%]|%t;8%:

m always m

N or O if p9 7N, else "O  %?%p9%t"N%e”O%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p1%p6%6|%t; 1%;%?%p2%:t;4%;%?%p4%t;5%;

%7?%p1%p3%]|%t;7%,;%?%p7%:t;8%;m%?%p9%t\016%e\017%:;,

Remember that if you specify sgr, you must also specify sgr0. Also, some implementations
rely on sgr being given if sgr0 is, Not all terminfo entries necessarily have an sgr
string, however. Many terminfo entries are derived from termcap entries which have no sgr
string. The only drawback to adding an sgr string is that termcap also assumes that sgrO
does not exit alternate character set mode.
Terminals with the ?magic cookie? glitch (xmc) deposit special ?cookies? when they receive
mode-setting sequences, which affect the display algorithm rather than having extra bits
for each character. Some terminals, such as the HP 2621, automatically leave standout
mode when they move to a new line or the cursor is addressed. Programs using standout
mode should exit standout mode before moving the cursor or sending a newline, unless the
msgr capability, asserting that it is safe to move in standout mode, is present.
If the terminal has a way of flashing the screen to indicate an error quietly (a bell re?
placement) then this can be given as flash; it must not move the cursor.
If the cursor needs to be made more visible than normal when it is not on the bottom line
(to make, for example, a non-blinking underline into an easier to find block or blinking
underline) give this sequence as cvvis. If there is a way to make the cursor completely

invisible, give that as civis. The capability cnorm should be given which undoes the ef?

Page 45/59



fects of both of these modes.

If your terminal correctly generates underlined characters (with no special codes needed)

even though it does not overstrike, then you should give the capability ul. If a charac?

ter overstriking another leaves both characters on the screen, specify the capability os.

If overstrikes are erasable with a blank, then this should be indicated by giving eo.
Keypad and Function Keys

If the terminal has a keypad that transmits codes when the keys are pressed, this informa?

tion can be given. Note that it is not possible to handle terminals where the keypad only

works in local (this applies, for example, to the unshifted HP 2621 keys). If the keypad

can be set to transmit or not transmit, give these codes as smkx and rmkx. Otherwise the

keypad is assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be

given as kcubl, kcufl, kcuul, kcudl, and khome respectively. If there are function keys

such as f0, f1, ..., f10, the codes they send can be given as kf0, kf1, ..., kf10. If

these keys have labels other than the default fO through f10, the labels can be given as

Ifo, If1, ..., If10.

The codes transmitted by certain other special keys can be given:

? kIl (home down),

? kbs (backspace),

? ktbc (clear all tabs),

? kctab (clear the tab stop in this column),

? kclr (clear screen or erase key),

? kdchl (delete character),

? kdl1 (delete line),

?  krmir (exit insert mode),

? kel (clear to end of line),

? ked (clear to end of screen),

? kichl (insert character or enter insert mode),

? Kkill (insert line),

? knp (next page),

? kpp (previous page),

? kind (scroll forward/down),

?  kri (scroll backward/up), Page 46/59



? khts (set a tab stop in this column).

In addition, if the keypad has a 3 by 3 array of keys including the four arrow keys, the

other five keys can be given as kal, ka3, kb2, kcl, and kc3. These keys are useful when

the effects of a 3 by 3 directional pad are needed.

Strings to program function keys can be given as pfkey, pfloc, and pfx. A string to pro?

gram screen labels should be specified as pIn. Each of these strings takes two parame?

ters: the function key number to program (from O to 10) and the string to program it with.

Function key numbers out of this range may program undefined keys in a terminal dependent

manner. The difference between the capabilities is that pfkey causes pressing the given

key to be the same as the user typing the given string; pfloc causes the string to be exe?
cuted by the terminal in local; and pfx causes the string to be transmitted to the com?
puter.

The capabilities nlab, Iw and Ih define the number of programmable screen labels and their

width and height. If there are commands to turn the labels on and off, give them in smin

and rmin. smin is normally output after one or more pln sequences to make sure that the
change becomes visible.
Tabs and Initialization

A few capabilities are used only for tabs:

? If the terminal has hardware tabs, the command to advance to the next tab stop can be
given as ht (usually control/l).

? A ?back-tab? command which moves leftward to the preceding tab stop can be given as
chbt.

By convention, if the teletype modes indicate that tabs are being expanded by the com?
puter rather than being sent to the terminal, programs should not use ht or cbt even
if they are present, since the user may not have the tab stops properly set.

? If the terminal has hardware tabs which are initially set every n spaces when the ter?
minal is powered up, the numeric parameter it is given, showing the number of spaces
the tabs are set to.

The it capability is normally used by the tset command to determine whether to set the
mode for hardware tab expansion, and whether to set the tab stops. If the terminal
has tab stops that can be saved in non-volatile memory, the terminfo description can
assume that they are properly set.

Other capabilities include Page 47/59



? isl, is2, and is3, initialization strings for the terminal,
? iprog, the path name of a program to be run to initialize the terminal,
? and if, the name of a file containing long initialization strings.
These strings are expected to set the terminal into modes consistent with the rest of the
terminfo description. They are normally sent to the terminal, by the init option of the
tput program, each time the user logs in. They will be printed in the following order:
run the program
iprog
output
is1 and
is2
set the margins using
mgc or
smglp and smgrp or
smgl and smgr
set tabs using
tbc and hts
print the file
if
and finally output
is3.
Most initialization is done with is2. Special terminal modes can be set up without dupli?
cating strings by putting the common sequences in is2 and special cases in isl and is3.
A set of sequences that does a harder reset from a totally unknown state can be given as
rsl, rs2, rf and rs3, analogous to isl , is2 , if and is3 respectively. These strings are
output by reset option of tput, or by the reset program (an alias of tset), which is used
when the terminal gets into a wedged state. Commands are normally placed in rs1, rs2 rs3
and rf only if they produce annoying effects on the screen and are not necessary when log?
ging in. For example, the command to set the vt100 into 80-column mode would normally be
part of is2, but it causes an annoying glitch of the screen and is not normally needed
since the terminal is usually already in 80-column mode.
The reset program writes strings including iprog, etc., in the same order as the init pro?

gram, using rsl, etc., instead of is1, etc. If any of rs1, rs2, rs3, or rf reset capabil? Page 48/59



ity strings are missing, the reset program falls back upon the corresponding initializa?

tion capability string.

If there are commands to set and clear tab stops, they can be given as tbc (clear all tab

stops) and hts (set a tab stop in the current column of every row). If a more complex se?

guence is needed to set the tabs than can be described by this, the sequence can be placed
in is2 or if.

The tput reset command uses the same capability strings as the reset command, although the

two programs (tput and reset) provide different command-line options.

In practice, these terminfo capabilities are not often used in initialization of tabs

(though they are required for the tabs program):

? Almost all hardware terminals (at least those which supported tabs) initialized those
to every eight columns:

The only exception was the AT&T 2300 series, which set tabs to every five columns.

? In particular, developers of the hardware terminals which are commonly used as models
for modern terminal emulators provided documentation demonstrating that eight columns
were the standard.

? Because of this, the terminal initialization programs tput and tset use the thc
(clear_all_tabs) and hts (set_tab) capabilities directly only when the it (init_tabs)
capability is set to a value other than eight.

Delays and Padding

Many older and slower terminals do not support either XON/XOFF or DTR handshaking, includ?

ing hard copy terminals and some very archaic CRTs (including, for example, DEC VT100s).

These may require padding characters after certain cursor motions and screen changes.

If the terminal uses xon/xoff handshaking for flow control (that is, it automatically

emits S back to the host when its input buffers are close to full), set xon. This capa?

bility suppresses the emission of padding. You can also set it for memory-mapped console

devices effectively that do not have a speed limit. Padding information should still be

included so that routines can make better decisions about relative costs, but actual pad
characters will not be transmitted.

If pb (padding baud rate) is given, padding is suppressed at baud rates below the value of

pb. If the entry has no padding baud rate, then whether padding is emitted or not is com?

pletely controlled by xon.

If the terminal requires other than a null (zero) character as a pad, then this can be Page 49/59



given as pad. Only the first character of the pad string is used.

Status Lines
Some terminals have an extra ?status line? which is not normally used by software (and
thus not counted in the terminal's lines capability).
The simplest case is a status line which is cursor-addressable but not part of the main
scrolling region on the screen; the Heathkit H19 has a status line of this kind, as would
a 24-line VT100 with a 23-line scrolling region set up on initialization. This situation
is indicated by the hs capability.
Some terminals with status lines need special sequences to access the status line. These
may be expressed as a string with single parameter tsl which takes the cursor to a given
zero-origin column on the status line. The capability fs| must return to the main-screen
cursor positions before the last tsl. You may need to embed the string values of sc (save
cursor) and rc (restore cursor) in tsl and fsl to accomplish this.
The status line is normally assumed to be the same width as the width of the terminal. If
this is untrue, you can specify it with the numeric capability wsl.
A command to erase or blank the status line may be specified as dsl.
The boolean capability eslok specifies that escape sequences, tabs, etc., work ordinarily
in the status line.
The ncurses implementation does not yet use any of these capabilities. They are docu?
mented here in case they ever become important.

Line Graphics
Many terminals have alternate character sets useful for forms-drawing. Terminfo and
curses have built-in support for most of the drawing characters supported by the VT100,
with some characters from the AT&T 4410v1 added. This alternate character set may be
specified by the acsc capability.

Glyph ACS Ascii acsc acsc

Name Name Default Char Value

QP77 7?7?7?72?7?72?7??7?77?7?7?7?7

arrow pointing right ACS RARROW > + 0x2b

arrow pointing left ACS LARROW < , 0x2c
arrow pointing up ACS UARROW 7 - 0x2d
arrow pointing down ACS DARROW v . 0x2e

solid square block ACS BLOCK # 0 0x30 Page 50/59



diamond ACS_DIAMOND + ) 0x60

checker board (stipple) ACS_CKBOARD : a
degree symbol ACS DEGREE \ f 0x66
plus/minus ACS PLMINUS # g 0x67
board of squares ACS BOARD # h 0x68
lantern symbol ACS_LANTERN # i 0x69

lower right corner ACS_LRCORNER + j Ox6a

upper right corner ACS_URCORNER + k

upper left corner ACS ULCORNER + I 0x6¢
lower left corner ACS_LLCORNER + m 0x6d
large plus or crossover ACS_PLUS + n 0x6e
scan line 1 ACS S1 ~ 0 0Ox6f

scan line 3 ACS _S3 - p 0x70
horizontal line ACS_HLINE - q 0x71
scan line 7 ACS S7 - r 0x72

scan line 9 ACS_S9 _ S 0x73

tee pointing right ACS LTEE + t 0x74

tee pointing left ACS _RTEE + u 0x75

tee pointing up ACS BTEE + % 0x76

tee pointing down ACS_TTEE + w ox77
vertical line ACS_VLINE | X 0x78

less-than-or-equal-to ACS LEQUAL < y 0x79

greater-than-or-equal-to ACS_GEQUAL > z

greek pi ACS_PI * { 0x7b
not-equal ACS NEQUAL ! | 0x7c

UK pound sign ACS_STERLING f } 0x7d
bullet ACS BULLET o ~ 0x7e

A few notes apply to the table itself:

? X/Open Curses incorrectly states that the mapping for lantern is uppercase ?I? al?

though Unix implementations use the lowercase ?i? mapping.

? The DEC VT100 implemented graphics using the alternate character set feature, tempo?

rarily switching modes and sending characters in the range 0x60 (96) to Ox7e (126)

(the acsc Value column in the table).

Page 51/59



? The AT&T terminal added graphics characters outside that range.

Some of the characters within the range do not match the VT100; presumably they were
used in the AT&T terminal: board of squares replaces the VT100 newline symbol, while
lantern symbol replaces the VT100 vertical tab symbol. The other VT100 symbols for
control characters (horizontal tab, carriage return and line-feed) are not (re)used in
curses.

The best way to define a new device's graphics set is to add a column to a copy of this

table for your terminal, giving the character which (when emitted between smacs/rmacs

switches) will be rendered as the corresponding graphic. Then read off the VT100/your
terminal character pairs right to left in sequence; these become the ACSC string.
Color Handling

The curses library functions init_pair and init_color manipulate the color pairs and color

values discussed in this section (see curs_color(3X) for details on these and related

functions).

Most color terminals are either ?Tektronix-like? or ?HP-like?:

? Tektronix-like terminals have a predefined set of N colors (where N is usually 8), and
can set character-cell foreground and background characters independently, mixing them
into N * N color-pairs.

? On HP-like terminals, the user must set each color pair up separately (foreground and
background are not independently settable). Up to M color-pairs may be set up from
2*M different colors. ANSI-compatible terminals are Tektronix-like.

Some basic color capabilities are independent of the color method. The numeric capabili?

ties colors and pairs specify the maximum numbers of colors and color-pairs that can be

displayed simultaneously. The op (original pair) string resets foreground and background
colors to their default values for the terminal. The oc string resets all colors or
color-pairs to their default values for the terminal. Some terminals (including many PC
terminal emulators) erase screen areas with the current background color rather than the
power-up default background; these should have the boolean capability bce.

While the curses library works with color pairs (reflecting the inability of some devices

to set foreground and background colors independently), there are separate capabilities

for setting these features:

? To change the current foreground or background color on a Tektronix-type terminal, use

setaf (set ANSI foreground) and setab (set ANSI background) or setf (set foreground) Page 52/59



and setb (set background). These take one parameter, the color number. The SVr4 doc?

umentation describes only setaf/setab; the XPG4 draft says that "If the terminal sup?

ports ANSI escape sequences to set background and foreground, they should be coded as

setaf and setab, respectively.

? If the terminal supports other escape sequences to set background and foreground, they

should be coded as setf and setb, respectively. The vidputs and the refresh(3X) func?

tions use the setaf and setab capabilities if they are defined.

The setaf/setab and setf/setb capabilities take a single numeric argument each. Argument

values 0-7 of setaf/setab are portably defined as follows (the middle column is the sym?

bolic #define available in the header for the curses or ncurses libraries). The terminal

hardware is free to map these as it likes, but the RGB values indicate normal locations in

color space.

Color #define Value RGB

black COLOR_BLACK 0 0,0,0

red COLOR_RED 1 max,0,0

green COLOR_GREEN 2 0,max,0
yellow COLOR_YELLOW 3 max,max,0
blue COLOR_BLUE 4 0,0,max
magenta COLOR_MAGENTA 5 max,0,max
cyan COLOR_CYAN 6 0,max,max

white  COLOR_WHITE 7  max,max,max

The argument values of setf/setb historically correspond to a different mapping, i.e.,

Color #define Value RGB

black COLOR_BLACK 0 0,0,0

bluer COLOR_BLUE 1 0,0,max

green COLOR_GREEN 2 0,max,0

cyan COLOR_CYAN 3 0,max,max

red COLOR_RED 4 max,0,0
magenta COLOR_MAGENTA 5 max,0,max
yellow COLOR_YELLOW 6 max,max,0

white  COLOR_WHITE 7  max,max,max

It is important to not confuse the two sets of color capabilities; otherwise red/blue will

be interchanged on the display.

Page 53/59



On an HP-like terminal, use scp with a color-pair number parameter to set which color pair

is current.

Some terminals allow the color values to be modified:

? On a Tektronix-like terminal, the capability ccc may be present to indicate that col?
ors can be modified. If so, the initc capability will take a color number (0 to col?
ors - 1)and three more parameters which describe the color. These three parameters
default to being interpreted as RGB (Red, Green, Blue) values. If the boolean capa?
bility hls is present, they are instead as HLS (Hue, Lightness, Saturation) indices.
The ranges are terminal-dependent.

? On an HP-like terminal, initp may give a capability for changing a color-pair value.
It will take seven parameters; a color-pair number (0 to max_pairs - 1), and two
triples describing first background and then foreground colors. These parameters must
be (Red, Green, Blue) or (Hue, Lightness, Saturation) depending on hls.

On some color terminals, colors collide with highlights. You can register these colli?

sions with the ncv capability. This is a bit-mask of attributes not to be used when col?

ors are enabled. The correspondence with the attributes understood by curses is as fol?

lows:
Attribute Bit Decimal  Set by
A_STANDOUT 0 1 sgr
A_UNDERLINE 1 2 sgr
A_REVERSE 2 4 sgr
A_BLINK 3 8 sgr
A_DIM 4 16 sgr
A_BOLD 5 32 sgr
A_INVIS 6 64 sgr
A_PROTECT 7 128 sgr
A_ALTCHARSET 8 256 sgr
A_HORIZONTAL 9 512 sgrl
A _LEFT 10 1024 sgrl
A LOW 11 2048 sgrl
A RIGHT 12 4096 sgrl
A _TOP 13 8192 sgrl
A_VERTICAL 14 16384 sgrl

Page 54/59



A _ITALIC 15 32768 sitm

For example, on many IBM PC consoles, the underline attribute collides with the foreground
color blue and is not available in color mode. These should have an ncv capability of 2.
SVr4 curses does nothing with ncv, ncurses recognizes it and optimizes the output in favor
of colors.

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can be
given as pad. Only the first character of the pad string is used. If the terminal does
not have a pad character, specify npc. Note that ncurses implements the termcap-compati?
ble PC variable; though the application may set this value to something other than a null,
ncurses will test npc first and use napms if the terminal has no pad character.
If the terminal can move up or down half a line, this can be indicated with hu (half-line
up) and hd (half-line down). This is primarily useful for superscripts and subscripts on
hard-copy terminals. If a hard-copy terminal can eject to the next page (form feed), give
this as ff (usually control/L).
If there is a command to repeat a given character a given number of times (to save time
transmitting a large number of identical characters) this can be indicated with the param?
eterized string rep. The first parameter is the character to be repeated and the second
is the number of times to repeat it. Thus, tparm(repeat_char, 'x', 10) is the same as
PXXXXXXXXXX?.
If the terminal has a settable command character, such as the TEKTRONIX 4025, this can be
indicated with cmdch. A prototype command character is chosen which is used in all capa?
bilities. This character is given in the cmdch capability to identify it. The following
convention is supported on some UNIX systems: The environment is to be searched for a CC
variable, and if found, all occurrences of the prototype character are replaced with the
character in the environment variable.
Terminal descriptions that do not represent a specific kind of known terminal, such as
switch, dialup, patch, and network, should include the gn (generic) capability so that
programs can complain that they do not know how to talk to the terminal. (This capability
does not apply to virtual terminal descriptions for which the escape sequences are known.)
If the terminal has a ?meta key? which acts as a shift key, setting the 8th bit of any
character transmitted, this fact can be indicated with km. Otherwise, software will as?

sume that the 8th bit is parity and it will usually be cleared. If strings exist to turn Page 55/59



this ?meta mode? on and off, they can be given as smm and rmm.
If the terminal has more lines of memory than will fit on the screen at once, the number
of lines of memory can be indicated with Im. A value of Im#0 indicates that the number of
lines is not fixed, but that there is still more memory than fits on the screen.
If the terminal is one of those supported by the UNIX virtual terminal protocol, the ter?
minal number can be given as vt.
Media copy strings which control an auxiliary printer connected to the terminal can be
given as mcO: print the contents of the screen, mc4: turn off the printer, and mc5: turn
on the printer. When the printer is on, all text sent to the terminal will be sent to the
printer. It is undefined whether the text is also displayed on the terminal screen when
the printer is on. A variation mc5p takes one parameter, and leaves the printer on for as
many characters as the value of the parameter, then turns the printer off. The parameter
should not exceed 255. All text, including mc4, is transparently passed to the printer
while an mc5p is in effect.

Glitches and Braindamage
Hazeltine terminals, which do not allow ?~? characters to be displayed should indicate hz.
Terminals which ignore a line-feed immediately after an am wrap, such as the Concept and
vt100, should indicate xenl.
If elis required to get rid of standout (instead of merely writing normal text on top of
it), xhp should be given.
Teleray terminals, where tabs turn all characters moved over to blanks, should indicate xt
(destructive tabs). Note: the variable indicating this is nhow ?dest_tabs magic_smso?; in
older versions, it was teleray_glitch. This glitch is also taken to mean that it is not
possible to position the cursor on top of a ?magic cookie?, that to erase standout mode it
is instead necessary to use delete and insert line. The ncurses implementation ignores
this glitch.
The Beehive Superbee, which is unable to correctly transmit the escape or control/C char?
acters, has xsb, indicating that the f1 key is used for escape and f2 for control/C.
(Only certain Superbees have this problem, depending on the ROM.) Note that in older ter?
minfo versions, this capability was called ?beehive_glitch?; it is now ?no_esc_ctl_c?.
Other specific terminal problems may be corrected by adding more capabilities of the form
XX.

Pitfalls of Long Entries Page 56/59



Long terminfo entries are unlikely to be a problem; to date, no entry has even approached
terminfo's 4096-byte string-table maximum. Unfortunately, the termcap translations are
much more strictly limited (to 1023 bytes), thus termcap translations of long terminfo en?
tries can cause problems.
The man pages for 4.3BSD and older versions of tgetent instruct the user to allocate a
1024-byte buffer for the termcap entry. The entry gets null-terminated by the termcap i?
brary, so that makes the maximum safe length for a termcap entry 1k-1 (1023) bytes. De?
pending on what the application and the termcap library being used does, and where in the
termcap file the terminal type that tgetent is searching for is, several bad things can
happen.
Some termcap libraries print a warning message or exit if they find an entry that's longer
than 1023 bytes; others do not; others truncate the entries to 1023 bytes. Some applica?
tion programs allocate more than the recommended 1K for the termcap entry; others do not.
Each termcap entry has two important sizes associated with it: before ?tc? expansion, and
after ?tc? expansion. ?tc? is the capability that tacks on another termcap entry to the
end of the current one, to add on its capabilities. If a termcap entry does not use the
?tc? capability, then of course the two lengths are the same.
The ?before tc expansion? length is the most important one, because it affects more than
just users of that particular terminal. This is the length of the entry as it exists in
[etc/termcap, minus the backslash-newline pairs, which tgetent strips out while reading
it. Some termcap libraries strip off the final newline, too (GNU termcap does not). Now
suppose:
? atermcap entry before expansion is more than 1023 bytes long,
? and the application has only allocated a 1k buffer,
? and the termcap library (like the one in BSD/OS 1.1 and GNU) reads the whole entry
into the buffer, no matter what its length, to see if it is the entry it wants,
? and tgetent is searching for a terminal type that either is the long entry, appears in
the termcap file after the long entry, or does not appear in the file at all (so that
tgetent has to search the whole termcap file).
Then tgetent will overwrite memory, perhaps its stack, and probably core dump the program.
Programs like telnet are particularly vulnerable; modern telnets pass along values like
the terminal type automatically. The results are almost as undesirable with a termcap li?

brary, like SunOS 4.1.3 and Ultrix 4.4, that prints warning messages when it reads an Page 57/59



overly long termcap entry. If a termcap library truncates long entries, like OSF/1 3.0,
it is immune to dying here but will return incorrect data for the terminal.
The ?after tc expansion? length will have a similar effect to the above, but only for peo?
ple who actually set TERM to that terminal type, since tgetent only does ?tc? expansion
once it is found the terminal type it was looking for, not while searching.
In summary, a termcap entry that is longer than 1023 bytes can cause, on various combina?
tions of termcap libraries and applications, a core dump, warnings, or incorrect opera?
tion. If it is too long even before ?tc? expansion, it will have this effect even for
users of some other terminal types and users whose TERM variable does not have a termcap
entry.
When in -C (translate to termcap) mode, the ncurses implementation of tic(1) issues warn?
ing messages when the pre-tc length of a termcap translation is too long. The -c (check)
option also checks resolved (after tc expansion) lengths.
Binary Compatibility

It is not wise to count on portability of binary terminfo entries between commercial UNIX
versions. The problem is that there are at least two versions of terminfo (under HP-UX
and AIX) which diverged from System V terminfo after SVrl, and have added extension capa?
bilities to the string table that (in the binary format) collide with System V and XSI
Curses extensions.

EXTENSIONS
Searching for terminal descriptions in $SHOME/.terminfo and TERMINFO_DIRS is not supported
by older implementations.
Some SVr4 curses implementations, and all previous to SVr4, do not interpret the %A and %0
operators in parameter strings.
SVr4/XPG4 do not specify whether msgr licenses movement while in an alternate-character-
set mode (such modes may, among other things, map CR and NL to characters that do not
trigger local motions). The ncurses implementation ignores msgr in ALTCHARSET mode. This
raises the possibility that an XPG4 implementation making the opposite interpretation may
need terminfo entries made for ncurses to have msgr turned off.
The ncurses library handles insert-character and insert-character modes in a slightly non-
standard way to get better update efficiency. See the Insert/Delete Character subsection
above.

The parameter substitutions for set_clock and display_clock are not documented in SVr4 or Page 58/59



the XSI Curses standard. They are deduced from the documentation for the AT&T 505 termi?
nal.
Be careful assigning the kmous capability. The ncurses library wants to interpret it as
KEY_MOUSE, for use by terminals and emulators like xterm that can return mouse-tracking
information in the keyboard-input stream.
X/Open Curses does not mention italics. Portable applications must assume that numeric
capabilities are signed 16-bit values. This includes the no_color_video (ncv) capability.
The 32768 mask value used for italics with ncv can be confused with an absent or cancelled
ncv. If italics should work with colors, then the ncv value must be specified, even if it
is zero.
Different commercial ports of terminfo and curses support different subsets of the XSI
Curses standard and (in some cases) different extension sets. Here is a summary, accurate
as of October 1995:
? SVR4, Solaris, ncurses -- These support all SVr4 capabilities.
? SGI -- Supports the SVr4 set, adds one undocumented extended string capability
(set_pglen).
? SVrl, Ultrix -- These support a restricted subset of terminfo capabilities. The bool?
eans end with xon_xoff; the numerics with width_status_line; and the strings with
prtr_non.
? HP/UX -- Supports the SVrl subset, plus the SVr[234] numerics num_labels, la?
bel_height, label_width, plus function keys 11 through 63, plus plab_norm, label_on,
and label_off, plus some incompatible extensions in the string table.
? AIX -- Supports the SVrl subset, plus function keys 11 through 63, plus a number of
incompatible string table extensions.
? OSF -- Supports both the SVr4 set and the AlX extensions.
FILES
/etclterminfo/?/* files containing terminal descriptions
SEE ALSO
infocmp(1), tabs(l), tic(l), ncurses(3NCURSES), color(3NCURSES), curses_vari?
ables(3NCURSES), printf(3), terminfo_variables(3NCURSES). term(5). user_caps(5).
AUTHORS
Zeyd M. Ben-Halim, Eric S. Raymond, Thomas E. Dickey. Based on pcurses by Pavel Curtis.

terminfo(5) Page 59/59



