
Rocky Enterprise Linux 9.2 Manual Pages on command 'tfind.3'

$ man tfind.3

TSEARCH(3) Linux Programmer's Manual TSEARCH(3)

NAME

 tsearch, tfind, tdelete, twalk, tdestroy - manage a binary search tree

SYNOPSIS

 #include <search.h>

 typedef enum { preorder, postorder, endorder, leaf } VISIT;

 void *tsearch(const void *key, void **rootp,

 int (*compar)(const void *, const void *));

 void *tfind(const void *key, void *const *rootp,

 int (*compar)(const void *, const void *));

 void *tdelete(const void *key, void **rootp,

 int (*compar)(const void *, const void *));

 void twalk(const void *root,

 void (*action)(const void *nodep, VISIT which,

 int depth));

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <search.h>

 void twalk_r(const void *root,

 void (*action)(const void *nodep, VISIT which,

 void *closure),

 void *closure);

 void tdestroy(void *root, void (*free_node)(void *nodep));

DESCRIPTION Page 1/6

 tsearch(), tfind(), twalk(), and tdelete() manage a binary search tree. They are general?

 ized from Knuth (6.2.2) Algorithm T. The first field in each node of the tree is a

 pointer to the corresponding data item. (The calling program must store the actual data.)

 compar points to a comparison routine, which takes pointers to two items. It should re?

 turn an integer which is negative, zero, or positive, depending on whether the first item

 is less than, equal to, or greater than the second.

 tsearch() searches the tree for an item. key points to the item to be searched for.

 rootp points to a variable which points to the root of the tree. If the tree is empty,

 then the variable that rootp points to should be set to NULL. If the item is found in the

 tree, then tsearch() returns a pointer to the corresponding tree node. (In other words,

 tsearch() returns a pointer to a pointer to the data item.) If the item is not found,

 then tsearch() adds it, and returns a pointer to the corresponding tree node.

 tfind() is like tsearch(), except that if the item is not found, then tfind() returns

 NULL.

 tdelete() deletes an item from the tree. Its arguments are the same as for tsearch().

 twalk() performs depth-first, left-to-right traversal of a binary tree. root points to

 the starting node for the traversal. If that node is not the root, then only part of the

 tree will be visited. twalk() calls the user function action each time a node is visited

 (that is, three times for an internal node, and once for a leaf). action, in turn, takes

 three arguments. The first argument is a pointer to the node being visited. The struc?

 ture of the node is unspecified, but it is possible to cast the pointer to a pointer-to-

 pointer-to-element in order to access the element stored within the node. The application

 must not modify the structure pointed to by this argument. The second argument is an in?

 teger which takes one of the values preorder, postorder, or endorder depending on whether

 this is the first, second, or third visit to the internal node, or the value leaf if this

 is the single visit to a leaf node. (These symbols are defined in <search.h>.) The third

 argument is the depth of the node; the root node has depth zero.

 (More commonly, preorder, postorder, and endorder are known as preorder, inorder, and pos?

 torder: before visiting the children, after the first and before the second, and after

 visiting the children. Thus, the choice of name postorder is rather confusing.)

 twalk_r() is similar to twalk(), but instead of the depth argument, the closure argument

 pointer is passed to each invocation of the action callback, unchanged. This pointer can

 be used to pass information to and from the callback function in a thread-safe fashion, Page 2/6

 without resorting to global variables.

 tdestroy() removes the whole tree pointed to by root, freeing all resources allocated by

 the tsearch() function. For the data in each tree node the function free_node is called.

 The pointer to the data is passed as the argument to the function. If no such work is

 necessary, free_node must point to a function doing nothing.

RETURN VALUE

 tsearch() returns a pointer to a matching node in the tree, or to the newly added node, or

 NULL if there was insufficient memory to add the item. tfind() returns a pointer to the

 node, or NULL if no match is found. If there are multiple items that match the key, the

 item whose node is returned is unspecified.

 tdelete() returns a pointer to the parent of the node deleted, or NULL if the item was not

 found. If the deleted node was the root node, tdelete() returns a dangling pointer that

 must not be accessed.

 tsearch(), tfind(), and tdelete() also return NULL if rootp was NULL on entry.

VERSIONS

 twalk_r() is available in glibc since version 2.30.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?tsearch(), tfind(), ? Thread safety ? MT-Safe race:rootp ?

 ?tdelete() ? ? ?

 ???

 ?twalk() ? Thread safety ? MT-Safe race:root ?

 ???

 ?twalk_r() ? Thread safety ? MT-Safe race:root ?

 ???

 ?tdestroy() ? Thread safety ? MT-Safe ?

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4. The functions tdestroy() and twalk_r() are GNU exten?

 sions. Page 3/6

NOTES

 twalk() takes a pointer to the root, while the other functions take a pointer to a vari?

 able which points to the root.

 tdelete() frees the memory required for the node in the tree. The user is responsible for

 freeing the memory for the corresponding data.

 The example program depends on the fact that twalk() makes no further reference to a node

 after calling the user function with argument "endorder" or "leaf". This works with the

 GNU library implementation, but is not in the System V documentation.

EXAMPLES

 The following program inserts twelve random numbers into a binary tree, where duplicate

 numbers are collapsed, then prints the numbers in order.

 #define _GNU_SOURCE /* Expose declaration of tdestroy() */

 #include <search.h>

 #include <stddef.h>

 #include <stdlib.h>

 #include <stdio.h>

 #include <time.h>

 static void *root = NULL;

 static void *

 xmalloc(size_t n)

 {

 void *p;

 p = malloc(n);

 if (p)

 return p;

 fprintf(stderr, "insufficient memory\n");

 exit(EXIT_FAILURE);

 }

 static int

 compare(const void *pa, const void *pb)

 {

 if (*(int *) pa < *(int *) pb)

 return -1; Page 4/6

 if (*(int *) pa > *(int *) pb)

 return 1;

 return 0;

 }

 static void

 action(const void *nodep, VISIT which, int depth)

 {

 int *datap;

 switch (which) {

 case preorder:

 break;

 case postorder:

 datap = *(int **) nodep;

 printf("%6d\n", *datap);

 break;

 case endorder:

 break;

 case leaf:

 datap = *(int **) nodep;

 printf("%6d\n", *datap);

 break;

 }

 }

 int

 main(void)

 {

 int **val;

 srand(time(NULL));

 for (int i = 0; i < 12; i++) {

 int *ptr = xmalloc(sizeof(*ptr));

 *ptr = rand() & 0xff;

 val = tsearch(ptr, &root, compare);

 if (val == NULL) Page 5/6

 exit(EXIT_FAILURE);

 else if (*val != ptr)

 free(ptr);

 }

 twalk(root, action);

 tdestroy(root, free);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 bsearch(3), hsearch(3), lsearch(3), qsort(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 TSEARCH(3)

Page 6/6

