
Rocky Enterprise Linux 9.2 Manual Pages on command 'ufw-framework.8'

$ man ufw-framework.8

UFW FRAMEWORK(8) September 2021 UFW FRAMEWORK(8)

NAME

 ufw-framework - using the ufw framework

DESCRIPTION

 ufw provides both a command line interface and a framework for managing a netfilter fire?

 wall. While the ufw command provides an easy to use interface for managing a firewall, the

 ufw framework provides the administrator methods to customize default behavior and add

 rules not supported by the command line tool. In this way, ufw can take full advantage of

 Linux netfilter's power and flexibility.

OVERVIEW

 The framework provides boot time initialization, rules files for adding custom rules, a

 method for loading netfilter modules, configuration of kernel parameters and configuration

 of IPv6. The framework consists of the following files:

 /lib/ufw/ufw-init

 initialization script

 /etc/ufw/before.init

 initialization customization script run before ufw is initialized

 /etc/ufw/after.init

 initialization customization script run after ufw is initialized

 /etc/ufw/before[6].rules

 rules file containing rules evaluated before UI added rules

 /etc/ufw/user[6].rules

 rules file containing UI added rules (managed with the ufw command) Page 1/7

 /etc/ufw/after[6].rules

 rules file containing rules evaluated after UI added rules

 /etc/default/ufw

 high level configuration

 /etc/ufw/sysctl.conf

 kernel network tunables

 /etc/ufw/ufw.conf

 additional high level configuration

BOOT INITIALIZATION

 ufw is started on boot with /lib/ufw/ufw-init. This script is a standard SysV style

 initscript used by the ufw command and should not be modified. The /etc/before.init and

 /etc/after.init scripts may be used to perform any additional firewall configuration that

 is not yet supported in ufw itself and if they exist and are executable, ufw-init will ex?

 ecute these scripts. ufw-init will exit with error if either of these scripts exit with

 error. ufw-init supports the following arguments:

 start: loads the firewall

 stop: unloads the firewall

 restart:

 reloads the firewall

 force-reload:

 same as restart

 status:

 basic status of the firewall

 force-stop:

 same as stop, except does not check if the firewall is already loaded

 flush-all:

 flushes the built-in chains, deletes all non-built-in chains and resets the policy

 to ACCEPT

 ufw-init will call before.init and after.init with start, stop, status and flush-all, but

 typically, if used, these scripts need only implement start and stop.

 ufw uses many user-defined chains in addition to the built-in iptables chains. If MAN?

 AGE_BUILTINS in /etc/default/ufw is set to 'yes', on stop and reload the built-in chains

 are flushed. If it is set to 'no', on stop and reload the ufw secondary chains are removed Page 2/7

 and the ufw primary chains are flushed. In addition to flushing the ufw specific chains,

 it keeps the primary chains in the same order with respect to any other user-defined

 chains that may have been added. This allows for ufw to interoperate with other software

 that may manage their own firewall rules.

 To ensure your firewall is loading on boot, you must integrate this script into the boot

 process. Consult your distribution's documentation for the proper way to modify your boot

 process if ufw is not already integrated.

RULES FILES

 ufw is in part a front-end for iptables-restore, with its rules saved in /etc/ufw/be?

 fore.rules, /etc/ufw/after.rules and /etc/ufw/user.rules. Administrators can customize be?

 fore.rules and after.rules as desired using the standard iptables-restore syntax. Rules

 are evaluated as follows: before.rules first, user.rules next, and after.rules last. IPv6

 rules are evaluated in the same way, with the rules files named before6.rules, user6.rules

 and after6.rules. Please note that ufw status only shows rules added with ufw and not the

 rules found in the /etc/ufw rules files.

 Important: ufw only uses the *filter table by default. You may add any other tables such

 as *nat, *raw and *mangle as desired. For each table a corresponding COMMIT statement is

 required.

 After modifying any of these files, you must reload ufw for the rules to take effect. See

 the EXAMPLES section for common uses of these rules files.

MODULES

 Netfilter has many different connection tracking modules. These modules are aware of the

 underlying protocol and allow the administrator to simplify his or her rule sets. You can

 adjust which netfilter modules to load by adjusting IPT_MODULES in /etc/default/ufw. Some

 popular modules to load are:

 nf_conntrack_ftp

 nf_nat_ftp

 nf_conntrack_irc

 nf_nat_irc

 nf_conntrack_netbios_ns

 nf_conntrack_pptp

 nf_conntrack_tftp

 nf_nat_tftp Page 3/7

 nf_conntrack_sane

 Unconditional loading of connection tracking modules (nf_conntrack_*) in this manner is

 deprecated. ufw continues to support the functionality but new configuration should only

 contain the specific modules required for the site. For more information, see CONNECTION

 HELPERS.

KERNEL PARAMETERS

 ufw will read in /etc/ufw/sysctl.conf on boot when enabled. Please note that

 /etc/ufw/sysctl.conf overrides values in the system systcl.conf (usually

 /etc/sysctl.conf). Administrators can change the file used by modifying /etc/default/ufw.

IPV6

 IPv6 is enabled by default. When disabled, all incoming, outgoing and forwarded packets

 are dropped, with the exception of traffic on the loopback interface. To adjust this be?

 havior, set IPV6 to 'yes' in /etc/default/ufw. See the ufw manual page for details.

EXAMPLES

 As mentioned, ufw loads its rules files into the kernel by using the iptables-restore and

 ip6tables-restore commands. Users wanting to add rules to the ufw rules files manually

 must be familiar with these as well as the iptables and ip6tables commands. Below are some

 common examples of using the ufw rules files. All examples assume IPv4 only and that DE?

 FAULT_FORWARD_POLICY in /etc/default/ufw is set to DROP.

 IP Masquerading

 To allow IP masquerading for computers from the 10.0.0.0/8 network on eth1 to share the

 single IP address on eth0:

 Edit /etc/ufw/sysctl.conf to have:

 net.ipv4.ip_forward=1

 Add to the end of /etc/ufw/before.rules, after the *filter section:

 *nat

 :POSTROUTING ACCEPT [0:0]

 -A POSTROUTING -s 10.0.0.0/8 -o eth0 -j MASQUERADE

 COMMIT

 If your firewall is using IPv6 tunnels or 6to4 and is also doing NAT, then you should not

 usually masquerade protocol '41' (ipv6) packets. For example, instead of the above,

 /etc/ufw/before.rules can be adjusted to have:

 *nat Page 4/7

 :POSTROUTING ACCEPT [0:0]

 -A POSTROUTING -s 10.0.0.0/8 ! --protocol 41 -o eth0 -j MASQUERADE

 COMMIT

 Add the ufw route to allow the traffic:

 ufw route allow in on eth1 out on eth0 from 10.0.0.0/8

 Port Redirections

 To forward tcp port 80 on eth0 to go to the webserver at 10.0.0.2:

 Edit /etc/ufw/sysctl.conf to have:

 net.ipv4.ip_forward=1

 Add to the end of /etc/ufw/before.rules, after the *filter section:

 *nat

 :PREROUTING ACCEPT [0:0]

 -A PREROUTING -p tcp -i eth0 --dport 80 -j DNAT \

 --to-destination 10.0.0.2:80

 COMMIT

 Add the ufw route rule to allow the traffic:

 ufw route allow in on eth0 to 10.0.0.2 port 80 proto tcp

 Egress filtering

 To block RFC1918 addresses going out of eth0:

 Add the ufw route rules to reject the traffic:

 ufw route reject out on eth0 to 10.0.0.0/8

 ufw route reject out on eth0 to 172.16.0.0/12

 ufw route reject out on eth0 to 192.168.0.0/16

 Full example

 This example combines the other examples and demonstrates a simple routing firewall. Warn?

 ing: this setup is only an example to demonstrate the functionality of the ufw framework

 in a concise and simple manner and should not be used in production without understanding

 what each part does and does not do. Your firewall will undoubtedly want to be less open.

 This router/firewall has two interfaces: eth0 (Internet facing) and eth1 (internal LAN).

 Internal clients have addresses on the 10.0.0.0/8 network and should be able to connect to

 anywhere on the Internet. Connections to port 80 from the Internet should be forwarded to

 10.0.0.2. Access to ssh port 22 from the administrative workstation (10.0.0.100) to this

 machine should be allowed. Also make sure no internal traffic goes to the Internet. Page 5/7

 Edit /etc/ufw/sysctl.conf to have:

 net.ipv4.ip_forward=1

 Add to the end of /etc/ufw/before.rules, after the *filter section:

 *nat

 :PREROUTING ACCEPT [0:0]

 :POSTROUTING ACCEPT [0:0]

 -A PREROUTING -p tcp -i eth0 --dport 80 -j DNAT \

 --to-destination 10.0.0.2:80

 -A POSTROUTING -s 10.0.0.0/8 -o eth0 -j MASQUERADE

 COMMIT

 Add the necessary ufw rules:

 ufw route reject out on eth0 to 10.0.0.0/8

 ufw route reject out on eth0 to 172.16.0.0/12

 ufw route reject out on eth0 to 192.168.0.0/16

 ufw route allow in on eth1 out on eth0 from 10.0.0.0/8

 ufw route allow in on eth0 to 10.0.0.2 port 80 proto tcp

 ufw allow in on eth1 from 10.0.0.100 to any port 22 proto tcp

CONNECTION HELPERS

 Various protocols require the use of netfilter connection tracking helpers to group re?

 lated packets into RELATED flows to make rulesets clearer and more precise. For example,

 with a couple of kernel modules and a couple of rules, a ruleset could simply allow a con?

 nection to FTP port 21, then the kernel would examine the traffic and mark the other FTP

 data packets as RELATED to the initial connection.

 When the helpers were first introduced, one could only configure the modules as part of

 module load (eg, if your FTP server listened on a different port than 21, you'd have to

 load the nf_conntrack_ftp module specifying the correct port). Over time it was understood

 that unconditionally using connection helpers could lead to abuse, in part because some

 protocols allow user specified data that would allow traversing the firewall in undesired

 ways. As of kernel 4.7, automatic conntrack helper assignment (ie, handling packets for a

 given port and all IP addresses) is disabled (the old behavior can be restored by setting

 net/netfilter/nf_conntrack_helper=1 in /etc/ufw/sysctl.conf). Firewalls should now instead

 use the CT target to associate traffic with a particular helper and then set RELATED rules

 to use the helper. This allows sites to tailor the use of helpers and help avoid abuse. Page 6/7

 In general, to use helpers securely, the following needs to happen:

 1. net/netfilter/nf_conntrack_helper should be set to 0 (default)

 2. create a rule for the start of a connection (eg for FTP, port 21)

 3. create a helper rule to associate the helper with this connection

 4. create a helper rule to associate a RELATED flow with this connection

 5. if needed, add the corresponding nf_conntrack_* module to IPT_MODULES

 6. optionally add the corresponding nf_nat_* module to IPT_MODULES

 In general it is desirable to make connection helper rules as specific as possible and en?

 sure anti-spoofing is correctly setup for your site to avoid security issues in your rule?

 set. For more information, see ANTI-SPOOFING, above, and <https://home.regit.org/netfil?

 ter-en/secure-use-of-helpers/>.

 Currently helper rules must be managed in via the RULES FILES. A future version of ufw

 will introduce syntax for working with helper rules.

NOTES

 When using ufw with libvirt and bridging, packets may be blocked. The libvirt team recom?

 mends that the following sysctl's be set to disable netfilter on the bridge:

 net.bridge.bridge-nf-call-ip6tables = 0

 net.bridge.bridge-nf-call-iptables = 0

 net.bridge.bridge-nf-call-arptables = 0

 Note that the bridge module must be loaded in to the kernel before these values are set.

 One way to ensure this works properly with ufw is to add 'bridge' to IPT_MODULES in

 /etc/default/ufw, and then add the above rules to /etc/ufw/sysctl.conf.

 Alternatively to disabling netfilter on the bridge, you can configure iptables to allow

 all traffic to be forwarded across the bridge. Eg, add to /etc/ufw/before.rules within the

 *filter section:

 -I FORWARD -m physdev --physdev-is-bridged -j ACCEPT

SEE ALSO

 ufw(8), iptables(8), ip6tables(8), iptables-restore(8), ip6tables-restore(8), sysctl(8),

 sysctl.conf(5)

AUTHOR

 ufw is Copyright 2008-2021, Canonical Ltd.

September 2021 UFW FRAMEWORK(8)

Page 7/7

