FPDF lerary

PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'ulckpwdf.3'

$ man ulckpwdf.3
GETSPNAM(3) Linux Programmer's Manual GETSPNAM(3)
NAME

getspnam, getspnam_r, getspent, getspent_r, setspent, endspent, fgetspent, fgetspent_r,

sgetspent, sgetspent_r, putspent, Ickpwdf, ulckpwdf - get shadow password file entry
SYNOPSIS

/* General shadow password file API */

#include <shadow.h>

struct spwd *getspnam(const char *name);

struct spwd *getspent(void);

void setspent(void);

void endspent(void);

struct spwd *fgetspent(FILE *stream);

struct spwd *sgetspent(const char *s);

int putspent(const struct spwd *p, FILE *stream);

int Ickpwdf(void);

int ulckpwdf(void);

/* GNU extension */

#include <shadow.h>

int getspent_r(struct spwd *spbuf,

char *buf, size_t buflen, struct spwd **spbufp);
int getspnam_r(const char *name, struct spwd *spbuf,
char *buf, size_t buflen, struct spwd **spbufp);

int fgetspent_r(FILE *stream, struct spwd *spbuf, Page 1/5

char *buf, size_t buflen, struct spwd **spbufp);
int sgetspent_r(const char *s, struct spwd *spbuf,

char *buf, size_t buflen, struct spwd **spbufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
getspent_r(), getspnam_r(), fgetspent_r(), sgetspent_r():
Since glibc 2.19:
_DEFAULT_SOURCE
Glibc 2.19 and earlier:
_BSD_SOURCE || _SVID_SOURCE
DESCRIPTION

Long ago it was considered safe to have encrypted passwords openly visible in the password
file. When computers got faster and people got more security-conscious, this was no
longer acceptable. Julianne Frances Haugh implemented the shadow password suite that
keeps the encrypted passwords in the shadow password database (e.g., the local shadow
password file /etc/shadow, NIS, and LDAP), readable only by root.
The functions described below resemble those for the traditional password database (e.g.,
see getpwnam(3) and getpwent(3)).
The getspnam() function returns a pointer to a structure containing the broken-out fields
of the record in the shadow password database that matches the username name.
The getspent() function returns a pointer to the next entry in the shadow password data?
base. The position in the input stream is initialized by setspent(). When done reading,
the program may call endspent() so that resources can be deallocated.
The fgetspent() function is similar to getspent() but uses the supplied stream instead of
the one implicitly opened by setspent().
The sgetspent() function parses the supplied string s into a struct spwd.
The putspent() function writes the contents of the supplied struct spwd *p as a text line
in the shadow password file format to stream. String entries with value NULL and numeri?
cal entries with value -1 are written as an empty string.
The Ickpwdf() function is intended to protect against multiple simultaneous accesses of
the shadow password database. It tries to acquire a lock, and returns 0 on success, or -1
on failure (lock not obtained within 15 seconds). The ulckpwdf() function releases the
lock again. Note that there is no protection against direct access of the shadow password

file. Only programs that use Ickpwdf() will notice the lock.

Page 2/5

These were the functions that formed the original shadow API. They are widely available.
Reentrant versions
Analogous to the reentrant functions for the password database, glibc also has reentrant
functions for the shadow password database. The getspnam_r() function is like getspnam()
but stores the retrieved shadow password structure in the space pointed to by spbuf. This
shadow password structure contains pointers to strings, and these strings are stored in
the buffer buf of size buflen. A pointer to the result (in case of success) or NULL (in
case no entry was found or an error occurred) is stored in *spbufp.
The functions getspent_r(), fgetspent_r(), and sgetspent_r() are similarly analogous to
their nonreentrant counterparts.
Some non-glibc systems also have functions with these names, often with different proto?
types.
Structure
The shadow password structure is defined in <shadow.h> as follows:
struct spwd {
char *sp_namp; /* Login name */
char *sp_pwdp; /* Encrypted password */
long sp_lIstchg; /* Date of last change
(measured in days since
1970-01-01 00:00:00 +0000 (UTC)) */
long sp_min; /* Min # of days between changes */
long sp_max; /* Max # of days between changes */
long sp_warn; /*# of days before password expires
to warn user to change it */
long sp_inact; /* # of days after password expires
until account is disabled */
long sp_expire; /[* Date when account expires
(measured in days since
1970-01-01 00:00:00 +0000 (UTC)) */
unsigned long sp_flag; /* Reserved */
h
RETURN VALUE

The functions that return a pointer return NULL if no more entries are available or if an

Page 3/5

error occurs during processing. The functions which have int as the return value return 0
for success and -1 for failure, with errno set to indicate the cause of the error.
For the nonreentrant functions, the return value may point to static area, and may be
overwritten by subsequent calls to these functions.
The reentrant functions return zero on success. In case of error, an error number is re?
turned.
ERRORS
EACCES The caller does not have permission to access the shadow password file.
ERANGE Supplied buffer is too small.
FILES
letc/shadow
local shadow password database file
letc/.pwd.lock
lock file
The include file <paths.h> defines the constant _PATH_SHADOW to the pathname of the shadow
password file.
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV ??77?72??7??7?72?7?77??7??7?7??7?7??7?7?7?7?

?Interface ? Attribute ? Value ?

PPV ?7??7?72?7?77????7???7?7??7?7?7?7?

?getspnam() ? Thread safety ? MT-Unsafe race:getspnam locale ?

PPV 7?72??7??7?72?7?72????7?7??7?7??7?7?7?7?

?getspent() ? Thread safety ? MT-Unsafe race:getspent ?

? ? ? race:spentbuf locale ?

QP07 7?7?7?7?77?77?77?7

?setspent(), ? Thread safety ? MT-Unsafe race:getspent locale ?
?endspent(), ? ? ?
?getspent_r() ? ? ?

P07 7??7??72?7?77?77?77?7

?fgetspent() ? Thread safety ? MT-Unsafe race:fgetspent ?

PP 7??7?727?7?77?77?77?7

?sgetspent() ? Thread safety ? MT-Unsafe race:sgetspent ~ ? Page 4/5

PP 7?7?77?7??77?7?7?77?7

?putspent(), ? Thread safety ? MT-Safe locale ?
?getspnam_r(), ? ? ?
?sgetspent_r() ? ? ?

PPV 7?7?7??77?7?7?77?7

?Ickpwdf(), ? Thread safety ? MT-Safe ?
2ulckpwdf(), ? ? ?
?fgetspent_r() ? ? ?

QP02 7??7?7?7??7??77?7?7?77?7

In the above table, getspent in race:getspent signifies that if any of the functions set?

spent(), getspent(), getspent_r(), or endspent() are used in parallel in different threads

of a program, then data races could occur.

CONFORMING TO

The shadow password database and its associated API are not specified in POSIX.1. How?

ever, many other systems provide a similar API.

SEE ALSO

getgrnam(3), getpwnam(3), getpwnam_r(3), shadow(5)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the

project, information about reporting bugs, and the latest version of this page, can be

found at https://www.kernel.org/doc/man-pages/.

GNU 2017-09-15 GETSPNAM(3)

Page 5/5

