
Rocky Enterprise Linux 9.2 Manual Pages on command 'umount2.2'

$ man umount2.2

UMOUNT(2) Linux Programmer's Manual UMOUNT(2)

NAME

 umount, umount2 - unmount filesystem

SYNOPSIS

 #include <sys/mount.h>

 int umount(const char *target);

 int umount2(const char *target, int flags);

DESCRIPTION

 umount() and umount2() remove the attachment of the (topmost) filesystem mounted on tar?

 get.

 Appropriate privilege (Linux: the CAP_SYS_ADMIN capability) is required to unmount

 filesystems.

 Linux 2.1.116 added the umount2() system call, which, like umount(), unmounts a target,

 but allows additional flags controlling the behavior of the operation:

 MNT_FORCE (since Linux 2.1.116)

 Ask the filesystem to abort pending requests before attempting the unmount. This

 may allow the unmount to complete without waiting for an inaccessible server, but

 could cause data loss. If, after aborting requests, some processes still have ac?

 tive references to the filesystem, the unmount will still fail. As at Linux 4.12,

 MNT_FORCE is supported only on the following filesystems: 9p (since Linux 2.6.16),

 ceph (since Linux 2.6.34), cifs (since Linux 2.6.12), fuse (since Linux 2.6.16),

 lustre (since Linux 3.11), and NFS (since Linux 2.1.116).

 MNT_DETACH (since Linux 2.4.11) Page 1/3

 Perform a lazy unmount: make the mount point unavailable for new accesses, immedi?

 ately disconnect the filesystem and all filesystems mounted below it from each

 other and from the mount table, and actually perform the unmount when the mount

 point ceases to be busy.

 MNT_EXPIRE (since Linux 2.6.8)

 Mark the mount point as expired. If a mount point is not currently in use, then an

 initial call to umount2() with this flag fails with the error EAGAIN, but marks the

 mount point as expired. The mount point remains expired as long as it isn't ac?

 cessed by any process. A second umount2() call specifying MNT_EXPIRE unmounts an

 expired mount point. This flag cannot be specified with either MNT_FORCE or

 MNT_DETACH.

 UMOUNT_NOFOLLOW (since Linux 2.6.34)

 Don't dereference target if it is a symbolic link. This flag allows security prob?

 lems to be avoided in set-user-ID-root programs that allow unprivileged users to

 unmount filesystems.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 The error values given below result from filesystem type independent errors. Each

 filesystem type may have its own special errors and its own special behavior. See the

 Linux kernel source code for details.

 EAGAIN A call to umount2() specifying MNT_EXPIRE successfully marked an unbusy filesystem

 as expired.

 EBUSY target could not be unmounted because it is busy.

 EFAULT target points outside the user address space.

 EINVAL target is not a mount point.

 EINVAL umount2() was called with MNT_EXPIRE and either MNT_DETACH or MNT_FORCE.

 EINVAL (since Linux 2.6.34)

 umount2() was called with an invalid flag value in flags.

 ENAMETOOLONG

 A pathname was longer than MAXPATHLEN.

 ENOENT A pathname was empty or had a nonexistent component.

 ENOMEM The kernel could not allocate a free page to copy filenames or data into. Page 2/3

 EPERM The caller does not have the required privileges.

VERSIONS

 MNT_DETACH and MNT_EXPIRE are available in glibc since version 2.11.

CONFORMING TO

 These functions are Linux-specific and should not be used in programs intended to be por?

 table.

NOTES

 umount() and shared mount points

 Shared mount points cause any mount activity on a mount point, including umount() opera?

 tions, to be forwarded to every shared mount point in the peer group and every slave mount

 of that peer group. This means that umount() of any peer in a set of shared mounts will

 cause all of its peers to be unmounted and all of their slaves to be unmounted as well.

 This propagation of unmount activity can be particularly surprising on systems where every

 mount point is shared by default. On such systems, recursively bind mounting the root di?

 rectory of the filesystem onto a subdirectory and then later unmounting that subdirectory

 with MNT_DETACH will cause every mount in the mount namespace to be lazily unmounted.

 To ensure umount() does not propagate in this fashion, the mount point may be remounted

 using a mount(2) call with a mount_flags argument that includes both MS_REC and MS_PRIVATE

 prior to umount() being called.

 Historical details

 The original umount() function was called as umount(device) and would return ENOTBLK when

 called with something other than a block device. In Linux 0.98p4, a call umount(dir) was

 added, in order to support anonymous devices. In Linux 2.3.99-pre7, the call umount(de?

 vice) was removed, leaving only umount(dir) (since now devices can be mounted in more than

 one place, so specifying the device does not suffice).

SEE ALSO

 mount(2), mount_namespaces(7), path_resolution(7), mount(8), umount(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 UMOUNT(2)

Page 3/3

