
Rocky Enterprise Linux 9.2 Manual Pages on command 'unix.7'

$ man unix.7

UNIX(7) Linux Programmer's Manual UNIX(7)

NAME

 unix - sockets for local interprocess communication

SYNOPSIS

 #include <sys/socket.h>

 #include <sys/un.h>

 unix_socket = socket(AF_UNIX, type, 0);

 error = socketpair(AF_UNIX, type, 0, int *sv);

DESCRIPTION

 The AF_UNIX (also known as AF_LOCAL) socket family is used to communicate between pro?

 cesses on the same machine efficiently. Traditionally, UNIX domain sockets can be either

 unnamed, or bound to a filesystem pathname (marked as being of type socket). Linux also

 supports an abstract namespace which is independent of the filesystem.

 Valid socket types in the UNIX domain are: SOCK_STREAM, for a stream-oriented socket;

 SOCK_DGRAM, for a datagram-oriented socket that preserves message boundaries (as on most

 UNIX implementations, UNIX domain datagram sockets are always reliable and don't reorder

 datagrams); and (since Linux 2.6.4) SOCK_SEQPACKET, for a sequenced-packet socket that is

 connection-oriented, preserves message boundaries, and delivers messages in the order that

 they were sent.

 UNIX domain sockets support passing file descriptors or process credentials to other pro?

 cesses using ancillary data.

 Address format

 A UNIX domain socket address is represented in the following structure: Page 1/18

 struct sockaddr_un {

 sa_family_t sun_family; /* AF_UNIX */

 char sun_path[108]; /* Pathname */

 };

 The sun_family field always contains AF_UNIX. On Linux, sun_path is 108 bytes in size;

 see also NOTES, below.

 Various systems calls (for example, bind(2), connect(2), and sendto(2)) take a sockaddr_un

 argument as input. Some other system calls (for example, getsockname(2), getpeername(2),

 recvfrom(2), and accept(2)) return an argument of this type.

 Three types of address are distinguished in the sockaddr_un structure:

 * pathname: a UNIX domain socket can be bound to a null-terminated filesystem pathname

 using bind(2). When the address of a pathname socket is returned (by one of the system

 calls noted above), its length is

 offsetof(struct sockaddr_un, sun_path) + strlen(sun_path) + 1

 and sun_path contains the null-terminated pathname. (On Linux, the above offsetof()

 expression equates to the same value as sizeof(sa_family_t), but some other implementa?

 tions include other fields before sun_path, so the offsetof() expression more portably

 describes the size of the address structure.)

 For further details of pathname sockets, see below.

 * unnamed: A stream socket that has not been bound to a pathname using bind(2) has no

 name. Likewise, the two sockets created by socketpair(2) are unnamed. When the ad?

 dress of an unnamed socket is returned, its length is sizeof(sa_family_t), and sun_path

 should not be inspected.

 * abstract: an abstract socket address is distinguished (from a pathname socket) by the

 fact that sun_path[0] is a null byte ('\0'). The socket's address in this namespace is

 given by the additional bytes in sun_path that are covered by the specified length of

 the address structure. (Null bytes in the name have no special significance.) The

 name has no connection with filesystem pathnames. When the address of an abstract

 socket is returned, the returned addrlen is greater than sizeof(sa_family_t) (i.e.,

 greater than 2), and the name of the socket is contained in the first (addrlen -

 sizeof(sa_family_t)) bytes of sun_path.

 Pathname sockets

 When binding a socket to a pathname, a few rules should be observed for maximum portabil? Page 2/18

 ity and ease of coding:

 * The pathname in sun_path should be null-terminated.

 * The length of the pathname, including the terminating null byte, should not exceed the

 size of sun_path.

 * The addrlen argument that describes the enclosing sockaddr_un structure should have a

 value of at least:

 offsetof(struct sockaddr_un, sun_path)+strlen(addr.sun_path)+1

 or, more simply, addrlen can be specified as sizeof(struct sockaddr_un).

 There is some variation in how implementations handle UNIX domain socket addresses that do

 not follow the above rules. For example, some (but not all) implementations append a null

 terminator if none is present in the supplied sun_path.

 When coding portable applications, keep in mind that some implementations have sun_path as

 short as 92 bytes.

 Various system calls (accept(2), recvfrom(2), getsockname(2), getpeername(2)) return

 socket address structures. When applied to UNIX domain sockets, the value-result addrlen

 argument supplied to the call should be initialized as above. Upon return, the argument

 is set to indicate the actual size of the address structure. The caller should check the

 value returned in this argument: if the output value exceeds the input value, then there

 is no guarantee that a null terminator is present in sun_path. (See BUGS.)

 Pathname socket ownership and permissions

 In the Linux implementation, pathname sockets honor the permissions of the directory they

 are in. Creation of a new socket fails if the process does not have write and search (ex?

 ecute) permission on the directory in which the socket is created.

 On Linux, connecting to a stream socket object requires write permission on that socket;

 sending a datagram to a datagram socket likewise requires write permission on that socket.

 POSIX does not make any statement about the effect of the permissions on a socket file,

 and on some systems (e.g., older BSDs), the socket permissions are ignored. Portable pro?

 grams should not rely on this feature for security.

 When creating a new socket, the owner and group of the socket file are set according to

 the usual rules. The socket file has all permissions enabled, other than those that are

 turned off by the process umask(2).

 The owner, group, and permissions of a pathname socket can be changed (using chown(2) and

 chmod(2)). Page 3/18

 Abstract sockets

 Socket permissions have no meaning for abstract sockets: the process umask(2) has no ef?

 fect when binding an abstract socket, and changing the ownership and permissions of the

 object (via fchown(2) and fchmod(2)) has no effect on the accessibility of the socket.

 Abstract sockets automatically disappear when all open references to the socket are

 closed.

 The abstract socket namespace is a nonportable Linux extension.

 Socket options

 For historical reasons, these socket options are specified with a SOL_SOCKET type even

 though they are AF_UNIX specific. They can be set with setsockopt(2) and read with get?

 sockopt(2) by specifying SOL_SOCKET as the socket family.

 SO_PASSCRED

 Enabling this socket option causes receipt of the credentials of the sending

 process in an SCM_CREDENTIALS ancillary message in each subsequently received mes?

 sage. The returned credentials are those specified by the sender using SCM_CREDEN?

 TIALS, or a default that includes the sender's PID, real user ID, and real group

 ID, if the sender did not specify SCM_CREDENTIALS ancillary data.

 When this option is set and the socket is not yet connected, a unique name in the

 abstract namespace will be generated automatically.

 The value given as an argument to setsockopt(2) and returned as the result of get?

 sockopt(2) is an integer boolean flag.

 SO_PASSSEC

 Enables receiving of the SELinux security label of the peer socket in an ancillary

 message of type SCM_SECURITY (see below).

 The value given as an argument to setsockopt(2) and returned as the result of get?

 sockopt(2) is an integer boolean flag.

 The SO_PASSSEC option is supported for UNIX domain datagram sockets since Linux

 2.6.18; support for UNIX domain stream sockets was added in Linux 4.2.

 SO_PEEK_OFF

 See socket(7).

 SO_PEERCRED

 This read-only socket option returns the credentials of the peer process connected

 to this socket. The returned credentials are those that were in effect at the time Page 4/18

 of the call to connect(2) or socketpair(2).

 The argument to getsockopt(2) is a pointer to a ucred structure; define the

 _GNU_SOURCE feature test macro to obtain the definition of that structure from

 <sys/socket.h>.

 The use of this option is possible only for connected AF_UNIX stream sockets and

 for AF_UNIX stream and datagram socket pairs created using socketpair(2).

 SO_PEERSEC

 This read-only socket option returns the security context of the peer socket con?

 nected to this socket. By default, this will be the same as the security context

 of the process that created the peer socket unless overridden by the policy or by a

 process with the required permissions.

 The argument to getsockopt(2) is a pointer to a buffer of the specified length in

 bytes into which the security context string will be copied. If the buffer length

 is less than the length of the security context string, then getsockopt(2) returns

 -1, sets errno to ERANGE, and returns the required length via optlen. The caller

 should allocate at least NAME_MAX bytes for the buffer initially, although this is

 not guaranteed to be sufficient. Resizing the buffer to the returned length and

 retrying may be necessary.

 The security context string may include a terminating null character in the re?

 turned length, but is not guaranteed to do so: a security context "foo" might be

 represented as either {'f','o','o'} of length 3 or {'f','o','o','\0'} of length 4,

 which are considered to be interchangeable. The string is printable, does not con?

 tain non-terminating null characters, and is in an unspecified encoding (in partic?

 ular, it is not guaranteed to be ASCII or UTF-8).

 The use of this option for sockets in the AF_UNIX address family is supported since

 Linux 2.6.2 for connected stream sockets, and since Linux 4.18 also for stream and

 datagram socket pairs created using socketpair(2).

 Autobind feature

 If a bind(2) call specifies addrlen as sizeof(sa_family_t), or the SO_PASSCRED socket op?

 tion was specified for a socket that was not explicitly bound to an address, then the

 socket is autobound to an abstract address. The address consists of a null byte followed

 by 5 bytes in the character set [0-9a-f]. Thus, there is a limit of 2^20 autobind ad?

 dresses. (From Linux 2.1.15, when the autobind feature was added, 8 bytes were used, and Page 5/18

 the limit was thus 2^32 autobind addresses. The change to 5 bytes came in Linux 2.3.15.)

 Sockets API

 The following paragraphs describe domain-specific details and unsupported features of the

 sockets API for UNIX domain sockets on Linux.

 UNIX domain sockets do not support the transmission of out-of-band data (the MSG_OOB flag

 for send(2) and recv(2)).

 The send(2) MSG_MORE flag is not supported by UNIX domain sockets.

 Before Linux 3.4, the use of MSG_TRUNC in the flags argument of recv(2) was not supported

 by UNIX domain sockets.

 The SO_SNDBUF socket option does have an effect for UNIX domain sockets, but the SO_RCVBUF

 option does not. For datagram sockets, the SO_SNDBUF value imposes an upper limit on the

 size of outgoing datagrams. This limit is calculated as the doubled (see socket(7)) op?

 tion value less 32 bytes used for overhead.

 Ancillary messages

 Ancillary data is sent and received using sendmsg(2) and recvmsg(2). For historical rea?

 sons, the ancillary message types listed below are specified with a SOL_SOCKET type even

 though they are AF_UNIX specific. To send them, set the cmsg_level field of the struct

 cmsghdr to SOL_SOCKET and the cmsg_type field to the type. For more information, see

 cmsg(3).

 SCM_RIGHTS

 Send or receive a set of open file descriptors from another process. The data por?

 tion contains an integer array of the file descriptors.

 Commonly, this operation is referred to as "passing a file descriptor" to another

 process. However, more accurately, what is being passed is a reference to an open

 file description (see open(2)), and in the receiving process it is likely that a

 different file descriptor number will be used. Semantically, this operation is

 equivalent to duplicating (dup(2)) a file descriptor into the file descriptor table

 of another process.

 If the buffer used to receive the ancillary data containing file descriptors is too

 small (or is absent), then the ancillary data is truncated (or discarded) and the

 excess file descriptors are automatically closed in the receiving process.

 If the number of file descriptors received in the ancillary data would cause the

 process to exceed its RLIMIT_NOFILE resource limit (see getrlimit(2)), the excess Page 6/18

 file descriptors are automatically closed in the receiving process.

 The kernel constant SCM_MAX_FD defines a limit on the number of file descriptors in

 the array. Attempting to send an array larger than this limit causes sendmsg(2) to

 fail with the error EINVAL. SCM_MAX_FD has the value 253 (or 255 in kernels before

 2.6.38).

 SCM_CREDENTIALS

 Send or receive UNIX credentials. This can be used for authentication. The cre?

 dentials are passed as a struct ucred ancillary message. This structure is defined

 in <sys/socket.h> as follows:

 struct ucred {

 pid_t pid; /* Process ID of the sending process */

 uid_t uid; /* User ID of the sending process */

 gid_t gid; /* Group ID of the sending process */

 };

 Since glibc 2.8, the _GNU_SOURCE feature test macro must be defined (before includ?

 ing any header files) in order to obtain the definition of this structure.

 The credentials which the sender specifies are checked by the kernel. A privileged

 process is allowed to specify values that do not match its own. The sender must

 specify its own process ID (unless it has the capability CAP_SYS_ADMIN, in which

 case the PID of any existing process may be specified), its real user ID, effective

 user ID, or saved set-user-ID (unless it has CAP_SETUID), and its real group ID,

 effective group ID, or saved set-group-ID (unless it has CAP_SETGID).

 To receive a struct ucred message, the SO_PASSCRED option must be enabled on the

 socket.

 SCM_SECURITY

 Receive the SELinux security context (the security label) of the peer socket. The

 received ancillary data is a null-terminated string containing the security con?

 text. The receiver should allocate at least NAME_MAX bytes in the data portion of

 the ancillary message for this data.

 To receive the security context, the SO_PASSSEC option must be enabled on the

 socket (see above).

 When sending ancillary data with sendmsg(2), only one item of each of the above types may

 be included in the sent message. Page 7/18

 At least one byte of real data should be sent when sending ancillary data. On Linux, this

 is required to successfully send ancillary data over a UNIX domain stream socket. When

 sending ancillary data over a UNIX domain datagram socket, it is not necessary on Linux to

 send any accompanying real data. However, portable applications should also include at

 least one byte of real data when sending ancillary data over a datagram socket.

 When receiving from a stream socket, ancillary data forms a kind of barrier for the re?

 ceived data. For example, suppose that the sender transmits as follows:

 1. sendmsg(2) of four bytes, with no ancillary data.

 2. sendmsg(2) of one byte, with ancillary data.

 3. sendmsg(2) of four bytes, with no ancillary data.

 Suppose that the receiver now performs recvmsg(2) calls each with a buffer size of 20

 bytes. The first call will receive five bytes of data, along with the ancillary data sent

 by the second sendmsg(2) call. The next call will receive the remaining four bytes of

 data.

 If the space allocated for receiving incoming ancillary data is too small then the ancil?

 lary data is truncated to the number of headers that will fit in the supplied buffer (or,

 in the case of an SCM_RIGHTS file descriptor list, the list of file descriptors may be

 truncated). If no buffer is provided for incoming ancillary data (i.e., the msg_control

 field of the msghdr structure supplied to recvmsg(2) is NULL), then the incoming ancillary

 data is discarded. In both of these cases, the MSG_CTRUNC flag will be set in the

 msg.msg_flags value returned by recvmsg(2).

 Ioctls

 The following ioctl(2) calls return information in value. The correct syntax is:

 int value;

 error = ioctl(unix_socket, ioctl_type, &value);

 ioctl_type can be:

 SIOCINQ

 For SOCK_STREAM sockets, this call returns the number of unread bytes in the re?

 ceive buffer. The socket must not be in LISTEN state, otherwise an error (EINVAL)

 is returned. SIOCINQ is defined in <linux/sockios.h>. Alternatively, you can use

 the synonymous FIONREAD, defined in <sys/ioctl.h>. For SOCK_DGRAM sockets, the re?

 turned value is the same as for Internet domain datagram sockets; see udp(7).

ERRORS Page 8/18

 EADDRINUSE

 The specified local address is already in use or the filesystem socket object al?

 ready exists.

 EBADF This error can occur for sendmsg(2) when sending a file descriptor as ancillary

 data over a UNIX domain socket (see the description of SCM_RIGHTS, above), and in?

 dicates that the file descriptor number that is being sent is not valid (e.g., it

 is not an open file descriptor).

 ECONNREFUSED

 The remote address specified by connect(2) was not a listening socket. This error

 can also occur if the target pathname is not a socket.

 ECONNRESET

 Remote socket was unexpectedly closed.

 EFAULT User memory address was not valid.

 EINVAL Invalid argument passed. A common cause is that the value AF_UNIX was not speci?

 fied in the sun_type field of passed addresses, or the socket was in an invalid

 state for the applied operation.

 EISCONN

 connect(2) called on an already connected socket or a target address was specified

 on a connected socket.

 ENOENT The pathname in the remote address specified to connect(2) did not exist.

 ENOMEM Out of memory.

 ENOTCONN

 Socket operation needs a target address, but the socket is not connected.

 EOPNOTSUPP

 Stream operation called on non-stream oriented socket or tried to use the out-of-

 band data option.

 EPERM The sender passed invalid credentials in the struct ucred.

 EPIPE Remote socket was closed on a stream socket. If enabled, a SIGPIPE is sent as

 well. This can be avoided by passing the MSG_NOSIGNAL flag to send(2) or

 sendmsg(2).

 EPROTONOSUPPORT

 Passed protocol is not AF_UNIX.

 EPROTOTYPE Page 9/18

 Remote socket does not match the local socket type (SOCK_DGRAM versus SOCK_STREAM).

 ESOCKTNOSUPPORT

 Unknown socket type.

 ESRCH While sending an ancillary message containing credentials (SCM_CREDENTIALS), the

 caller specified a PID that does not match any existing process.

 ETOOMANYREFS

 This error can occur for sendmsg(2) when sending a file descriptor as ancillary

 data over a UNIX domain socket (see the description of SCM_RIGHTS, above). It oc?

 curs if the number of "in-flight" file descriptors exceeds the RLIMIT_NOFILE re?

 source limit and the caller does not have the CAP_SYS_RESOURCE capability. An in-

 flight file descriptor is one that has been sent using sendmsg(2) but has not yet

 been accepted in the recipient process using recvmsg(2).

 This error is diagnosed since mainline Linux 4.5 (and in some earlier kernel ver?

 sions where the fix has been backported). In earlier kernel versions, it was pos?

 sible to place an unlimited number of file descriptors in flight, by sending each

 file descriptor with sendmsg(2) and then closing the file descriptor so that it was

 not accounted against the RLIMIT_NOFILE resource limit.

 Other errors can be generated by the generic socket layer or by the filesystem while gen?

 erating a filesystem socket object. See the appropriate manual pages for more informa?

 tion.

VERSIONS

 SCM_CREDENTIALS and the abstract namespace were introduced with Linux 2.2 and should not

 be used in portable programs. (Some BSD-derived systems also support credential passing,

 but the implementation details differ.)

NOTES

 Binding to a socket with a filename creates a socket in the filesystem that must be

 deleted by the caller when it is no longer needed (using unlink(2)). The usual UNIX

 close-behind semantics apply; the socket can be unlinked at any time and will be finally

 removed from the filesystem when the last reference to it is closed.

 To pass file descriptors or credentials over a SOCK_STREAM socket, you must to send or re?

 ceive at least one byte of nonancillary data in the same sendmsg(2) or recvmsg(2) call.

 UNIX domain stream sockets do not support the notion of out-of-band data.

BUGS Page 10/18

 When binding a socket to an address, Linux is one of the implementations that appends a

 null terminator if none is supplied in sun_path. In most cases this is unproblematic:

 when the socket address is retrieved, it will be one byte longer than that supplied when

 the socket was bound. However, there is one case where confusing behavior can result: if

 108 non-null bytes are supplied when a socket is bound, then the addition of the null ter?

 minator takes the length of the pathname beyond sizeof(sun_path). Consequently, when re?

 trieving the socket address (for example, via accept(2)), if the input addrlen argument

 for the retrieving call is specified as sizeof(struct sockaddr_un), then the returned ad?

 dress structure won't have a null terminator in sun_path.

 In addition, some implementations don't require a null terminator when binding a socket

 (the addrlen argument is used to determine the length of sun_path) and when the socket ad?

 dress is retrieved on these implementations, there is no null terminator in sun_path.

 Applications that retrieve socket addresses can (portably) code to handle the possibility

 that there is no null terminator in sun_path by respecting the fact that the number of

 valid bytes in the pathname is:

 strnlen(addr.sun_path, addrlen - offsetof(sockaddr_un, sun_path))

 Alternatively, an application can retrieve the socket address by allocating a buffer of

 size sizeof(struct sockaddr_un)+1 that is zeroed out before the retrieval. The retrieving

 call can specify addrlen as sizeof(struct sockaddr_un), and the extra zero byte ensures

 that there will be a null terminator for the string returned in sun_path:

 void *addrp;

 addrlen = sizeof(struct sockaddr_un);

 addrp = malloc(addrlen + 1);

 if (addrp == NULL)

 /* Handle error */ ;

 memset(addrp, 0, addrlen + 1);

 if (getsockname(sfd, (struct sockaddr *) addrp, &addrlen)) == -1)

 /* handle error */ ;

 printf("sun_path = %s\n", ((struct sockaddr_un *) addrp)->sun_path);

 This sort of messiness can be avoided if it is guaranteed that the applications that cre?

 ate pathname sockets follow the rules outlined above under Pathname sockets.

EXAMPLES

 The following code demonstrates the use of sequenced-packet sockets for local interprocess Page 11/18

 communication. It consists of two programs. The server program waits for a connection

 from the client program. The client sends each of its command-line arguments in separate

 messages. The server treats the incoming messages as integers and adds them up. The

 client sends the command string "END". The server sends back a message containing the sum

 of the client's integers. The client prints the sum and exits. The server waits for the

 next client to connect. To stop the server, the client is called with the command-line

 argument "DOWN".

 The following output was recorded while running the server in the background and repeat?

 edly executing the client. Execution of the server program ends when it receives the

 "DOWN" command.

 Example output

 $./server &

 [1] 25887

 $./client 3 4

 Result = 7

 $./client 11 -5

 Result = 6

 $./client DOWN

 Result = 0

 [1]+ Done ./server

 $

 Program source

 /*

 * File connection.h

 */

 #define SOCKET_NAME "/tmp/9Lq7BNBnBycd6nxy.socket"

 #define BUFFER_SIZE 12

 /*

 * File server.c

 */

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h> Page 12/18

 #include <sys/socket.h>

 #include <sys/un.h>

 #include <unistd.h>

 #include "connection.h"

 int

 main(int argc, char *argv[])

 {

 struct sockaddr_un name;

 int down_flag = 0;

 int ret;

 int connection_socket;

 int data_socket;

 int result;

 char buffer[BUFFER_SIZE];

 /* Create local socket. */

 connection_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);

 if (connection_socket == -1) {

 perror("socket");

 exit(EXIT_FAILURE);

 }

 /*

 * For portability clear the whole structure, since some

 * implementations have additional (nonstandard) fields in

 * the structure.

 */

 memset(&name, 0, sizeof(name));

 /* Bind socket to socket name. */

 name.sun_family = AF_UNIX;

 strncpy(name.sun_path, SOCKET_NAME, sizeof(name.sun_path) - 1);

 ret = bind(connection_socket, (const struct sockaddr *) &name,

 sizeof(name));

 if (ret == -1) {

 perror("bind"); Page 13/18

 exit(EXIT_FAILURE);

 }

 /*

 * Prepare for accepting connections. The backlog size is set

 * to 20. So while one request is being processed other requests

 * can be waiting.

 */

 ret = listen(connection_socket, 20);

 if (ret == -1) {

 perror("listen");

 exit(EXIT_FAILURE);

 }

 /* This is the main loop for handling connections. */

 for (;;) {

 /* Wait for incoming connection. */

 data_socket = accept(connection_socket, NULL, NULL);

 if (data_socket == -1) {

 perror("accept");

 exit(EXIT_FAILURE);

 }

 result = 0;

 for (;;) {

 /* Wait for next data packet. */

 ret = read(data_socket, buffer, sizeof(buffer));

 if (ret == -1) {

 perror("read");

 exit(EXIT_FAILURE);

 }

 /* Ensure buffer is 0-terminated. */

 buffer[sizeof(buffer) - 1] = 0;

 /* Handle commands. */

 if (!strncmp(buffer, "DOWN", sizeof(buffer))) {

 down_flag = 1; Page 14/18

 break;

 }

 if (!strncmp(buffer, "END", sizeof(buffer))) {

 break;

 }

 /* Add received summand. */

 result += atoi(buffer);

 }

 /* Send result. */

 sprintf(buffer, "%d", result);

 ret = write(data_socket, buffer, sizeof(buffer));

 if (ret == -1) {

 perror("write");

 exit(EXIT_FAILURE);

 }

 /* Close socket. */

 close(data_socket);

 /* Quit on DOWN command. */

 if (down_flag) {

 break;

 }

 }

 close(connection_socket);

 /* Unlink the socket. */

 unlink(SOCKET_NAME);

 exit(EXIT_SUCCESS);

 }

 /*

 * File client.c

 */

 #include <errno.h>

 #include <stdio.h>

 #include <stdlib.h> Page 15/18

 #include <string.h>

 #include <sys/socket.h>

 #include <sys/un.h>

 #include <unistd.h>

 #include "connection.h"

 int

 main(int argc, char *argv[])

 {

 struct sockaddr_un addr;

 int ret;

 int data_socket;

 char buffer[BUFFER_SIZE];

 /* Create local socket. */

 data_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);

 if (data_socket == -1) {

 perror("socket");

 exit(EXIT_FAILURE);

 }

 /*

 * For portability clear the whole structure, since some

 * implementations have additional (nonstandard) fields in

 * the structure.

 */

 memset(&addr, 0, sizeof(addr));

 /* Connect socket to socket address */

 addr.sun_family = AF_UNIX;

 strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);

 ret = connect(data_socket, (const struct sockaddr *) &addr,

 sizeof(addr));

 if (ret == -1) {

 fprintf(stderr, "The server is down.\n");

 exit(EXIT_FAILURE);

 } Page 16/18

 /* Send arguments. */

 for (int i = 1; i < argc; ++i) {

 ret = write(data_socket, argv[i], strlen(argv[i]) + 1);

 if (ret == -1) {

 perror("write");

 break;

 }

 }

 /* Request result. */

 strcpy(buffer, "END");

 ret = write(data_socket, buffer, strlen(buffer) + 1);

 if (ret == -1) {

 perror("write");

 exit(EXIT_FAILURE);

 }

 /* Receive result. */

 ret = read(data_socket, buffer, sizeof(buffer));

 if (ret == -1) {

 perror("read");

 exit(EXIT_FAILURE);

 }

 /* Ensure buffer is 0-terminated. */

 buffer[sizeof(buffer) - 1] = 0;

 printf("Result = %s\n", buffer);

 /* Close socket. */

 close(data_socket);

 exit(EXIT_SUCCESS);

 }

 For an example of the use of SCM_RIGHTS see cmsg(3).

SEE ALSO

 recvmsg(2), sendmsg(2), socket(2), socketpair(2), cmsg(3), capabilities(7), creden?

 tials(7), socket(7), udp(7)

COLOPHON Page 17/18

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 UNIX(7)

Page 18/18

