PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'unix.7'

$ man unix.7

UNIX(7) Linux Programmer's Manual UNIX(7)

NAME
unix - sockets for local interprocess communication

SYNOPSIS
#include <sys/socket.h>
#include <sys/un.h>
unix_socket = socket(AF_UNIX, type, 0);
error = socketpair(AF_UNIX, type, O, int *sv);

DESCRIPTION
The AF_UNIX (also known as AF_LOCAL) socket family is used to communicate between pro?
cesses on the same machine efficiently. Traditionally, UNIX domain sockets can be either
unnamed, or bound to a filesystem pathname (marked as being of type socket). Linux also
supports an abstract namespace which is independent of the filesystem.
Valid socket types in the UNIX domain are: SOCK_STREAM, for a stream-oriented socket;
SOCK_DGRAM, for a datagram-oriented socket that preserves message boundaries (as on most
UNIX implementations, UNIX domain datagram sockets are always reliable and don't reorder
datagrams); and (since Linux 2.6.4) SOCK_SEQPACKET, for a sequenced-packet socket that is
connection-oriented, preserves message boundaries, and delivers messages in the order that
they were sent.
UNIX domain sockets support passing file descriptors or process credentials to other pro?
cesses using ancillary data.

Address format

A UNIX domain socket address is represented in the following structure:

FPDF Library

Page 1/18



struct sockaddr_un {
sa_family_t sun_family; I* AF_UNIX */
char sun_path[108]; /* Pathname */
h

The sun_family field always contains AF_UNIX. On Linux, sun_path is 108 bytes in size;

see also NOTES, below.

Various systems calls (for example, bind(2), connect(2), and sendto(2)) take a sockaddr_un

argument as input. Some other system calls (for example, getsockname(2), getpeername(2),

recvfrom(2), and accept(2)) return an argument of this type.

Three types of address are distinguished in the sockaddr_un structure:

* pathname: a UNIX domain socket can be bound to a null-terminated filesystem pathname
using bind(2). When the address of a pathname socket is returned (by one of the system
calls noted above), its length is

offsetof(struct sockaddr_un, sun_path) + strlen(sun_path) + 1
and sun_path contains the null-terminated pathname. (On Linux, the above offsetof()
expression equates to the same value as sizeof(sa_family_t), but some other implementa?
tions include other fields before sun_path, so the offsetof() expression more portably
describes the size of the address structure.)
For further details of pathname sockets, see below.

* unnamed: A stream socket that has not been bound to a pathname using bind(2) has no
name. Likewise, the two sockets created by socketpair(2) are unnamed. When the ad?
dress of an unnamed socket is returned, its length is sizeof(sa_family_t), and sun_path
should not be inspected.

* abstract: an abstract socket address is distinguished (from a pathname socket) by the
fact that sun_path[0] is a null byte (\O"). The socket's address in this namespace is
given by the additional bytes in sun_path that are covered by the specified length of
the address structure. (Null bytes in the name have no special significance.) The
name has no connection with filesystem pathnames. When the address of an abstract
socket is returned, the returned addrlen is greater than sizeof(sa_family t) (i.e.,
greater than 2), and the name of the socket is contained in the first (addrlen -
sizeof(sa_family_t)) bytes of sun_path.

Pathname sockets

When binding a socket to a pathname, a few rules should be observed for maximum portabil?

Page 2/18



ity and ease of coding:
* The pathname in sun_path should be null-terminated.
* The length of the pathname, including the terminating null byte, should not exceed the
size of sun_path.
* The addrlen argument that describes the enclosing sockaddr_un structure should have a
value of at least:
offsetof(struct sockaddr_un, sun_path)+strlen(addr.sun_path)+1
or, more simply, addrlen can be specified as sizeof(struct sockaddr_un).
There is some variation in how implementations handle UNIX domain socket addresses that do
not follow the above rules. For example, some (but not all) implementations append a null
terminator if none is present in the supplied sun_path.
When coding portable applications, keep in mind that some implementations have sun_path as
short as 92 bytes.
Various system calls (accept(2), recvfrom(2), getsockname(2), getpeername(2)) return
socket address structures. When applied to UNIX domain sockets, the value-result addrlen
argument supplied to the call should be initialized as above. Upon return, the argument
is set to indicate the actual size of the address structure. The caller should check the
value returned in this argument: if the output value exceeds the input value, then there
is no guarantee that a null terminator is present in sun_path. (See BUGS.)
Pathname socket ownership and permissions
In the Linux implementation, pathname sockets honor the permissions of the directory they
are in. Creation of a new socket fails if the process does not have write and search (ex?
ecute) permission on the directory in which the socket is created.
On Linux, connecting to a stream socket object requires write permission on that socket;
sending a datagram to a datagram socket likewise requires write permission on that socket.
POSIX does not make any statement about the effect of the permissions on a socket file,
and on some systems (e.g., older BSDs), the socket permissions are ignored. Portable pro?
grams should not rely on this feature for security.
When creating a new socket, the owner and group of the socket file are set according to
the usual rules. The socket file has all permissions enabled, other than those that are
turned off by the process umask(2).
The owner, group, and permissions of a pathname socket can be changed (using chown(2) and

chmod(2)). Page 3/18



Abstract sockets
Socket permissions have no meaning for abstract sockets: the process umask(2) has no ef?
fect when binding an abstract socket, and changing the ownership and permissions of the
object (via fchown(2) and fchmod(2)) has no effect on the accessibility of the socket.
Abstract sockets automatically disappear when all open references to the socket are
closed.
The abstract socket namespace is a honportable Linux extension.
Socket options
For historical reasons, these socket options are specified with a SOL_SOCKET type even
though they are AF_UNIX specific. They can be set with setsockopt(2) and read with get?
sockopt(2) by specifying SOL_SOCKET as the socket family.
SO_PASSCRED
Enabling this socket option causes receipt of the credentials of the sending
process in an SCM_CREDENTIALS ancillary message in each subsequently received mes?
sage. The returned credentials are those specified by the sender using SCM_CREDEN?
TIALS, or a default that includes the sender's PID, real user ID, and real group
ID, if the sender did not specify SCM_CREDENTIALS ancillary data.
When this option is set and the socket is not yet connected, a unique name in the
abstract namespace will be generated automatically.
The value given as an argument to setsockopt(2) and returned as the result of get?
sockopt(2) is an integer boolean flag.
SO_PASSSEC
Enables receiving of the SELinux security label of the peer socket in an ancillary
message of type SCM_SECURITY (see below).
The value given as an argument to setsockopt(2) and returned as the result of get?
sockopt(2) is an integer boolean flag.
The SO_PASSSEC option is supported for UNIX domain datagram sockets since Linux
2.6.18; support for UNIX domain stream sockets was added in Linux 4.2.
SO_PEEK_OFF
See socket(7).
SO_PEERCRED
This read-only socket option returns the credentials of the peer process connected

to this socket. The returned credentials are those that were in effect at the time Page 4/18



of the call to connect(2) or socketpair(2).
The argument to getsockopt(2) is a pointer to a ucred structure; define the
_GNU_SOURCE feature test macro to obtain the definition of that structure from
<sys/socket.h>.
The use of this option is possible only for connected AF_UNIX stream sockets and
for AF_UNIX stream and datagram socket pairs created using socketpair(2).
SO_PEERSEC
This read-only socket option returns the security context of the peer socket con?
nected to this socket. By default, this will be the same as the security context
of the process that created the peer socket unless overridden by the policy or by a
process with the required permissions.
The argument to getsockopt(2) is a pointer to a buffer of the specified length in
bytes into which the security context string will be copied. If the buffer length
is less than the length of the security context string, then getsockopt(2) returns
-1, sets errno to ERANGE, and returns the required length via optlen. The caller
should allocate at least NAME_MAX bytes for the buffer initially, although this is
not guaranteed to be sufficient. Resizing the buffer to the returned length and
retrying may be necessary.
The security context string may include a terminating null character in the re?
turned length, but is not guaranteed to do so: a security context "foo" might be
represented as either {'f','0','0'} of length 3 or {'f',;'0','0',"\0'} of length 4,
which are considered to be interchangeable. The string is printable, does not con?
tain non-terminating null characters, and is in an unspecified encoding (in partic?
ular, it is not guaranteed to be ASCII or UTF-8).
The use of this option for sockets in the AF_UNIX address family is supported since
Linux 2.6.2 for connected stream sockets, and since Linux 4.18 also for stream and
datagram socket pairs created using socketpair(2).
Autobind feature
If a bind(2) call specifies addrlen as sizeof(sa_family_t), or the SO_PASSCRED socket op?
tion was specified for a socket that was not explicitly bound to an address, then the
socket is autobound to an abstract address. The address consists of a null byte followed
by 5 bytes in the character set [0-9a-f]. Thus, there is a limit of 2720 autobind ad?

dresses. (From Linux 2.1.15, when the autobind feature was added, 8 bytes were used, and

Page 5/18



the limit was thus 2732 autobind addresses. The change to 5 bytes came in Linux 2.3.15.)
Sockets API
The following paragraphs describe domain-specific details and unsupported features of the
sockets API for UNIX domain sockets on Linux.
UNIX domain sockets do not support the transmission of out-of-band data (the MSG_OOB flag
for send(2) and recv(2)).
The send(2) MSG_MORE flag is not supported by UNIX domain sockets.
Before Linux 3.4, the use of MSG_TRUNC in the flags argument of recv(2) was not supported
by UNIX domain sockets.
The SO_SNDBUF socket option does have an effect for UNIX domain sockets, but the SO_RCVBUF
option does not. For datagram sockets, the SO_SNDBUF value imposes an upper limit on the
size of outgoing datagrams. This limit is calculated as the doubled (see socket(7)) op?
tion value less 32 bytes used for overhead.
Ancillary messages

Ancillary data is sent and received using sendmsg(2) and recvmsg(2). For historical rea?
sons, the ancillary message types listed below are specified with a SOL_SOCKET type even
though they are AF_UNIX specific. To send them, set the cmsg_level field of the struct
cmsghdr to SOL_SOCKET and the cmsg_type field to the type. For more information, see
cmsg(3).
SCM_RIGHTS

Send or receive a set of open file descriptors from another process. The data por?

tion contains an integer array of the file descriptors.

Commonly, this operation is referred to as "passing a file descriptor” to another

process. However, more accurately, what is being passed is a reference to an open

file description (see open(2)), and in the receiving process it is likely that a

different file descriptor number will be used. Semantically, this operation is

equivalent to duplicating (dup(2)) a file descriptor into the file descriptor table

of another process.

If the buffer used to receive the ancillary data containing file descriptors is too

small (or is absent), then the ancillary data is truncated (or discarded) and the

excess file descriptors are automatically closed in the receiving process.

If the number of file descriptors received in the ancillary data would cause the

process to exceed its RLIMIT_NOFILE resource limit (see getrlimit(2)), the excess Page 6/18



file descriptors are automatically closed in the receiving process.
The kernel constant SCM_MAX_FD defines a limit on the number of file descriptors in
the array. Attempting to send an array larger than this limit causes sendmsg(2) to
fail with the error EINVAL. SCM_MAX_FD has the value 253 (or 255 in kernels before
2.6.38).
SCM_CREDENTIALS
Send or receive UNIX credentials. This can be used for authentication. The cre?
dentials are passed as a struct ucred ancillary message. This structure is defined
in <sys/socket.h> as follows:
struct ucred {
pid_t pid; /* Process ID of the sending process */
uid_tuid; /* User ID of the sending process */
gid_tgid; /* Group ID of the sending process */
h
Since glibc 2.8, the _GNU_SOURCE feature test macro must be defined (before includ?
ing any header files) in order to obtain the definition of this structure.
The credentials which the sender specifies are checked by the kernel. A privileged
process is allowed to specify values that do not match its own. The sender must
specify its own process ID (unless it has the capability CAP_SYS_ADMIN, in which
case the PID of any existing process may be specified), its real user ID, effective
user ID, or saved set-user-ID (unless it has CAP_SETUID), and its real group ID,
effective group ID, or saved set-group-ID (unless it has CAP_SETGID).
To receive a struct ucred message, the SO_PASSCRED option must be enabled on the
socket.
SCM_SECURITY
Receive the SELinux security context (the security label) of the peer socket. The
received ancillary data is a null-terminated string containing the security con?
text. The receiver should allocate at least NAME_MAX bytes in the data portion of
the ancillary message for this data.
To receive the security context, the SO_PASSSEC option must be enabled on the
socket (see above).
When sending ancillary data with sendmsg(2), only one item of each of the above types may

be included in the sent message. Page 7/18



At least one byte of real data should be sent when sending ancillary data. On Linux, this
is required to successfully send ancillary data over a UNIX domain stream socket. When
sending ancillary data over a UNIX domain datagram socket, it is not necessary on Linux to
send any accompanying real data. However, portable applications should also include at
least one byte of real data when sending ancillary data over a datagram socket.
When receiving from a stream socket, ancillary data forms a kind of barrier for the re?
ceived data. For example, suppose that the sender transmits as follows:
1. sendmsg(2) of four bytes, with no ancillary data.
2. sendmsg(2) of one byte, with ancillary data.
3. sendmsg(2) of four bytes, with no ancillary data.
Suppose that the receiver now performs recvmsg(2) calls each with a buffer size of 20
bytes. The first call will receive five bytes of data, along with the ancillary data sent
by the second sendmsg(2) call. The next call will receive the remaining four bytes of
data.
If the space allocated for receiving incoming ancillary data is too small then the ancil?
lary data is truncated to the number of headers that will fit in the supplied buffer (or,
in the case of an SCM_RIGHTS file descriptor list, the list of file descriptors may be
truncated). If no buffer is provided for incoming ancillary data (i.e., the msg_control
field of the msghdr structure supplied to recvmsg(2) is NULL), then the incoming ancillary
data is discarded. In both of these cases, the MSG_CTRUNC flag will be set in the
msg.msg_flags value returned by recvmsg(2).
loctls
The following ioctl(2) calls return information in value. The correct syntax is:
int value;
error = ioctl(unix_socket, ioctl_type, &value);
ioctl_type can be:
SIOCINQ
For SOCK_STREAM sockets, this call returns the number of unread bytes in the re?
ceive buffer. The socket must not be in LISTEN state, otherwise an error (EINVAL)
is returned. SIOCINQ is defined in <linux/sockios.h>. Alternatively, you can use
the synonymous FIONREAD, defined in <sys/ioctl.h>. For SOCK_DGRAM sockets, the re?
turned value is the same as for Internet domain datagram sockets; see udp(7).

ERRORS Page 8/18



EADDRINUSE
The specified local address is already in use or the filesystem socket object al?
ready exists.

EBADF This error can occur for sendmsg(2) when sending a file descriptor as ancillary
data over a UNIX domain socket (see the description of SCM_RIGHTS, above), and in?
dicates that the file descriptor number that is being sent is not valid (e.g., it
is not an open file descriptor).

ECONNREFUSED
The remote address specified by connect(2) was not a listening socket. This error
can also occur if the target pathname is not a socket.

ECONNRESET
Remote socket was unexpectedly closed.

EFAULT User memory address was not valid.

EINVAL Invalid argument passed. A common cause is that the value AF_UNIX was not speci?
fied in the sun_type field of passed addresses, or the socket was in an invalid
state for the applied operation.

EISCONN
connect(2) called on an already connected socket or a target address was specified
on a connected socket.

ENOENT The pathname in the remote address specified to connect(2) did not exist.

ENOMEM Out of memory.

ENOTCONN
Socket operation needs a target address, but the socket is not connected.

EOPNOTSUPP
Stream operation called on non-stream oriented socket or tried to use the out-of-
band data option.

EPERM The sender passed invalid credentials in the struct ucred.

EPIPE Remote socket was closed on a stream socket. If enabled, a SIGPIPE is sent as
well. This can be avoided by passing the MSG_NOSIGNAL flag to send(2) or
sendmsg(2).

EPROTONOSUPPORT
Passed protocol is not AF_UNIX.

EPROTOTYPE Page 9/18



Remote socket does not match the local socket type (SOCK_DGRAM versus SOCK_STREAM).
ESOCKTNOSUPPORT
Unknown socket type.
ESRCH While sending an ancillary message containing credentials (SCM_CREDENTIALS), the
caller specified a PID that does not match any existing process.
ETOOMANYREFS
This error can occur for sendmsg(2) when sending a file descriptor as ancillary
data over a UNIX domain socket (see the description of SCM_RIGHTS, above). It oc?
curs if the number of "in-flight" file descriptors exceeds the RLIMIT_NOFILE re?
source limit and the caller does not have the CAP_SYS_RESOURCE capability. An in-
flight file descriptor is one that has been sent using sendmsg(2) but has not yet
been accepted in the recipient process using recvmsg(2).
This error is diagnosed since mainline Linux 4.5 (and in some earlier kernel ver?
sions where the fix has been backported). In earlier kernel versions, it was pos?
sible to place an unlimited number of file descriptors in flight, by sending each
file descriptor with sendmsg(2) and then closing the file descriptor so that it was
not accounted against the RLIMIT_NOFILE resource limit.
Other errors can be generated by the generic socket layer or by the filesystem while gen?
erating a filesystem socket object. See the appropriate manual pages for more informa?
tion.
VERSIONS
SCM_CREDENTIALS and the abstract namespace were introduced with Linux 2.2 and should not
be used in portable programs. (Some BSD-derived systems also support credential passing,
but the implementation details differ.)
NOTES
Binding to a socket with a filename creates a socket in the filesystem that must be
deleted by the caller when it is no longer needed (using unlink(2)). The usual UNIX
close-behind semantics apply; the socket can be unlinked at any time and will be finally
removed from the filesystem when the last reference to it is closed.
To pass file descriptors or credentials over a SOCK_STREAM socket, you must to send or re?
ceive at least one byte of nonancillary data in the same sendmsg(2) or recvmsg(2) call.

UNIX domain stream sockets do not support the notion of out-of-band data.

BUGS Page 10/18



When binding a socket to an address, Linux is one of the implementations that appends a
null terminator if none is supplied in sun_path. In most cases this is unproblematic:
when the socket address is retrieved, it will be one byte longer than that supplied when
the socket was bound. However, there is one case where confusing behavior can result: if
108 non-null bytes are supplied when a socket is bound, then the addition of the null ter?
minator takes the length of the pathname beyond sizeof(sun_path). Consequently, when re?
trieving the socket address (for example, via accept(2)), if the input addrlen argument
for the retrieving call is specified as sizeof(struct sockaddr_un), then the returned ad?
dress structure won't have a null terminator in sun_path.
In addition, some implementations don't require a null terminator when binding a socket
(the addrlen argument is used to determine the length of sun_path) and when the socket ad?
dress is retrieved on these implementations, there is no null terminator in sun_path.
Applications that retrieve socket addresses can (portably) code to handle the possibility
that there is no null terminator in sun_path by respecting the fact that the number of
valid bytes in the pathname is:

strnlen(addr.sun_path, addrlen - offsetof(sockaddr_un, sun_path))
Alternatively, an application can retrieve the socket address by allocating a buffer of
size sizeof(struct sockaddr_un)+1 that is zeroed out before the retrieval. The retrieving
call can specify addrlen as sizeof(struct sockaddr_un), and the extra zero byte ensures
that there will be a null terminator for the string returned in sun_path:

void *addrp;

addrlen = sizeof(struct sockaddr_un);

addrp = malloc(addrlen + 1);

if (addrp == NULL)

/* Handle error */ ;
memset(addrp, 0, addrlen + 1);
if (getsockname(sfd, (struct sockaddr *) addrp, &addrlen)) == -1)
/* handle error */ ;

printf("sun_path = %s\n", ((struct sockaddr_un *) addrp)->sun_path);
This sort of messiness can be avoided if it is guaranteed that the applications that cre?
ate pathname sockets follow the rules outlined above under Pathname sockets.

EXAMPLES

The following code demonstrates the use of sequenced-packet sockets for local interprocess Page 11/18



communication. It consists of two programs. The server program waits for a connection
from the client program. The client sends each of its command-line arguments in separate
messages. The server treats the incoming messages as integers and adds them up. The
client sends the command string "END". The server sends back a message containing the sum
of the client's integers. The client prints the sum and exits. The server waits for the
next client to connect. To stop the server, the client is called with the command-line
argument "DOWN".
The following output was recorded while running the server in the background and repeat?
edly executing the client. Execution of the server program ends when it receives the
"DOWN" command.
Example output

$ Iserver &

[1] 25887

$ .Uclient3 4

Result=7

$ ./client 11 -5

Result = 6

$ ./client DOWN

Result =0
[1]+ Done Jserver
$

Program source
/*
* File connection.h
*/
#define SOCKET_NAME "tmp/9Lq7BNBnBycd6nxy.socket"
#define BUFFER_SIZE 12
/*
* File server.c
*/
#include <stdio.h>
#include <stdlib.h>

#include <string.h> Page 12/18



#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include "connection.h"
int
main(int argc, char *argv[])
{
struct sockaddr_un name;
int down_flag = 0;
int ret;
int connection_socket;
int data_socket;
int result;
char buffer[BUFFER_SIZE];
/* Create local socket. */
connection_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);
if (connection_socket == -1) {
perror("socket");
exit(EXIT_FAILURE);
}
[x
* For portability clear the whole structure, since some
* implementations have additional (nonstandard) fields in
* the structure.
*/
memset(&name, 0, sizeof(name));
/* Bind socket to socket name. */
name.sun_family = AF_UNIX;
strncpy(name.sun_path, SOCKET_NAME, sizeof(name.sun_path) - 1);
ret = bind(connection_socket, (const struct sockaddr *) &name,
sizeof(name));
if (ret==-1) {

perror("bind"); Page 13/18



exit(EXIT_FAILURE);
}
I
* Prepare for accepting connections. The backlog size is set
*to 20. So while one request is being processed other requests
* can be waiting.
*/
ret = listen(connection_socket, 20);
if (ret==-1){
perror(“listen™);
exit(EXIT_FAILURE);
}
/* This is the main loop for handling connections. */
for (3;) {
[* Wait for incoming connection. */
data_socket = accept(connection_socket, NULL, NULL);
if (data_socket == -1) {
perror("accept");
exit(EXIT_FAILURE);
}
result = 0O;
for () {
/* Wait for next data packet. */
ret = read(data_socket, buffer, sizeof(buffer));
if (ret==-1){
perror(“read");
exit(EXIT_FAILURE);
}
[* Ensure buffer is O-terminated. */
buffer[sizeof(buffer) - 1] = 0;
/* Handle commands. */
if (Istrncmp(buffer, "DOWN?", sizeof(buffer))) {

down_flag = 1; Page 14/18



break;
}
if (Istrncmp(buffer, "END", sizeof(buffer))) {
break;
}
/* Add received summand. */
result += atoi(buffer);
}
* Send result. */
sprintf(buffer, "%d", result);
ret = write(data_socket, buffer, sizeof(buffer));
if (ret ==-1) {
perror(“write");
exit(EXIT_FAILURE);
}
/* Close socket. */
close(data_socket);
/* Quit on DOWN command. */
if (down_flag) {

break;

}

close(connection_socket);
/* Unlink the socket. */
unlink(SOCKET_NAME);
exit(EXIT_SUCCESS);

}

/%

* File client.c

*

#include <errno.h>

#include <stdio.h>

#include <stdlib.h> Page 15/18



#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include "connection.h"
int
main(int argc, char *argv[])
{
struct sockaddr_un addr;
int ret;
int data_socket;
char buffer[BUFFER_SIZE];
/* Create local socket. */
data_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);
if (data_socket == -1) {
perror("socket");
exit(EXIT_FAILURE);
}
[x
* For portability clear the whole structure, since some
* implementations have additional (nonstandard) fields in
* the structure.
*/
memset(&addr, 0, sizeof(addr));
/* Connect socket to socket address */
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);
ret = connect(data_socket, (const struct sockaddr *) &addr,
sizeof(addr));
if (ret==-1) {
fprintf(stderr, "The server is down.\n");

exit(EXIT_FAILURE);

} Page 16/18



/* Send arguments. */
for (inti=1;i<argc; ++i) {
ret = write(data_socket, argv][i], strlen(argv(i]) + 1);
if (ret ==-1) {
perror(“write");

break;

}

/* Request result. */
strepy(buffer, "END");
ret = write(data_socket, buffer, strlen(buffer) + 1);
if (ret ==-1) {
perror("write");
exit(EXIT_FAILURE);
}
I* Receive result. */
ret = read(data_socket, buffer, sizeof(buffer));
if (ret ==-1) {
perror("read");
exit(EXIT_FAILURE);
}
[* Ensure buffer is O-terminated. */
buffer[sizeof(buffer) - 1] = 0;
printf("Result = %s\n", buffer);
/* Close socket. */
close(data_socket);
exit(EXIT_SUCCESS);
}
For an example of the use of SCM_RIGHTS see cmsg(3).
SEE ALSO
recvmsg(2), sendmsg(2), socket(2), socketpair(2), cmsg(3), capabilities(7), creden?
tials(7), socket(7), udp(7)

COLOPHON Page 17/18



This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 UNIX(7)

Page 18/18



