
Rocky Enterprise Linux 9.2 Manual Pages on command 'unlzma.1'

$ man unlzma.1

XZ(1) XZ Utils XZ(1)

NAME

 xz, unxz, xzcat, lzma, unlzma, lzcat - Compress or decompress .xz and .lzma files

SYNOPSIS

 xz [option...] [file...]

COMMAND ALIASES

 unxz is equivalent to xz --decompress.

 xzcat is equivalent to xz --decompress --stdout.

 lzma is equivalent to xz --format=lzma.

 unlzma is equivalent to xz --format=lzma --decompress.

 lzcat is equivalent to xz --format=lzma --decompress --stdout.

 When writing scripts that need to decompress files, it is recommended to always use the

 name xz with appropriate arguments (xz -d or xz -dc) instead of the names unxz and xzcat.

DESCRIPTION

 xz is a general-purpose data compression tool with command line syntax similar to gzip(1)

 and bzip2(1). The native file format is the .xz format, but the legacy .lzma format used

 by LZMA Utils and raw compressed streams with no container format headers are also sup?

 ported.

 xz compresses or decompresses each file according to the selected operation mode. If no

 files are given or file is -, xz reads from standard input and writes the processed data

 to standard output. xz will refuse (display an error and skip the file) to write com?

 pressed data to standard output if it is a terminal. Similarly, xz will refuse to read

 compressed data from standard input if it is a terminal. Page 1/31

 Unless --stdout is specified, files other than - are written to a new file whose name is

 derived from the source file name:

 ? When compressing, the suffix of the target file format (.xz or .lzma) is appended to

 the source filename to get the target filename.

 ? When decompressing, the .xz or .lzma suffix is removed from the filename to get the

 target filename. xz also recognizes the suffixes .txz and .tlz, and replaces them with

 the .tar suffix.

 If the target file already exists, an error is displayed and the file is skipped.

 Unless writing to standard output, xz will display a warning and skip the file if any of

 the following applies:

 ? File is not a regular file. Symbolic links are not followed, and thus they are not

 considered to be regular files.

 ? File has more than one hard link.

 ? File has setuid, setgid, or sticky bit set.

 ? The operation mode is set to compress and the file already has a suffix of the target

 file format (.xz or .txz when compressing to the .xz format, and .lzma or .tlz when

 compressing to the .lzma format).

 ? The operation mode is set to decompress and the file doesn't have a suffix of any of

 the supported file formats (.xz, .txz, .lzma, or .tlz).

 After successfully compressing or decompressing the file, xz copies the owner, group, per?

 missions, access time, and modification time from the source file to the target file. If

 copying the group fails, the permissions are modified so that the target file doesn't be?

 come accessible to users who didn't have permission to access the source file. xz doesn't

 support copying other metadata like access control lists or extended attributes yet.

 Once the target file has been successfully closed, the source file is removed unless

 --keep was specified. The source file is never removed if the output is written to stan?

 dard output.

 Sending SIGINFO or SIGUSR1 to the xz process makes it print progress information to stan?

 dard error. This has only limited use since when standard error is a terminal, using

 --verbose will display an automatically updating progress indicator.

 Memory usage

 The memory usage of xz varies from a few hundred kilobytes to several gigabytes depending

 on the compression settings. The settings used when compressing a file determine the mem? Page 2/31

 ory requirements of the decompressor. Typically the decompressor needs 5 % to 20 % of the

 amount of memory that the compressor needed when creating the file. For example, decom?

 pressing a file created with xz -9 currently requires 65 MiB of memory. Still, it is pos?

 sible to have .xz files that require several gigabytes of memory to decompress.

 Especially users of older systems may find the possibility of very large memory usage an?

 noying. To prevent uncomfortable surprises, xz has a built-in memory usage limiter, which

 is disabled by default. While some operating systems provide ways to limit the memory us?

 age of processes, relying on it wasn't deemed to be flexible enough (for example, using

 ulimit(1) to limit virtual memory tends to cripple mmap(2)).

 The memory usage limiter can be enabled with the command line option --memlimit=limit.

 Often it is more convenient to enable the limiter by default by setting the environment

 variable XZ_DEFAULTS, for example, XZ_DEFAULTS=--memlimit=150MiB. It is possible to set

 the limits separately for compression and decompression by using --memlimit-compress=limit

 and --memlimit-decompress=limit. Using these two options outside XZ_DEFAULTS is rarely

 useful because a single run of xz cannot do both compression and decompression and --mem?

 limit=limit (or -M limit) is shorter to type on the command line.

 If the specified memory usage limit is exceeded when decompressing, xz will display an er?

 ror and decompressing the file will fail. If the limit is exceeded when compressing, xz

 will try to scale the settings down so that the limit is no longer exceeded (except when

 using --format=raw or --no-adjust). This way the operation won't fail unless the limit is

 very small. The scaling of the settings is done in steps that don't match the compression

 level presets, for example, if the limit is only slightly less than the amount required

 for xz -9, the settings will be scaled down only a little, not all the way down to xz -8.

 Concatenation and padding with .xz files

 It is possible to concatenate .xz files as is. xz will decompress such files as if they

 were a single .xz file.

 It is possible to insert padding between the concatenated parts or after the last part.

 The padding must consist of null bytes and the size of the padding must be a multiple of

 four bytes. This can be useful, for example, if the .xz file is stored on a medium that

 measures file sizes in 512-byte blocks.

 Concatenation and padding are not allowed with .lzma files or raw streams.

OPTIONS

 Integer suffixes and special values Page 3/31

 In most places where an integer argument is expected, an optional suffix is supported to

 easily indicate large integers. There must be no space between the integer and the suf?

 fix.

 KiB Multiply the integer by 1,024 (2^10). Ki, k, kB, K, and KB are accepted as syn?

 onyms for KiB.

 MiB Multiply the integer by 1,048,576 (2^20). Mi, m, M, and MB are accepted as syn?

 onyms for MiB.

 GiB Multiply the integer by 1,073,741,824 (2^30). Gi, g, G, and GB are accepted as

 synonyms for GiB.

 The special value max can be used to indicate the maximum integer value supported by the

 option.

 Operation mode

 If multiple operation mode options are given, the last one takes effect.

 -z, --compress

 Compress. This is the default operation mode when no operation mode option is

 specified and no other operation mode is implied from the command name (for exam?

 ple, unxz implies --decompress).

 -d, --decompress, --uncompress

 Decompress.

 -t, --test

 Test the integrity of compressed files. This option is equivalent to --decompress

 --stdout except that the decompressed data is discarded instead of being written to

 standard output. No files are created or removed.

 -l, --list

 Print information about compressed files. No uncompressed output is produced, and

 no files are created or removed. In list mode, the program cannot read the com?

 pressed data from standard input or from other unseekable sources.

 The default listing shows basic information about files, one file per line. To get

 more detailed information, use also the --verbose option. For even more informa?

 tion, use --verbose twice, but note that this may be slow, because getting all the

 extra information requires many seeks. The width of verbose output exceeds 80

 characters, so piping the output to, for example, less -S may be convenient if the

 terminal isn't wide enough. Page 4/31

 The exact output may vary between xz versions and different locales. For machine-

 readable output, --robot --list should be used.

 Operation modifiers

 -k, --keep

 Don't delete the input files.

 Since xz 5.4.0, this option also makes xz compress or decompress even if the input

 is a symbolic link to a regular file, has more than one hard link, or has the se?

 tuid, setgid, or sticky bit set. The setuid, setgid, and sticky bits are not

 copied to the target file. In earlier versions this was only done with --force.

 -f, --force

 This option has several effects:

 ? If the target file already exists, delete it before compressing or decompress?

 ing.

 ? Compress or decompress even if the input is a symbolic link to a regular file,

 has more than one hard link, or has the setuid, setgid, or sticky bit set. The

 setuid, setgid, and sticky bits are not copied to the target file.

 ? When used with --decompress --stdout and xz cannot recognize the type of the

 source file, copy the source file as is to standard output. This allows xzcat

 --force to be used like cat(1) for files that have not been compressed with xz.

 Note that in future, xz might support new compressed file formats, which may

 make xz decompress more types of files instead of copying them as is to standard

 output. --format=format can be used to restrict xz to decompress only a single

 file format.

 -c, --stdout, --to-stdout

 Write the compressed or decompressed data to standard output instead of a file.

 This implies --keep.

 --single-stream

 Decompress only the first .xz stream, and silently ignore possible remaining input

 data following the stream. Normally such trailing garbage makes xz display an er?

 ror.

 xz never decompresses more than one stream from .lzma files or raw streams, but

 this option still makes xz ignore the possible trailing data after the .lzma file

 or raw stream. Page 5/31

 This option has no effect if the operation mode is not --decompress or --test.

 --no-sparse

 Disable creation of sparse files. By default, if decompressing into a regular

 file, xz tries to make the file sparse if the decompressed data contains long se?

 quences of binary zeros. It also works when writing to standard output as long as

 standard output is connected to a regular file and certain additional conditions

 are met to make it safe. Creating sparse files may save disk space and speed up

 the decompression by reducing the amount of disk I/O.

 -S .suf, --suffix=.suf

 When compressing, use .suf as the suffix for the target file instead of .xz or

 .lzma. If not writing to standard output and the source file already has the suf?

 fix .suf, a warning is displayed and the file is skipped.

 When decompressing, recognize files with the suffix .suf in addition to files with

 the .xz, .txz, .lzma, or .tlz suffix. If the source file has the suffix .suf, the

 suffix is removed to get the target filename.

 When compressing or decompressing raw streams (--format=raw), the suffix must al?

 ways be specified unless writing to standard output, because there is no default

 suffix for raw streams.

 --files[=file]

 Read the filenames to process from file; if file is omitted, filenames are read

 from standard input. Filenames must be terminated with the newline character. A

 dash (-) is taken as a regular filename; it doesn't mean standard input. If file?

 names are given also as command line arguments, they are processed before the file?

 names read from file.

 --files0[=file]

 This is identical to --files[=file] except that each filename must be terminated

 with the null character.

 Basic file format and compression options

 -F format, --format=format

 Specify the file format to compress or decompress:

 auto This is the default. When compressing, auto is equivalent to xz. When de?

 compressing, the format of the input file is automatically detected. Note

 that raw streams (created with --format=raw) cannot be auto-detected. Page 6/31

 xz Compress to the .xz file format, or accept only .xz files when decompress?

 ing.

 lzma, alone

 Compress to the legacy .lzma file format, or accept only .lzma files when

 decompressing. The alternative name alone is provided for backwards compat?

 ibility with LZMA Utils.

 raw Compress or uncompress a raw stream (no headers). This is meant for ad?

 vanced users only. To decode raw streams, you need use --format=raw and ex?

 plicitly specify the filter chain, which normally would have been stored in

 the container headers.

 -C check, --check=check

 Specify the type of the integrity check. The check is calculated from the uncom?

 pressed data and stored in the .xz file. This option has an effect only when com?

 pressing into the .xz format; the .lzma format doesn't support integrity checks.

 The integrity check (if any) is verified when the .xz file is decompressed.

 Supported check types:

 none Don't calculate an integrity check at all. This is usually a bad idea.

 This can be useful when integrity of the data is verified by other means

 anyway.

 crc32 Calculate CRC32 using the polynomial from IEEE-802.3 (Ethernet).

 crc64 Calculate CRC64 using the polynomial from ECMA-182. This is the default,

 since it is slightly better than CRC32 at detecting damaged files and the

 speed difference is negligible.

 sha256 Calculate SHA-256. This is somewhat slower than CRC32 and CRC64.

 Integrity of the .xz headers is always verified with CRC32. It is not possible to

 change or disable it.

 --ignore-check

 Don't verify the integrity check of the compressed data when decompressing. The

 CRC32 values in the .xz headers will still be verified normally.

 Do not use this option unless you know what you are doing. Possible reasons to use

 this option:

 ? Trying to recover data from a corrupt .xz file.

 ? Speeding up decompression. This matters mostly with SHA-256 or with files that Page 7/31

 have compressed extremely well. It's recommended to not use this option for

 this purpose unless the file integrity is verified externally in some other way.

 -0 ... -9

 Select a compression preset level. The default is -6. If multiple preset levels

 are specified, the last one takes effect. If a custom filter chain was already

 specified, setting a compression preset level clears the custom filter chain.

 The differences between the presets are more significant than with gzip(1) and

 bzip2(1). The selected compression settings determine the memory requirements of

 the decompressor, thus using a too high preset level might make it painful to de?

 compress the file on an old system with little RAM. Specifically, it's not a good

 idea to blindly use -9 for everything like it often is with gzip(1) and bzip2(1).

 -0 ... -3

 These are somewhat fast presets. -0 is sometimes faster than gzip -9 while

 compressing much better. The higher ones often have speed comparable to

 bzip2(1) with comparable or better compression ratio, although the results

 depend a lot on the type of data being compressed.

 -4 ... -6

 Good to very good compression while keeping decompressor memory usage rea?

 sonable even for old systems. -6 is the default, which is usually a good

 choice for distributing files that need to be decompressible even on systems

 with only 16 MiB RAM. (-5e or -6e may be worth considering too. See --ex?

 treme.)

 -7 ... -9

 These are like -6 but with higher compressor and decompressor memory re?

 quirements. These are useful only when compressing files bigger than 8 MiB,

 16 MiB, and 32 MiB, respectively.

 On the same hardware, the decompression speed is approximately a constant number of

 bytes of compressed data per second. In other words, the better the compression,

 the faster the decompression will usually be. This also means that the amount of

 uncompressed output produced per second can vary a lot.

 The following table summarises the features of the presets:

 Preset DictSize CompCPU CompMem DecMem

 -0 256 KiB 0 3 MiB 1 MiB Page 8/31

 -1 1 MiB 1 9 MiB 2 MiB

 -2 2 MiB 2 17 MiB 3 MiB

 -3 4 MiB 3 32 MiB 5 MiB

 -4 4 MiB 4 48 MiB 5 MiB

 -5 8 MiB 5 94 MiB 9 MiB

 -6 8 MiB 6 94 MiB 9 MiB

 -7 16 MiB 6 186 MiB 17 MiB

 -8 32 MiB 6 370 MiB 33 MiB

 -9 64 MiB 6 674 MiB 65 MiB

 Column descriptions:

 ? DictSize is the LZMA2 dictionary size. It is waste of memory to use a dictio?

 nary bigger than the size of the uncompressed file. This is why it is good to

 avoid using the presets -7 ... -9 when there's no real need for them. At -6 and

 lower, the amount of memory wasted is usually low enough to not matter.

 ? CompCPU is a simplified representation of the LZMA2 settings that affect com?

 pression speed. The dictionary size affects speed too, so while CompCPU is the

 same for levels -6 ... -9, higher levels still tend to be a little slower. To

 get even slower and thus possibly better compression, see --extreme.

 ? CompMem contains the compressor memory requirements in the single-threaded mode.

 It may vary slightly between xz versions. Memory requirements of some of the

 future multithreaded modes may be dramatically higher than that of the single-

 threaded mode.

 ? DecMem contains the decompressor memory requirements. That is, the compression

 settings determine the memory requirements of the decompressor. The exact de?

 compressor memory usage is slightly more than the LZMA2 dictionary size, but the

 values in the table have been rounded up to the next full MiB.

 -e, --extreme

 Use a slower variant of the selected compression preset level (-0 ... -9) to hope?

 fully get a little bit better compression ratio, but with bad luck this can also

 make it worse. Decompressor memory usage is not affected, but compressor memory

 usage increases a little at preset levels -0 ... -3.

 Since there are two presets with dictionary sizes 4 MiB and 8 MiB, the presets -3e

 and -5e use slightly faster settings (lower CompCPU) than -4e and -6e, respec? Page 9/31

 tively. That way no two presets are identical.

 Preset DictSize CompCPU CompMem DecMem

 -0e 256 KiB 8 4 MiB 1 MiB

 -1e 1 MiB 8 13 MiB 2 MiB

 -2e 2 MiB 8 25 MiB 3 MiB

 -3e 4 MiB 7 48 MiB 5 MiB

 -4e 4 MiB 8 48 MiB 5 MiB

 -5e 8 MiB 7 94 MiB 9 MiB

 -6e 8 MiB 8 94 MiB 9 MiB

 -7e 16 MiB 8 186 MiB 17 MiB

 -8e 32 MiB 8 370 MiB 33 MiB

 -9e 64 MiB 8 674 MiB 65 MiB

 For example, there are a total of four presets that use 8 MiB dictionary, whose or?

 der from the fastest to the slowest is -5, -6, -5e, and -6e.

 --fast

 --best These are somewhat misleading aliases for -0 and -9, respectively. These are pro?

 vided only for backwards compatibility with LZMA Utils. Avoid using these options.

 --block-size=size

 When compressing to the .xz format, split the input data into blocks of size bytes.

 The blocks are compressed independently from each other, which helps with multi-

 threading and makes limited random-access decompression possible. This option is

 typically used to override the default block size in multi-threaded mode, but this

 option can be used in single-threaded mode too.

 In multi-threaded mode about three times size bytes will be allocated in each

 thread for buffering input and output. The default size is three times the LZMA2

 dictionary size or 1 MiB, whichever is more. Typically a good value is 2-4 times

 the size of the LZMA2 dictionary or at least 1 MiB. Using size less than the LZMA2

 dictionary size is waste of RAM because then the LZMA2 dictionary buffer will never

 get fully used. The sizes of the blocks are stored in the block headers, which a

 future version of xz will use for multi-threaded decompression.

 In single-threaded mode no block splitting is done by default. Setting this option

 doesn't affect memory usage. No size information is stored in block headers, thus

 files created in single-threaded mode won't be identical to files created in multi- Page 10/31

 threaded mode. The lack of size information also means that a future version of xz

 won't be able decompress the files in multi-threaded mode.

 --block-list=sizes

 When compressing to the .xz format, start a new block after the given intervals of

 uncompressed data.

 The uncompressed sizes of the blocks are specified as a comma-separated list.

 Omitting a size (two or more consecutive commas) is a shorthand to use the size of

 the previous block.

 If the input file is bigger than the sum of sizes, the last value in sizes is re?

 peated until the end of the file. A special value of 0 may be used as the last

 value to indicate that the rest of the file should be encoded as a single block.

 If one specifies sizes that exceed the encoder's block size (either the default

 value in threaded mode or the value specified with --block-size=size), the encoder

 will create additional blocks while keeping the boundaries specified in sizes. For

 example, if one specifies --block-size=10MiB

 --block-list=5MiB,10MiB,8MiB,12MiB,24MiB and the input file is 80 MiB, one will get

 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4, 10, 10, and 1 MiB.

 In multi-threaded mode the sizes of the blocks are stored in the block headers.

 This isn't done in single-threaded mode, so the encoded output won't be identical

 to that of the multi-threaded mode.

 --flush-timeout=timeout

 When compressing, if more than timeout milliseconds (a positive integer) has passed

 since the previous flush and reading more input would block, all the pending input

 data is flushed from the encoder and made available in the output stream. This can

 be useful if xz is used to compress data that is streamed over a network. Small

 timeout values make the data available at the receiving end with a small delay, but

 large timeout values give better compression ratio.

 This feature is disabled by default. If this option is specified more than once,

 the last one takes effect. The special timeout value of 0 can be used to explic?

 itly disable this feature.

 This feature is not available on non-POSIX systems.

 This feature is still experimental. Currently xz is unsuitable for decompressing

 the stream in real time due to how xz does buffering. Page 11/31

 --memlimit-compress=limit

 Set a memory usage limit for compression. If this option is specified multiple

 times, the last one takes effect.

 If the compression settings exceed the limit, xz will adjust the settings downwards

 so that the limit is no longer exceeded and display a notice that automatic adjust?

 ment was done. Such adjustments are not made when compressing with --format=raw or

 if --no-adjust has been specified. In those cases, an error is displayed and xz

 will exit with exit status 1.

 The limit can be specified in multiple ways:

 ? The limit can be an absolute value in bytes. Using an integer suffix like MiB

 can be useful. Example: --memlimit-compress=80MiB

 ? The limit can be specified as a percentage of total physical memory (RAM). This

 can be useful especially when setting the XZ_DEFAULTS environment variable in a

 shell initialization script that is shared between different computers. That

 way the limit is automatically bigger on systems with more memory. Example:

 --memlimit-compress=70%

 ? The limit can be reset back to its default value by setting it to 0. This is

 currently equivalent to setting the limit to max (no memory usage limit). Once

 multithreading support has been implemented, there may be a difference between 0

 and max for the multithreaded case, so it is recommended to use 0 instead of max

 until the details have been decided.

 For 32-bit xz there is a special case: if the limit would be over 4020 MiB, the

 limit is set to 4020 MiB. (The values 0 and max aren't affected by this. A simi?

 lar feature doesn't exist for decompression.) This can be helpful when a 32-bit

 executable has access to 4 GiB address space while hopefully doing no harm in other

 situations.

 See also the section Memory usage.

 --memlimit-decompress=limit

 Set a memory usage limit for decompression. This also affects the --list mode. If

 the operation is not possible without exceeding the limit, xz will display an error

 and decompressing the file will fail. See --memlimit-compress=limit for possible

 ways to specify the limit.

 -M limit, --memlimit=limit, --memory=limit Page 12/31

 This is equivalent to specifying --memlimit-compress=limit --memlimit-decom?

 press=limit.

 --no-adjust

 Display an error and exit if the compression settings exceed the memory usage

 limit. The default is to adjust the settings downwards so that the memory usage

 limit is not exceeded. Automatic adjusting is always disabled when creating raw

 streams (--format=raw).

 -T threads, --threads=threads

 Specify the number of worker threads to use. Setting threads to a special value 0

 makes xz use as many threads as there are CPU cores on the system. The actual num?

 ber of threads can be less than threads if the input file is not big enough for

 threading with the given settings or if using more threads would exceed the memory

 usage limit.

 Currently the only threading method is to split the input into blocks and compress

 them independently from each other. The default block size depends on the compres?

 sion level and can be overridden with the --block-size=size option.

 Threaded decompression hasn't been implemented yet. It will only work on files

 that contain multiple blocks with size information in block headers. All files

 compressed in multi-threaded mode meet this condition, but files compressed in sin?

 gle-threaded mode don't even if --block-size=size is used.

 Custom compressor filter chains

 A custom filter chain allows specifying the compression settings in detail instead of re?

 lying on the settings associated to the presets. When a custom filter chain is specified,

 preset options (-0 ... -9 and --extreme) earlier on the command line are forgotten. If a

 preset option is specified after one or more custom filter chain options, the new preset

 takes effect and the custom filter chain options specified earlier are forgotten.

 A filter chain is comparable to piping on the command line. When compressing, the uncom?

 pressed input goes to the first filter, whose output goes to the next filter (if any).

 The output of the last filter gets written to the compressed file. The maximum number of

 filters in the chain is four, but typically a filter chain has only one or two filters.

 Many filters have limitations on where they can be in the filter chain: some filters can

 work only as the last filter in the chain, some only as a non-last filter, and some work

 in any position in the chain. Depending on the filter, this limitation is either inherent Page 13/31

 to the filter design or exists to prevent security issues.

 A custom filter chain is specified by using one or more filter options in the order they

 are wanted in the filter chain. That is, the order of filter options is significant!

 When decoding raw streams (--format=raw), the filter chain is specified in the same order

 as it was specified when compressing.

 Filters take filter-specific options as a comma-separated list. Extra commas in options

 are ignored. Every option has a default value, so you need to specify only those you want

 to change.

 To see the whole filter chain and options, use xz -vv (that is, use --verbose twice).

 This works also for viewing the filter chain options used by presets.

 --lzma1[=options]

 --lzma2[=options]

 Add LZMA1 or LZMA2 filter to the filter chain. These filters can be used only as

 the last filter in the chain.

 LZMA1 is a legacy filter, which is supported almost solely due to the legacy .lzma

 file format, which supports only LZMA1. LZMA2 is an updated version of LZMA1 to

 fix some practical issues of LZMA1. The .xz format uses LZMA2 and doesn't support

 LZMA1 at all. Compression speed and ratios of LZMA1 and LZMA2 are practically the

 same.

 LZMA1 and LZMA2 share the same set of options:

 preset=preset

 Reset all LZMA1 or LZMA2 options to preset. Preset consist of an integer,

 which may be followed by single-letter preset modifiers. The integer can be

 from 0 to 9, matching the command line options -0 ... -9. The only sup?

 ported modifier is currently e, which matches --extreme. If no preset is

 specified, the default values of LZMA1 or LZMA2 options are taken from the

 preset 6.

 dict=size

 Dictionary (history buffer) size indicates how many bytes of the recently

 processed uncompressed data is kept in memory. The algorithm tries to find

 repeating byte sequences (matches) in the uncompressed data, and replace

 them with references to the data currently in the dictionary. The bigger

 the dictionary, the higher is the chance to find a match. Thus, increasing Page 14/31

 dictionary size usually improves compression ratio, but a dictionary bigger

 than the uncompressed file is waste of memory.

 Typical dictionary size is from 64 KiB to 64 MiB. The minimum is 4 KiB.

 The maximum for compression is currently 1.5 GiB (1536 MiB). The decompres?

 sor already supports dictionaries up to one byte less than 4 GiB, which is

 the maximum for the LZMA1 and LZMA2 stream formats.

 Dictionary size and match finder (mf) together determine the memory usage of

 the LZMA1 or LZMA2 encoder. The same (or bigger) dictionary size is re?

 quired for decompressing that was used when compressing, thus the memory us?

 age of the decoder is determined by the dictionary size used when compress?

 ing. The .xz headers store the dictionary size either as 2^n or 2^n +

 2^(n-1), so these sizes are somewhat preferred for compression. Other sizes

 will get rounded up when stored in the .xz headers.

 lc=lc Specify the number of literal context bits. The minimum is 0 and the maxi?

 mum is 4; the default is 3. In addition, the sum of lc and lp must not ex?

 ceed 4.

 All bytes that cannot be encoded as matches are encoded as literals. That

 is, literals are simply 8-bit bytes that are encoded one at a time.

 The literal coding makes an assumption that the highest lc bits of the pre?

 vious uncompressed byte correlate with the next byte. For example, in typi?

 cal English text, an upper-case letter is often followed by a lower-case

 letter, and a lower-case letter is usually followed by another lower-case

 letter. In the US-ASCII character set, the highest three bits are 010 for

 upper-case letters and 011 for lower-case letters. When lc is at least 3,

 the literal coding can take advantage of this property in the uncompressed

 data.

 The default value (3) is usually good. If you want maximum compression,

 test lc=4. Sometimes it helps a little, and sometimes it makes compression

 worse. If it makes it worse, test lc=2 too.

 lp=lp Specify the number of literal position bits. The minimum is 0 and the maxi?

 mum is 4; the default is 0.

 Lp affects what kind of alignment in the uncompressed data is assumed when

 encoding literals. See pb below for more information about alignment. Page 15/31

 pb=pb Specify the number of position bits. The minimum is 0 and the maximum is 4;

 the default is 2.

 Pb affects what kind of alignment in the uncompressed data is assumed in

 general. The default means four-byte alignment (2^pb=2^2=4), which is often

 a good choice when there's no better guess.

 When the aligment is known, setting pb accordingly may reduce the file size

 a little. For example, with text files having one-byte alignment (US-ASCII,

 ISO-8859-*, UTF-8), setting pb=0 can improve compression slightly. For

 UTF-16 text, pb=1 is a good choice. If the alignment is an odd number like

 3 bytes, pb=0 might be the best choice.

 Even though the assumed alignment can be adjusted with pb and lp, LZMA1 and

 LZMA2 still slightly favor 16-byte alignment. It might be worth taking into

 account when designing file formats that are likely to be often compressed

 with LZMA1 or LZMA2.

 mf=mf Match finder has a major effect on encoder speed, memory usage, and compres?

 sion ratio. Usually Hash Chain match finders are faster than Binary Tree

 match finders. The default depends on the preset: 0 uses hc3, 1-3 use hc4,

 and the rest use bt4.

 The following match finders are supported. The memory usage formulas below

 are rough approximations, which are closest to the reality when dict is a

 power of two.

 hc3 Hash Chain with 2- and 3-byte hashing

 Minimum value for nice: 3

 Memory usage:

 dict * 7.5 (if dict <= 16 MiB);

 dict * 5.5 + 64 MiB (if dict > 16 MiB)

 hc4 Hash Chain with 2-, 3-, and 4-byte hashing

 Minimum value for nice: 4

 Memory usage:

 dict * 7.5 (if dict <= 32 MiB);

 dict * 6.5 (if dict > 32 MiB)

 bt2 Binary Tree with 2-byte hashing

 Minimum value for nice: 2 Page 16/31

 Memory usage: dict * 9.5

 bt3 Binary Tree with 2- and 3-byte hashing

 Minimum value for nice: 3

 Memory usage:

 dict * 11.5 (if dict <= 16 MiB);

 dict * 9.5 + 64 MiB (if dict > 16 MiB)

 bt4 Binary Tree with 2-, 3-, and 4-byte hashing

 Minimum value for nice: 4

 Memory usage:

 dict * 11.5 (if dict <= 32 MiB);

 dict * 10.5 (if dict > 32 MiB)

 mode=mode

 Compression mode specifies the method to analyze the data produced by the

 match finder. Supported modes are fast and normal. The default is fast for

 presets 0-3 and normal for presets 4-9.

 Usually fast is used with Hash Chain match finders and normal with Binary

 Tree match finders. This is also what the presets do.

 nice=nice

 Specify what is considered to be a nice length for a match. Once a match of

 at least nice bytes is found, the algorithm stops looking for possibly bet?

 ter matches.

 Nice can be 2-273 bytes. Higher values tend to give better compression ra?

 tio at the expense of speed. The default depends on the preset.

 depth=depth

 Specify the maximum search depth in the match finder. The default is the

 special value of 0, which makes the compressor determine a reasonable depth

 from mf and nice.

 Reasonable depth for Hash Chains is 4-100 and 16-1000 for Binary Trees. Us?

 ing very high values for depth can make the encoder extremely slow with some

 files. Avoid setting the depth over 1000 unless you are prepared to inter?

 rupt the compression in case it is taking far too long.

 When decoding raw streams (--format=raw), LZMA2 needs only the dictionary size.

 LZMA1 needs also lc, lp, and pb. Page 17/31

 --x86[=options]

 --powerpc[=options]

 --ia64[=options]

 --arm[=options]

 --armthumb[=options]

 --sparc[=options]

 Add a branch/call/jump (BCJ) filter to the filter chain. These filters can be used

 only as a non-last filter in the filter chain.

 A BCJ filter converts relative addresses in the machine code to their absolute

 counterparts. This doesn't change the size of the data, but it increases redun?

 dancy, which can help LZMA2 to produce 0-15 % smaller .xz file. The BCJ filters

 are always reversible, so using a BCJ filter for wrong type of data doesn't cause

 any data loss, although it may make the compression ratio slightly worse.

 It is fine to apply a BCJ filter on a whole executable; there's no need to apply it

 only on the executable section. Applying a BCJ filter on an archive that contains

 both executable and non-executable files may or may not give good results, so it

 generally isn't good to blindly apply a BCJ filter when compressing binary packages

 for distribution.

 These BCJ filters are very fast and use insignificant amount of memory. If a BCJ

 filter improves compression ratio of a file, it can improve decompression speed at

 the same time. This is because, on the same hardware, the decompression speed of

 LZMA2 is roughly a fixed number of bytes of compressed data per second.

 These BCJ filters have known problems related to the compression ratio:

 ? Some types of files containing executable code (for example, object files,

 static libraries, and Linux kernel modules) have the addresses in the instruc?

 tions filled with filler values. These BCJ filters will still do the address

 conversion, which will make the compression worse with these files.

 ? Applying a BCJ filter on an archive containing multiple similar executables can

 make the compression ratio worse than not using a BCJ filter. This is because

 the BCJ filter doesn't detect the boundaries of the executable files, and

 doesn't reset the address conversion counter for each executable.

 Both of the above problems will be fixed in the future in a new filter. The old

 BCJ filters will still be useful in embedded systems, because the decoder of the Page 18/31

 new filter will be bigger and use more memory.

 Different instruction sets have different alignment:

 Filter Alignment Notes

 x86 1 32-bit or 64-bit x86

 PowerPC 4 Big endian only

 ARM 4 Little endian only

 ARM-Thumb 2 Little endian only

 IA-64 16 Big or little endian

 SPARC 4 Big or little endian

 Since the BCJ-filtered data is usually compressed with LZMA2, the compression ratio

 may be improved slightly if the LZMA2 options are set to match the alignment of the

 selected BCJ filter. For example, with the IA-64 filter, it's good to set pb=4

 with LZMA2 (2^4=16). The x86 filter is an exception; it's usually good to stick to

 LZMA2's default four-byte alignment when compressing x86 executables.

 All BCJ filters support the same options:

 start=offset

 Specify the start offset that is used when converting between relative and

 absolute addresses. The offset must be a multiple of the alignment of the

 filter (see the table above). The default is zero. In practice, the de?

 fault is good; specifying a custom offset is almost never useful.

 --delta[=options]

 Add the Delta filter to the filter chain. The Delta filter can be only used as a

 non-last filter in the filter chain.

 Currently only simple byte-wise delta calculation is supported. It can be useful

 when compressing, for example, uncompressed bitmap images or uncompressed PCM au?

 dio. However, special purpose algorithms may give significantly better results

 than Delta + LZMA2. This is true especially with audio, which compresses faster

 and better, for example, with flac(1).

 Supported options:

 dist=distance

 Specify the distance of the delta calculation in bytes. distance must be

 1-256. The default is 1.

 For example, with dist=2 and eight-byte input A1 B1 A2 B3 A3 B5 A4 B7, the Page 19/31

 output will be A1 B1 01 02 01 02 01 02.

 Other options

 -q, --quiet

 Suppress warnings and notices. Specify this twice to suppress errors too. This

 option has no effect on the exit status. That is, even if a warning was sup?

 pressed, the exit status to indicate a warning is still used.

 -v, --verbose

 Be verbose. If standard error is connected to a terminal, xz will display a

 progress indicator. Specifying --verbose twice will give even more verbose output.

 The progress indicator shows the following information:

 ? Completion percentage is shown if the size of the input file is known. That is,

 the percentage cannot be shown in pipes.

 ? Amount of compressed data produced (compressing) or consumed (decompressing).

 ? Amount of uncompressed data consumed (compressing) or produced (decompressing).

 ? Compression ratio, which is calculated by dividing the amount of compressed data

 processed so far by the amount of uncompressed data processed so far.

 ? Compression or decompression speed. This is measured as the amount of uncom?

 pressed data consumed (compression) or produced (decompression) per second. It

 is shown after a few seconds have passed since xz started processing the file.

 ? Elapsed time in the format M:SS or H:MM:SS.

 ? Estimated remaining time is shown only when the size of the input file is known

 and a couple of seconds have already passed since xz started processing the

 file. The time is shown in a less precise format which never has any colons,

 for example, 2 min 30 s.

 When standard error is not a terminal, --verbose will make xz print the filename,

 compressed size, uncompressed size, compression ratio, and possibly also the speed

 and elapsed time on a single line to standard error after compressing or decom?

 pressing the file. The speed and elapsed time are included only when the operation

 took at least a few seconds. If the operation didn't finish, for example, due to

 user interruption, also the completion percentage is printed if the size of the in?

 put file is known.

 -Q, --no-warn

 Don't set the exit status to 2 even if a condition worth a warning was detected. Page 20/31

 This option doesn't affect the verbosity level, thus both --quiet and --no-warn

 have to be used to not display warnings and to not alter the exit status.

 --robot

 Print messages in a machine-parsable format. This is intended to ease writing

 frontends that want to use xz instead of liblzma, which may be the case with vari?

 ous scripts. The output with this option enabled is meant to be stable across xz

 releases. See the section ROBOT MODE for details.

 --info-memory

 Display, in human-readable format, how much physical memory (RAM) xz thinks the

 system has and the memory usage limits for compression and decompression, and exit

 successfully.

 -h, --help

 Display a help message describing the most commonly used options, and exit success?

 fully.

 -H, --long-help

 Display a help message describing all features of xz, and exit successfully

 -V, --version

 Display the version number of xz and liblzma in human readable format. To get ma?

 chine-parsable output, specify --robot before --version.

ROBOT MODE

 The robot mode is activated with the --robot option. It makes the output of xz easier to

 parse by other programs. Currently --robot is supported only together with --version,

 --info-memory, and --list. It will be supported for compression and decompression in the

 future.

 Version

 xz --robot --version will print the version number of xz and liblzma in the following for?

 mat:

 XZ_VERSION=XYYYZZZS

 LIBLZMA_VERSION=XYYYZZZS

 X Major version.

 YYY Minor version. Even numbers are stable. Odd numbers are alpha or beta versions.

 ZZZ Patch level for stable releases or just a counter for development releases.

 S Stability. 0 is alpha, 1 is beta, and 2 is stable. S should be always 2 when YYY Page 21/31

 is even.

 XYYYZZZS are the same on both lines if xz and liblzma are from the same XZ Utils release.

 Examples: 4.999.9beta is 49990091 and 5.0.0 is 50000002.

 Memory limit information

 xz --robot --info-memory prints a single line with three tab-separated columns:

 1. Total amount of physical memory (RAM) in bytes

 2. Memory usage limit for compression in bytes. A special value of zero indicates the

 default setting, which for single-threaded mode is the same as no limit.

 3. Memory usage limit for decompression in bytes. A special value of zero indicates the

 default setting, which for single-threaded mode is the same as no limit.

 In the future, the output of xz --robot --info-memory may have more columns, but never

 more than a single line.

 List mode

 xz --robot --list uses tab-separated output. The first column of every line has a string

 that indicates the type of the information found on that line:

 name This is always the first line when starting to list a file. The second column on

 the line is the filename.

 file This line contains overall information about the .xz file. This line is always

 printed after the name line.

 stream This line type is used only when --verbose was specified. There are as many stream

 lines as there are streams in the .xz file.

 block This line type is used only when --verbose was specified. There are as many block

 lines as there are blocks in the .xz file. The block lines are shown after all the

 stream lines; different line types are not interleaved.

 summary

 This line type is used only when --verbose was specified twice. This line is

 printed after all block lines. Like the file line, the summary line contains over?

 all information about the .xz file.

 totals This line is always the very last line of the list output. It shows the total

 counts and sizes.

 The columns of the file lines:

 2. Number of streams in the file

 3. Total number of blocks in the stream(s) Page 22/31

 4. Compressed size of the file

 5. Uncompressed size of the file

 6. Compression ratio, for example, 0.123. If ratio is over 9.999, three dashes

 (---) are displayed instead of the ratio.

 7. Comma-separated list of integrity check names. The following strings are used

 for the known check types: None, CRC32, CRC64, and SHA-256. For unknown check

 types, Unknown-N is used, where N is the Check ID as a decimal number (one or

 two digits).

 8. Total size of stream padding in the file

 The columns of the stream lines:

 2. Stream number (the first stream is 1)

 3. Number of blocks in the stream

 4. Compressed start offset

 5. Uncompressed start offset

 6. Compressed size (does not include stream padding)

 7. Uncompressed size

 8. Compression ratio

 9. Name of the integrity check

 10. Size of stream padding

 The columns of the block lines:

 2. Number of the stream containing this block

 3. Block number relative to the beginning of the stream (the first block is 1)

 4. Block number relative to the beginning of the file

 5. Compressed start offset relative to the beginning of the file

 6. Uncompressed start offset relative to the beginning of the file

 7. Total compressed size of the block (includes headers)

 8. Uncompressed size

 9. Compression ratio

 10. Name of the integrity check

 If --verbose was specified twice, additional columns are included on the block lines.

 These are not displayed with a single --verbose, because getting this information requires

 many seeks and can thus be slow:

 11. Value of the integrity check in hexadecimal Page 23/31

 12. Block header size

 13. Block flags: c indicates that compressed size is present, and u indicates that

 uncompressed size is present. If the flag is not set, a dash (-) is shown in?

 stead to keep the string length fixed. New flags may be added to the end of

 the string in the future.

 14. Size of the actual compressed data in the block (this excludes the block

 header, block padding, and check fields)

 15. Amount of memory (in bytes) required to decompress this block with this xz ver?

 sion

 16. Filter chain. Note that most of the options used at compression time cannot be

 known, because only the options that are needed for decompression are stored in

 the .xz headers.

 The columns of the summary lines:

 2. Amount of memory (in bytes) required to decompress this file with this xz ver?

 sion

 3. yes or no indicating if all block headers have both compressed size and uncom?

 pressed size stored in them

 Since xz 5.1.2alpha:

 4. Minimum xz version required to decompress the file

 The columns of the totals line:

 2. Number of streams

 3. Number of blocks

 4. Compressed size

 5. Uncompressed size

 6. Average compression ratio

 7. Comma-separated list of integrity check names that were present in the files

 8. Stream padding size

 9. Number of files. This is here to keep the order of the earlier columns the

 same as on file lines.

 If --verbose was specified twice, additional columns are included on the totals line:

 10. Maximum amount of memory (in bytes) required to decompress the files with this

 xz version

 11. yes or no indicating if all block headers have both compressed size and uncom? Page 24/31

 pressed size stored in them

 Since xz 5.1.2alpha:

 12. Minimum xz version required to decompress the file

 Future versions may add new line types and new columns can be added to the existing line

 types, but the existing columns won't be changed.

EXIT STATUS

 0 All is good.

 1 An error occurred.

 2 Something worth a warning occurred, but no actual errors occurred.

 Notices (not warnings or errors) printed on standard error don't affect the exit status.

ENVIRONMENT

 xz parses space-separated lists of options from the environment variables XZ_DEFAULTS and

 XZ_OPT, in this order, before parsing the options from the command line. Note that only

 options are parsed from the environment variables; all non-options are silently ignored.

 Parsing is done with getopt_long(3) which is used also for the command line arguments.

 XZ_DEFAULTS

 User-specific or system-wide default options. Typically this is set in a shell

 initialization script to enable xz's memory usage limiter by default. Excluding

 shell initialization scripts and similar special cases, scripts must never set or

 unset XZ_DEFAULTS.

 XZ_OPT This is for passing options to xz when it is not possible to set the options di?

 rectly on the xz command line. This is the case when xz is run by a script or

 tool, for example, GNU tar(1):

 XZ_OPT=-2v tar caf foo.tar.xz foo

 Scripts may use XZ_OPT, for example, to set script-specific default compression op?

 tions. It is still recommended to allow users to override XZ_OPT if that is rea?

 sonable. For example, in sh(1) scripts one may use something like this:

 XZ_OPT=${XZ_OPT-"-7e"}

 export XZ_OPT

LZMA UTILS COMPATIBILITY

 The command line syntax of xz is practically a superset of lzma, unlzma, and lzcat as

 found from LZMA Utils 4.32.x. In most cases, it is possible to replace LZMA Utils with XZ

 Utils without breaking existing scripts. There are some incompatibilities though, which Page 25/31

 may sometimes cause problems.

 Compression preset levels

 The numbering of the compression level presets is not identical in xz and LZMA Utils. The

 most important difference is how dictionary sizes are mapped to different presets. Dic?

 tionary size is roughly equal to the decompressor memory usage.

 Level xz LZMA Utils

 -0 256 KiB N/A

 -1 1 MiB 64 KiB

 -2 2 MiB 1 MiB

 -3 4 MiB 512 KiB

 -4 4 MiB 1 MiB

 -5 8 MiB 2 MiB

 -6 8 MiB 4 MiB

 -7 16 MiB 8 MiB

 -8 32 MiB 16 MiB

 -9 64 MiB 32 MiB

 The dictionary size differences affect the compressor memory usage too, but there are some

 other differences between LZMA Utils and XZ Utils, which make the difference even bigger:

 Level xz LZMA Utils 4.32.x

 -0 3 MiB N/A

 -1 9 MiB 2 MiB

 -2 17 MiB 12 MiB

 -3 32 MiB 12 MiB

 -4 48 MiB 16 MiB

 -5 94 MiB 26 MiB

 -6 94 MiB 45 MiB

 -7 186 MiB 83 MiB

 -8 370 MiB 159 MiB

 -9 674 MiB 311 MiB

 The default preset level in LZMA Utils is -7 while in XZ Utils it is -6, so both use an 8

 MiB dictionary by default.

 Streamed vs. non-streamed .lzma files

 The uncompressed size of the file can be stored in the .lzma header. LZMA Utils does that Page 26/31

 when compressing regular files. The alternative is to mark that uncompressed size is un?

 known and use end-of-payload marker to indicate where the decompressor should stop. LZMA

 Utils uses this method when uncompressed size isn't known, which is the case, for example,

 in pipes.

 xz supports decompressing .lzma files with or without end-of-payload marker, but all .lzma

 files created by xz will use end-of-payload marker and have uncompressed size marked as

 unknown in the .lzma header. This may be a problem in some uncommon situations. For ex?

 ample, a .lzma decompressor in an embedded device might work only with files that have

 known uncompressed size. If you hit this problem, you need to use LZMA Utils or LZMA SDK

 to create .lzma files with known uncompressed size.

 Unsupported .lzma files

 The .lzma format allows lc values up to 8, and lp values up to 4. LZMA Utils can decom?

 press files with any lc and lp, but always creates files with lc=3 and lp=0. Creating

 files with other lc and lp is possible with xz and with LZMA SDK.

 The implementation of the LZMA1 filter in liblzma requires that the sum of lc and lp must

 not exceed 4. Thus, .lzma files, which exceed this limitation, cannot be decompressed

 with xz.

 LZMA Utils creates only .lzma files which have a dictionary size of 2^n (a power of 2) but

 accepts files with any dictionary size. liblzma accepts only .lzma files which have a

 dictionary size of 2^n or 2^n + 2^(n-1). This is to decrease false positives when detect?

 ing .lzma files.

 These limitations shouldn't be a problem in practice, since practically all .lzma files

 have been compressed with settings that liblzma will accept.

 Trailing garbage

 When decompressing, LZMA Utils silently ignore everything after the first .lzma stream.

 In most situations, this is a bug. This also means that LZMA Utils don't support decom?

 pressing concatenated .lzma files.

 If there is data left after the first .lzma stream, xz considers the file to be corrupt

 unless --single-stream was used. This may break obscure scripts which have assumed that

 trailing garbage is ignored.

NOTES

 Compressed output may vary

 The exact compressed output produced from the same uncompressed input file may vary be? Page 27/31

 tween XZ Utils versions even if compression options are identical. This is because the

 encoder can be improved (faster or better compression) without affecting the file format.

 The output can vary even between different builds of the same XZ Utils version, if differ?

 ent build options are used.

 The above means that once --rsyncable has been implemented, the resulting files won't nec?

 essarily be rsyncable unless both old and new files have been compressed with the same xz

 version. This problem can be fixed if a part of the encoder implementation is frozen to

 keep rsyncable output stable across xz versions.

 Embedded .xz decompressors

 Embedded .xz decompressor implementations like XZ Embedded don't necessarily support files

 created with integrity check types other than none and crc32. Since the default is

 --check=crc64, you must use --check=none or --check=crc32 when creating files for embedded

 systems.

 Outside embedded systems, all .xz format decompressors support all the check types, or at

 least are able to decompress the file without verifying the integrity check if the partic?

 ular check is not supported.

 XZ Embedded supports BCJ filters, but only with the default start offset.

EXAMPLES

 Basics

 Compress the file foo into foo.xz using the default compression level (-6), and remove foo

 if compression is successful:

 xz foo

 Decompress bar.xz into bar and don't remove bar.xz even if decompression is successful:

 xz -dk bar.xz

 Create baz.tar.xz with the preset -4e (-4 --extreme), which is slower than the default -6,

 but needs less memory for compression and decompression (48 MiB and 5 MiB, respectively):

 tar cf - baz | xz -4e > baz.tar.xz

 A mix of compressed and uncompressed files can be decompressed to standard output with a

 single command:

 xz -dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

 Parallel compression of many files

 On GNU and *BSD, find(1) and xargs(1) can be used to parallelize compression of many

 files: Page 28/31

 find . -type f \! -name '*.xz' -print0 \

 | xargs -0r -P4 -n16 xz -T1

 The -P option to xargs(1) sets the number of parallel xz processes. The best value for

 the -n option depends on how many files there are to be compressed. If there are only a

 couple of files, the value should probably be 1; with tens of thousands of files, 100 or

 even more may be appropriate to reduce the number of xz processes that xargs(1) will even?

 tually create.

 The option -T1 for xz is there to force it to single-threaded mode, because xargs(1) is

 used to control the amount of parallelization.

 Robot mode

 Calculate how many bytes have been saved in total after compressing multiple files:

 xz --robot --list *.xz | awk '/^totals/{print $5-$4}'

 A script may want to know that it is using new enough xz. The following sh(1) script

 checks that the version number of the xz tool is at least 5.0.0. This method is compati?

 ble with old beta versions, which didn't support the --robot option:

 if ! eval "$(xz --robot --version 2> /dev/null)" ||

 ["$XZ_VERSION" -lt 50000002]; then

 echo "Your xz is too old."

 fi

 unset XZ_VERSION LIBLZMA_VERSION

 Set a memory usage limit for decompression using XZ_OPT, but if a limit has already been

 set, don't increase it:

 NEWLIM=$((123 << 20)) # 123 MiB

 OLDLIM=$(xz --robot --info-memory | cut -f3)

 if [$OLDLIM -eq 0 -o $OLDLIM -gt $NEWLIM]; then

 XZ_OPT="$XZ_OPT --memlimit-decompress=$NEWLIM"

 export XZ_OPT

 fi

 Custom compressor filter chains

 The simplest use for custom filter chains is customizing a LZMA2 preset. This can be use?

 ful, because the presets cover only a subset of the potentially useful combinations of

 compression settings.

 The CompCPU columns of the tables from the descriptions of the options -0 ... -9 and --ex? Page 29/31

 treme are useful when customizing LZMA2 presets. Here are the relevant parts collected

 from those two tables:

 Preset CompCPU

 -0 0

 -1 1

 -2 2

 -3 3

 -4 4

 -5 5

 -6 6

 -5e 7

 -6e 8

 If you know that a file requires somewhat big dictionary (for example, 32 MiB) to compress

 well, but you want to compress it quicker than xz -8 would do, a preset with a low CompCPU

 value (for example, 1) can be modified to use a bigger dictionary:

 xz --lzma2=preset=1,dict=32MiB foo.tar

 With certain files, the above command may be faster than xz -6 while compressing signifi?

 cantly better. However, it must be emphasized that only some files benefit from a big

 dictionary while keeping the CompCPU value low. The most obvious situation, where a big

 dictionary can help a lot, is an archive containing very similar files of at least a few

 megabytes each. The dictionary size has to be significantly bigger than any individual

 file to allow LZMA2 to take full advantage of the similarities between consecutive files.

 If very high compressor and decompressor memory usage is fine, and the file being com?

 pressed is at least several hundred megabytes, it may be useful to use an even bigger dic?

 tionary than the 64 MiB that xz -9 would use:

 xz -vv --lzma2=dict=192MiB big_foo.tar

 Using -vv (--verbose --verbose) like in the above example can be useful to see the memory

 requirements of the compressor and decompressor. Remember that using a dictionary bigger

 than the size of the uncompressed file is waste of memory, so the above command isn't use?

 ful for small files.

 Sometimes the compression time doesn't matter, but the decompressor memory usage has to be

 kept low, for example, to make it possible to decompress the file on an embedded system.

 The following command uses -6e (-6 --extreme) as a base and sets the dictionary to only Page 30/31

 64 KiB. The resulting file can be decompressed with XZ Embedded (that's why there is

 --check=crc32) using about 100 KiB of memory.

 xz --check=crc32 --lzma2=preset=6e,dict=64KiB foo

 If you want to squeeze out as many bytes as possible, adjusting the number of literal con?

 text bits (lc) and number of position bits (pb) can sometimes help. Adjusting the number

 of literal position bits (lp) might help too, but usually lc and pb are more important.

 For example, a source code archive contains mostly US-ASCII text, so something like the

 following might give slightly (like 0.1 %) smaller file than xz -6e (try also without

 lc=4):

 xz --lzma2=preset=6e,pb=0,lc=4 source_code.tar

 Using another filter together with LZMA2 can improve compression with certain file types.

 For example, to compress a x86-32 or x86-64 shared library using the x86 BCJ filter:

 xz --x86 --lzma2 libfoo.so

 Note that the order of the filter options is significant. If --x86 is specified after

 --lzma2, xz will give an error, because there cannot be any filter after LZMA2, and also

 because the x86 BCJ filter cannot be used as the last filter in the chain.

 The Delta filter together with LZMA2 can give good results with bitmap images. It should

 usually beat PNG, which has a few more advanced filters than simple delta but uses Deflate

 for the actual compression.

 The image has to be saved in uncompressed format, for example, as uncompressed TIFF. The

 distance parameter of the Delta filter is set to match the number of bytes per pixel in

 the image. For example, 24-bit RGB bitmap needs dist=3, and it is also good to pass pb=0

 to LZMA2 to accommodate the three-byte alignment:

 xz --delta=dist=3 --lzma2=pb=0 foo.tiff

 If multiple images have been put into a single archive (for example, .tar), the Delta fil?

 ter will work on that too as long as all images have the same number of bytes per pixel.

SEE ALSO

 xzdec(1), xzdiff(1), xzgrep(1), xzless(1), xzmore(1), gzip(1), bzip2(1), 7z(1)

 XZ Utils: <https://tukaani.org/xz/>

 XZ Embedded: <https://tukaani.org/xz/embedded.html>

 LZMA SDK: <http://7-zip.org/sdk.html>

Tukaani 2020-02-01 XZ(1)

Page 31/31

