
Rocky Enterprise Linux 9.2 Manual Pages on command 'url.7'

$ man url.7

URI(7) Linux Programmer's Manual URI(7)

NAME

 uri, url, urn - uniform resource identifier (URI), including a URL or URN

SYNOPSIS

 URI = [absoluteURI | relativeURI] ["#" fragment]

 absoluteURI = scheme ":" (hierarchical_part | opaque_part)

 relativeURI = (net_path | absolute_path | relative_path) ["?" query]

 scheme = "http" | "ftp" | "gopher" | "mailto" | "news" | "telnet" |

 "file" | "man" | "info" | "whatis" | "ldap" | "wais" | ...

 hierarchical_part = (net_path | absolute_path) ["?" query]

 net_path = "//" authority [absolute_path]

 absolute_path = "/" path_segments

 relative_path = relative_segment [absolute_path]

DESCRIPTION

 A Uniform Resource Identifier (URI) is a short string of characters identifying an ab?

 stract or physical resource (for example, a web page). A Uniform Resource Locator (URL)

 is a URI that identifies a resource through its primary access mechanism (e.g., its net?

 work "location"), rather than by name or some other attribute of that resource. A Uniform

 Resource Name (URN) is a URI that must remain globally unique and persistent even when the

 resource ceases to exist or becomes unavailable.

 URIs are the standard way to name hypertext link destinations for tools such as web

 browsers. The string "http://www.kernel.org" is a URL (and thus it is also a URI). Many

 people use the term URL loosely as a synonym for URI (though technically URLs are a subset Page 1/11

 of URIs).

 URIs can be absolute or relative. An absolute identifier refers to a resource independent

 of context, while a relative identifier refers to a resource by describing the difference

 from the current context. Within a relative path reference, the complete path segments

 "." and ".." have special meanings: "the current hierarchy level" and "the level above

 this hierarchy level", respectively, just like they do in UNIX-like systems. A path seg?

 ment which contains a colon character can't be used as the first segment of a relative URI

 path (e.g., "this:that"), because it would be mistaken for a scheme name; precede such

 segments with ./ (e.g., "./this:that"). Note that descendants of MS-DOS (e.g., Microsoft

 Windows) replace devicename colons with the vertical bar ("|") in URIs, so "C:" becomes

 "C|".

 A fragment identifier, if included, refers to a particular named portion (fragment) of a

 resource; text after a '#' identifies the fragment. A URI beginning with '#' refers to

 that fragment in the current resource.

 Usage

 There are many different URI schemes, each with specific additional rules and meanings,

 but they are intentionally made to be as similar as possible. For example, many URL

 schemes permit the authority to be the following format, called here an ip_server (square

 brackets show what's optional):

 ip_server = [user [: password] @] host [: port]

 This format allows you to optionally insert a username, a user plus password, and/or a

 port number. The host is the name of the host computer, either its name as determined by

 DNS or an IP address (numbers separated by periods). Thus the URI <http://fred:fredpass?

 word@example.com:8080/> logs into a web server on host example.com as fred (using fred?

 password) using port 8080. Avoid including a password in a URI if possible because of the

 many security risks of having a password written down. If the URL supplies a username but

 no password, and the remote server requests a password, the program interpreting the URL

 should request one from the user.

 Here are some of the most common schemes in use on UNIX-like systems that are understood

 by many tools. Note that many tools using URIs also have internal schemes or specialized

 schemes; see those tools' documentation for information on those schemes.

 http - Web (HTTP) server

 http://ip_server/path Page 2/11

 http://ip_server/path?query

 This is a URL accessing a web (HTTP) server. The default port is 80. If the path refers

 to a directory, the web server will choose what to return; usually if there is a file

 named "index.html" or "index.htm" its content is returned, otherwise, a list of the files

 in the current directory (with appropriate links) is generated and returned. An example

 is <http://lwn.net>.

 A query can be given in the archaic "isindex" format, consisting of a word or phrase and

 not including an equal sign (=). A query can also be in the longer "GET" format, which

 has one or more query entries of the form key=value separated by the ampersand character

 (&). Note that key can be repeated more than once, though it's up to the web server and

 its application programs to determine if there's any meaning to that. There is an unfor?

 tunate interaction with HTML/XML/SGML and the GET query format; when such URIs with more

 than one key are embedded in SGML/XML documents (including HTML), the ampersand (&) has to

 be rewritten as &. Note that not all queries use this format; larger forms may be too

 long to store as a URI, so they use a different interaction mechanism (called POST) which

 does not include the data in the URI. See the Common Gateway Interface specification at

 ?http://www.w3.org/CGI? for more information.

 ftp - File Transfer Protocol (FTP)

 ftp://ip_server/path

 This is a URL accessing a file through the file transfer protocol (FTP). The default port

 (for control) is 21. If no username is included, the username "anonymous" is supplied,

 and in that case many clients provide as the password the requestor's Internet email ad?

 dress. An example is <ftp://ftp.is.co.za/rfc/rfc1808.txt>.

 gopher - Gopher server

 gopher://ip_server/gophertype selector

 gopher://ip_server/gophertype selector%09search

 gopher://ip_server/gophertype selector%09search%09gopher+_string

 The default gopher port is 70. gophertype is a single-character field to denote the Go?

 pher type of the resource to which the URL refers. The entire path may also be empty, in

 which case the delimiting "/" is also optional and the gophertype defaults to "1".

 selector is the Gopher selector string. In the Gopher protocol, Gopher selector strings

 are a sequence of octets which may contain any octets except 09 hexadecimal (US-ASCII HT

 or tab), 0A hexadecimal (US-ASCII character LF), and 0D (US-ASCII character CR). Page 3/11

 mailto - Email address

 mailto:email-address

 This is an email address, usually of the form name@hostname. See mailaddr(7) for more in?

 formation on the correct format of an email address. Note that any % character must be

 rewritten as %25. An example is <mailto:dwheeler@dwheeler.com>.

 news - Newsgroup or News message

 news:newsgroup-name

 news:message-id

 A newsgroup-name is a period-delimited hierarchical name, such as "comp.infosys?

 tems.www.misc". If <newsgroup-name> is "*" (as in <news:*>), it is used to refer to "all

 available news groups". An example is <news:comp.lang.ada>.

 A message-id corresponds to the Message-ID of IETF RFC 1036, ?http://www.ietf.org/rfc

 /rfc1036.txt? without the enclosing "<" and ">"; it takes the form unique@full_do?

 main_name. A message identifier may be distinguished from a news group name by the pres?

 ence of the "@" character.

 telnet - Telnet login

 telnet://ip_server/

 The Telnet URL scheme is used to designate interactive text services that may be accessed

 by the Telnet protocol. The final "/" character may be omitted. The default port is 23.

 An example is <telnet://melvyl.ucop.edu/>.

 file - Normal file

 file://ip_server/path_segments

 file:path_segments

 This represents a file or directory accessible locally. As a special case, ip_server can

 be the string "localhost" or the empty string; this is interpreted as "the machine from

 which the URL is being interpreted". If the path is to a directory, the viewer should

 display the directory's contents with links to each containee; not all viewers currently

 do this. KDE supports generated files through the URL <file:/cgi-bin>. If the given file

 isn't found, browser writers may want to try to expand the filename via filename globbing

 (see glob(7) and glob(3)).

 The second format (e.g., <file:/etc/passwd>) is a correct format for referring to a local

 file. However, older standards did not permit this format, and some programs don't recog?

 nize this as a URI. A more portable syntax is to use an empty string as the server name, Page 4/11

 for example, <file:///etc/passwd>; this form does the same thing and is easily recognized

 by pattern matchers and older programs as a URI. Note that if you really mean to say

 "start from the current location," don't specify the scheme at all; use a relative address

 like <../test.txt>, which has the side-effect of being scheme-independent. An example of

 this scheme is <file:///etc/passwd>.

 man - Man page documentation

 man:command-name

 man:command-name(section)

 This refers to local online manual (man) reference pages. The command name can optionally

 be followed by a parenthesis and section number; see man(7) for more information on the

 meaning of the section numbers. This URI scheme is unique to UNIX-like systems (such as

 Linux) and is not currently registered by the IETF. An example is <man:ls(1)>.

 info - Info page documentation

 info:virtual-filename

 info:virtual-filename#nodename

 info:(virtual-filename)

 info:(virtual-filename)nodename

 This scheme refers to online info reference pages (generated from texinfo files), a docu?

 mentation format used by programs such as the GNU tools. This URI scheme is unique to

 UNIX-like systems (such as Linux) and is not currently registered by the IETF. As of this

 writing, GNOME and KDE differ in their URI syntax and do not accept the other's syntax.

 The first two formats are the GNOME format; in nodenames all spaces are written as under?

 scores. The second two formats are the KDE format; spaces in nodenames must be written as

 spaces, even though this is forbidden by the URI standards. It's hoped that in the future

 most tools will understand all of these formats and will always accept underscores for

 spaces in nodenames. In both GNOME and KDE, if the form without the nodename is used the

 nodename is assumed to be "Top". Examples of the GNOME format are <info:gcc> and

 <info:gcc#G++_and_GCC>. Examples of the KDE format are <info:(gcc)> and <info:(gcc)G++

 and GCC>.

 whatis - Documentation search

 whatis:string

 This scheme searches the database of short (one-line) descriptions of commands and returns

 a list of descriptions containing that string. Only complete word matches are returned. Page 5/11

 See whatis(1). This URI scheme is unique to UNIX-like systems (such as Linux) and is not

 currently registered by the IETF.

 ghelp - GNOME help documentation

 ghelp:name-of-application

 This loads GNOME help for the given application. Note that not much documentation cur?

 rently exists in this format.

 ldap - Lightweight Directory Access Protocol

 ldap://hostport

 ldap://hostport/

 ldap://hostport/dn

 ldap://hostport/dn?attributes

 ldap://hostport/dn?attributes?scope

 ldap://hostport/dn?attributes?scope?filter

 ldap://hostport/dn?attributes?scope?filter?extensions

 This scheme supports queries to the Lightweight Directory Access Protocol (LDAP), a proto?

 col for querying a set of servers for hierarchically organized information (such as people

 and computing resources). See RFC 2255 ?http://www.ietf.org/rfc/rfc2255.txt? for more in?

 formation on the LDAP URL scheme. The components of this URL are:

 hostport the LDAP server to query, written as a hostname optionally followed by a colon

 and the port number. The default LDAP port is TCP port 389. If empty, the

 client determines which the LDAP server to use.

 dn the LDAP Distinguished Name, which identifies the base object of the LDAP

 search (see RFC 2253 ?http://www.ietf.org/rfc/rfc2253.txt? section 3).

 attributes a comma-separated list of attributes to be returned; see RFC 2251 section

 4.1.5. If omitted, all attributes should be returned.

 scope specifies the scope of the search, which can be one of "base" (for a base ob?

 ject search), "one" (for a one-level search), or "sub" (for a subtree search).

 If scope is omitted, "base" is assumed.

 filter specifies the search filter (subset of entries to return). If omitted, all

 entries should be returned. See RFC 2254 ?http://www.ietf.org/rfc

 /rfc2254.txt? section 4.

 extensions a comma-separated list of type=value pairs, where the =value portion may be

 omitted for options not requiring it. An extension prefixed with a '!' is Page 6/11

 critical (must be supported to be valid), otherwise it is noncritical (op?

 tional).

 LDAP queries are easiest to explain by example. Here's a query that asks

 ldap.itd.umich.edu for information about the University of Michigan in the U.S.:

 ldap://ldap.itd.umich.edu/o=University%20of%20Michigan,c=US

 To just get its postal address attribute, request:

 ldap://ldap.itd.umich.edu/o=University%20of%20Michigan,c=US?postalAddress

 To ask a host.com at port 6666 for information about the person with common name (cn)

 "Babs Jensen" at University of Michigan, request:

 ldap://host.com:6666/o=University%20of%20Michigan,c=US??sub?(cn=Babs%20Jensen)

 wais - Wide Area Information Servers

 wais://hostport/database

 wais://hostport/database?search

 wais://hostport/database/wtype/wpath

 This scheme designates a WAIS database, search, or document (see IETF RFC 1625

 ?http://www.ietf.org/rfc/rfc1625.txt? for more information on WAIS). Hostport is the

 hostname, optionally followed by a colon and port number (the default port number is 210).

 The first form designates a WAIS database for searching. The second form designates a

 particular search of the WAIS database database. The third form designates a particular

 document within a WAIS database to be retrieved. wtype is the WAIS designation of the

 type of the object and wpath is the WAIS document-id.

 other schemes

 There are many other URI schemes. Most tools that accept URIs support a set of internal

 URIs (e.g., Mozilla has the about: scheme for internal information, and the GNOME help

 browser has the toc: scheme for various starting locations). There are many schemes that

 have been defined but are not as widely used at the current time (e.g., prospero). The

 nntp: scheme is deprecated in favor of the news: scheme. URNs are to be supported by the

 urn: scheme, with a hierarchical name space (e.g., urn:ietf:... would identify IETF docu?

 ments); at this time URNs are not widely implemented. Not all tools support all schemes.

 Character encoding

 URIs use a limited number of characters so that they can be typed in and used in a variety

 of situations.

 The following characters are reserved, that is, they may appear in a URI but their use is Page 7/11

 limited to their reserved purpose (conflicting data must be escaped before forming the

 URI):

 ; / ? : @ & = + $,

 Unreserved characters may be included in a URI. Unreserved characters include uppercase

 and lowercase English letters, decimal digits, and the following limited set of punctua?

 tion marks and symbols:

 - _ . ! ~ * ' ()

 All other characters must be escaped. An escaped octet is encoded as a character triplet,

 consisting of the percent character "%" followed by the two hexadecimal digits represent?

 ing the octet code (you can use uppercase or lowercase letters for the hexadecimal dig?

 its). For example, a blank space must be escaped as "%20", a tab character as "%09", and

 the "&" as "%26". Because the percent "%" character always has the reserved purpose of

 being the escape indicator, it must be escaped as "%25". It is common practice to escape

 space characters as the plus symbol (+) in query text; this practice isn't uniformly de?

 fined in the relevant RFCs (which recommend %20 instead) but any tool accepting URIs with

 query text should be prepared for them. A URI is always shown in its "escaped" form.

 Unreserved characters can be escaped without changing the semantics of the URI, but this

 should not be done unless the URI is being used in a context that does not allow the un?

 escaped character to appear. For example, "%7e" is sometimes used instead of "~" in an

 HTTP URL path, but the two are equivalent for an HTTP URL.

 For URIs which must handle characters outside the US ASCII character set, the HTML 4.01

 specification (section B.2) and IETF RFC 2718 (section 2.2.5) recommend the following ap?

 proach:

 1. translate the character sequences into UTF-8 (IETF RFC 2279)?see utf-8(7)?and then

 2. use the URI escaping mechanism, that is, use the %HH encoding for unsafe octets.

 Writing a URI

 When written, URIs should be placed inside double quotes (e.g., "http://www.kernel.org"),

 enclosed in angle brackets (e.g., <http://lwn.net>), or placed on a line by themselves. A

 warning for those who use double-quotes: never move extraneous punctuation (such as the

 period ending a sentence or the comma in a list) inside a URI, since this will change the

 value of the URI. Instead, use angle brackets instead, or switch to a quoting system that

 never includes extraneous characters inside quotation marks. This latter system, called

 the 'new' or 'logical' quoting system by "Hart's Rules" and the "Oxford Dictionary for Page 8/11

 Writers and Editors", is preferred practice in Great Britain and hackers worldwide (see

 the Jargon File's section on Hacker Writing Style, ?http://www.fwi.uva.nl/~mes/jargon/h

 /HackerWritingStyle.html?, for more information). Older documents suggested inserting the

 prefix "URL:" just before the URI, but this form has never caught on.

 The URI syntax was designed to be unambiguous. However, as URIs have become commonplace,

 traditional media (television, radio, newspapers, billboards, etc.) have increasingly used

 abbreviated URI references consisting of only the authority and path portions of the iden?

 tified resource (e.g., <www.w3.org/Addressing>). Such references are primarily intended

 for human interpretation rather than machine, with the assumption that context-based

 heuristics are sufficient to complete the URI (e.g., hostnames beginning with "www" are

 likely to have a URI prefix of "http://" and hostnames beginning with "ftp" likely to have

 a prefix of "ftp://"). Many client implementations heuristically resolve these refer?

 ences. Such heuristics may change over time, particularly when new schemes are intro?

 duced. Since an abbreviated URI has the same syntax as a relative URL path, abbreviated

 URI references cannot be used where relative URIs are permitted, and can be used only when

 there is no defined base (such as in dialog boxes). Don't use abbreviated URIs as hyper?

 text links inside a document; use the standard format as described here.

CONFORMING TO

 (IETF RFC 2396) ?http://www.ietf.org/rfc/rfc2396.txt?, (HTML 4.0) ?http://www.w3.org/TR

 /REC-html40?.

NOTES

 Any tool accepting URIs (e.g., a web browser) on a Linux system should be able to handle

 (directly or indirectly) all of the schemes described here, including the man: and info:

 schemes. Handling them by invoking some other program is fine and in fact encouraged.

 Technically the fragment isn't part of the URI.

 For information on how to embed URIs (including URLs) in a data format, see documentation

 on that format. HTML uses the format text . Texinfo files use the

 format @uref{uri}. Man and mdoc have the recently added UR macro, or just include the URI

 in the text (viewers should be able to detect :// as part of a URI).

 The GNOME and KDE desktop environments currently vary in the URIs they accept, in particu?

 lar in their respective help browsers. To list man pages, GNOME uses <toc:man> while KDE

 uses <man:(index)>, and to list info pages, GNOME uses <toc:info> while KDE uses

 <info:(dir)> (the author of this man page prefers the KDE approach here, though a more Page 9/11

 regular format would be even better). In general, KDE uses <file:/cgi-bin/> as a prefix

 to a set of generated files. KDE prefers documentation in HTML, accessed via the

 <file:/cgi-bin/helpindex>. GNOME prefers the ghelp scheme to store and find documenta?

 tion. Neither browser handles file: references to directories at the time of this writ?

 ing, making it difficult to refer to an entire directory with a browsable URI. As noted

 above, these environments differ in how they handle the info: scheme, probably the most

 important variation. It is expected that GNOME and KDE will converge to common URI for?

 mats, and a future version of this man page will describe the converged result. Efforts

 to aid this convergence are encouraged.

 Security

 A URI does not in itself pose a security threat. There is no general guarantee that a

 URL, which at one time located a given resource, will continue to do so. Nor is there any

 guarantee that a URL will not locate a different resource at some later point in time;

 such a guarantee can be obtained only from the person(s) controlling that namespace and

 the resource in question.

 It is sometimes possible to construct a URL such that an attempt to perform a seemingly

 harmless operation, such as the retrieval of an entity associated with the resource, will

 in fact cause a possibly damaging remote operation to occur. The unsafe URL is typically

 constructed by specifying a port number other than that reserved for the network protocol

 in question. The client unwittingly contacts a site that is in fact running a different

 protocol. The content of the URL contains instructions that, when interpreted according

 to this other protocol, cause an unexpected operation. An example has been the use of a

 gopher URL to cause an unintended or impersonating message to be sent via a SMTP server.

 Caution should be used when using any URL that specifies a port number other than the de?

 fault for the protocol, especially when it is a number within the reserved space.

 Care should be taken when a URI contains escaped delimiters for a given protocol (for ex?

 ample, CR and LF characters for telnet protocols) that these are not unescaped before

 transmission. This might violate the protocol, but avoids the potential for such charac?

 ters to be used to simulate an extra operation or parameter in that protocol, which might

 lead to an unexpected and possibly harmful remote operation to be performed.

 It is clearly unwise to use a URI that contains a password which is intended to be secret.

 In particular, the use of a password within the "userinfo" component of a URI is strongly

 recommended against except in those rare cases where the "password" parameter is intended Page 10/11

 to be public.

BUGS

 Documentation may be placed in a variety of locations, so there currently isn't a good URI

 scheme for general online documentation in arbitrary formats. References of the form

 <file:///usr/doc/ZZZ> don't work because different distributions and local installation

 requirements may place the files in different directories (it may be in /usr/doc, or

 /usr/local/doc, or /usr/share, or somewhere else). Also, the directory ZZZ usually

 changes when a version changes (though filename globbing could partially overcome this).

 Finally, using the file: scheme doesn't easily support people who dynamically load docu?

 mentation from the Internet (instead of loading the files onto a local filesystem). A fu?

 ture URI scheme may be added (e.g., "userdoc:") to permit programs to include cross-refer?

 ences to more detailed documentation without having to know the exact location of that

 documentation. Alternatively, a future version of the filesystem specification may spec?

 ify file locations sufficiently so that the file: scheme will be able to locate documenta?

 tion.

 Many programs and file formats don't include a way to incorporate or implement links using

 URIs.

 Many programs can't handle all of these different URI formats; there should be a standard

 mechanism to load an arbitrary URI that automatically detects the users' environment

 (e.g., text or graphics, desktop environment, local user preferences, and currently exe?

 cuting tools) and invokes the right tool for any URI.

SEE ALSO

 lynx(1), man2html(1), mailaddr(7), utf-8(7)

 IETF RFC 2255 ?http://www.ietf.org/rfc/rfc2255.txt?

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 URI(7)

Page 11/11

