FPDF lerary

PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'va_end.3'
$ man va_end.3
STDARG(3) Linux Programmer's Manual STDARG(3)
NAME
stdarg, va_start, va_arg, va_end, va_copy - variable argument lists
SYNOPSIS
#include <stdarg.h>
void va_start(va_list ap, last);
type va_arg(va_list ap, type);
void va_end(va_list ap);
void va_copy(va_list dest, va_list src);
DESCRIPTION
A function may be called with a varying number of arguments of varying types. The include
file <stdarg.h> declares a type va_list and defines three macros for stepping through a
list of arguments whose number and types are not known to the called function.
The called function must declare an object of type va_list which is used by the macros
va_start(), va_arg(), and va_end().
va_start()
The va_start() macro initializes ap for subsequent use by va_arg() and va_end(), and must
be called first.
The argument last is the name of the last argument before the variable argument list, that
is, the last argument of which the calling function knows the type.
Because the address of this argument may be used in the va_start() macro, it should not be
declared as a register variable, or as a function or an array type.

va_arg() Page 1/5

The va_arg() macro expands to an expression that has the type and value of the next argu?
ment in the call. The argument ap is the va_list ap initialized by va_start(). Each call
to va_arg() modifies ap so that the next call returns the next argument. The argument
type is a type name specified so that the type of a pointer to an object that has the
specified type can be obtained simply by adding a * to type.
The first use of the va_arg() macro after that of the va_start() macro returns the argu?
ment after last. Successive invocations return the values of the remaining arguments.
If there is no next argument, or if type is not compatible with the type of the actual
next argument (as promoted according to the default argument promotions), random errors
will occur.
If ap is passed to a function that uses va_arg(ap,type), then the value of ap is undefined
after the return of that function.
va_end()
Each invocation of va_start() must be matched by a corresponding invocation of va_end() in
the same function. After the call va_end(ap) the variable ap is undefined. Multiple tra?
versals of the list, each bracketed by va_start() and va_end() are possible. va_end() may
be a macro or a function.
va_copy()

The va_copy() macro copies the (previously initialized) variable argument list src to
dest. The behavior is as if va_start() were applied to dest with the same last argument,
followed by the same number of va_arg() invocations that was used to reach the current
state of src.
An obvious implementation would have a va_list be a pointer to the stack frame of the
variadic function. In such a setup (by far the most common) there seems nothing against
an assignment

va_list aq = ap;
Unfortunately, there are also systems that make it an array of pointers (of length 1), and
there one needs

va_list aq;

*aq = *ap;
Finally, on systems where arguments are passed in registers, it may be necessary for
va_start() to allocate memory, store the arguments there, and also an indication of which

argument is next, so that va_arg() can step through the list. Now va_end() can free the Page 2/5

allocated memory again. To accommodate this situation, C99 adds a macro va_copy(), so
that the above assignment can be replaced by
va_list aq;

va_copy(ad, ap);

va_end(aq);
Each invocation of va_copy() must be matched by a corresponding invocation of va_end() in
the same function. Some systems that do not supply va_copy() have __ va_copy instead,
since that was the name used in the draft proposal.
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 27??7?7??7??77??77??77?7???7??7?7??7?7??27?77?7

?Interface ? Attribute ? Value ?

PPV 7??77?277?7???7??7?7??7?7??27?7?7

?va_start(), va_end(), ? Thread safety ? MT-Safe ?
?va_copy() ? ? ?

PPV 7??7??77?7?7?7?7?7?7?7

?va_arg() ? Thread safety ? MT-Safe race:ap ?

PPV 2??7?72?7?7???72?7????7???7?7?7?7??7?7?7

CONFORMING TO
The va_start(), va_arg(), and va_end() macros conform to C89. C99 defines the va_copy()
macro.

BUGS
Unlike the historical varargs macros, the stdarg macros do not permit programmers to code
a function with no fixed arguments. This problem generates work mainly when converting
varargs code to stdarg code, but it also creates difficulties for variadic functions that
wish to pass all of their arguments on to a function that takes a va_list argument, such
as vfprintf(3).

EXAMPLES
The function foo takes a string of format characters and prints out the argument associ?
ated with each format character based on the type.
#include <stdio.h>

#include <stdarg.h>

Page 3/5

void
foo(char *fmt, ...) /*'..."is C syntax for a variadic function */
{
va_list ap;
int d;
char c;
char *s;
va_start(ap, fmt);
while (*fmt)
switch (*fmt++) {
case's" [* string */
s =va_arg(ap, char *);
printf("string %s\n", s);
break;
case 'd" /*int*/
d = va_arg(ap, int);
printf("int %d\n", d);
break;
case 'ct * char */
/* need a cast here since va_arg only
takes fully promoted types */
¢ = (char) va_arg(ap, int);
printf("char %c\n", c);
break;
}
va_end(ap);
}
SEE ALSO
vprintf(3), vscanf(3), vsyslog(3)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be

found at https://www.kernel.org/doc/man-pages/. Page 4/5

2020-11-01 STDARG(3)

Page 5/5

