
Rocky Enterprise Linux 9.2 Manual Pages on command 'vfork.2'

$ man vfork.2

VFORK(2) Linux Programmer's Manual VFORK(2)

NAME

 vfork - create a child process and block parent

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 pid_t vfork(void);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 vfork():

 Since glibc 2.12:

 (_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)

 || /* Since glibc 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

 Before glibc 2.12:

 _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION

 Standard description

 (From POSIX.1) The vfork() function has the same effect as fork(2), except that the behav?

 ior is undefined if the process created by vfork() either modifies any data other than a

 variable of type pid_t used to store the return value from vfork(), or returns from the

 function in which vfork() was called, or calls any other function before successfully

 calling _exit(2) or one of the exec(3) family of functions.

 Linux description Page 1/4

 vfork(), just like fork(2), creates a child process of the calling process. For details

 and return value and errors, see fork(2).

 vfork() is a special case of clone(2). It is used to create new processes without copying

 the page tables of the parent process. It may be useful in performance-sensitive applica?

 tions where a child is created which then immediately issues an execve(2).

 vfork() differs from fork(2) in that the calling thread is suspended until the child ter?

 minates (either normally, by calling _exit(2), or abnormally, after delivery of a fatal

 signal), or it makes a call to execve(2). Until that point, the child shares all memory

 with its parent, including the stack. The child must not return from the current function

 or call exit(3) (which would have the effect of calling exit handlers established by the

 parent process and flushing the parent's stdio(3) buffers), but may call _exit(2).

 As with fork(2), the child process created by vfork() inherits copies of various of the

 caller's process attributes (e.g., file descriptors, signal dispositions, and current

 working directory); the vfork() call differs only in the treatment of the virtual address

 space, as described above.

 Signals sent to the parent arrive after the child releases the parent's memory (i.e., af?

 ter the child terminates or calls execve(2)).

 Historic description

 Under Linux, fork(2) is implemented using copy-on-write pages, so the only penalty in?

 curred by fork(2) is the time and memory required to duplicate the parent's page tables,

 and to create a unique task structure for the child. However, in the bad old days a

 fork(2) would require making a complete copy of the caller's data space, often needlessly,

 since usually immediately afterward an exec(3) is done. Thus, for greater efficiency, BSD

 introduced the vfork() system call, which did not fully copy the address space of the par?

 ent process, but borrowed the parent's memory and thread of control until a call to ex?

 ecve(2) or an exit occurred. The parent process was suspended while the child was using

 its resources. The use of vfork() was tricky: for example, not modifying data in the par?

 ent process depended on knowing which variables were held in a register.

CONFORMING TO

 4.3BSD; POSIX.1-2001 (but marked OBSOLETE). POSIX.1-2008 removes the specification of

 vfork().

 The requirements put on vfork() by the standards are weaker than those put on fork(2), so

 an implementation where the two are synonymous is compliant. In particular, the program? Page 2/4

 mer cannot rely on the parent remaining blocked until the child either terminates or calls

 execve(2), and cannot rely on any specific behavior with respect to shared memory.

NOTES

 Some consider the semantics of vfork() to be an architectural blemish, and the 4.2BSD man

 page stated: "This system call will be eliminated when proper system sharing mechanisms

 are implemented. Users should not depend on the memory sharing semantics of vfork() as it

 will, in that case, be made synonymous to fork(2)." However, even though modern memory

 management hardware has decreased the performance difference between fork(2) and vfork(),

 there are various reasons why Linux and other systems have retained vfork():

 * Some performance-critical applications require the small performance advantage con?

 ferred by vfork().

 * vfork() can be implemented on systems that lack a memory-management unit (MMU), but

 fork(2) can't be implemented on such systems. (POSIX.1-2008 removed vfork() from the

 standard; the POSIX rationale for the posix_spawn(3) function notes that that function,

 which provides functionality equivalent to fork(2)+exec(3), is designed to be imple?

 mentable on systems that lack an MMU.)

 * On systems where memory is constrained, vfork() avoids the need to temporarily commit

 memory (see the description of /proc/sys/vm/overcommit_memory in proc(5)) in order to

 execute a new program. (This can be especially beneficial where a large parent process

 wishes to execute a small helper program in a child process.) By contrast, using

 fork(2) in this scenario requires either committing an amount of memory equal to the

 size of the parent process (if strict overcommitting is in force) or overcommitting

 memory with the risk that a process is terminated by the out-of-memory (OOM) killer.

 Caveats

 The child process should take care not to modify the memory in unintended ways, since such

 changes will be seen by the parent process once the child terminates or executes another

 program. In this regard, signal handlers can be especially problematic: if a signal han?

 dler that is invoked in the child of vfork() changes memory, those changes may result in

 an inconsistent process state from the perspective of the parent process (e.g., memory

 changes would be visible in the parent, but changes to the state of open file descriptors

 would not be visible).

 When vfork() is called in a multithreaded process, only the calling thread is suspended

 until the child terminates or executes a new program. This means that the child is shar? Page 3/4

 ing an address space with other running code. This can be dangerous if another thread in

 the parent process changes credentials (using setuid(2) or similar), since there are now

 two processes with different privilege levels running in the same address space. As an

 example of the dangers, suppose that a multithreaded program running as root creates a

 child using vfork(). After the vfork(), a thread in the parent process drops the process

 to an unprivileged user in order to run some untrusted code (e.g., perhaps via plug-in

 opened with dlopen(3)). In this case, attacks are possible where the parent process uses

 mmap(2) to map in code that will be executed by the privileged child process.

 Linux notes

 Fork handlers established using pthread_atfork(3) are not called when a multithreaded pro?

 gram employing the NPTL threading library calls vfork(). Fork handlers are called in this

 case in a program using the LinuxThreads threading library. (See pthreads(7) for a de?

 scription of Linux threading libraries.)

 A call to vfork() is equivalent to calling clone(2) with flags specified as:

 CLONE_VM | CLONE_VFORK | SIGCHLD

 History

 The vfork() system call appeared in 3.0BSD. In 4.4BSD it was made synonymous to fork(2)

 but NetBSD introduced it again; see ?http://www.netbsd.org/Documentation/kernel

 /vfork.html?. In Linux, it has been equivalent to fork(2) until 2.2.0-pre6 or so. Since

 2.2.0-pre9 (on i386, somewhat later on other architectures) it is an independent system

 call. Support was added in glibc 2.0.112.

BUGS

 Details of the signal handling are obscure and differ between systems. The BSD man page

 states: "To avoid a possible deadlock situation, processes that are children in the middle

 of a vfork() are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are al?

 lowed and input attempts result in an end-of-file indication."

SEE ALSO

 clone(2), execve(2), _exit(2), fork(2), unshare(2), wait(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 VFORK(2) Page 4/4

