
Rocky Enterprise Linux 9.2 Manual Pages on command 'x86_64-linux-gnu-objdump.1'

$ man x86_64-linux-gnu-objdump.1

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

NAME

 objdump - display information from object files

SYNOPSIS

 objdump [-a|--archive-headers]

 [-b bfdname|--target=bfdname]

 [-C|--demangle[=style]]

 [-d|--disassemble[=symbol]]

 [-D|--disassemble-all]

 [-z|--disassemble-zeroes]

 [-EB|-EL|--endian={big | little }]

 [-f|--file-headers]

 [-F|--file-offsets]

 [--file-start-context]

 [-g|--debugging]

 [-e|--debugging-tags]

 [-h|--section-headers|--headers]

 [-i|--info]

 [-j section|--section=section]

 [-l|--line-numbers]

 [-S|--source]

 [--source-comment[=text]]

 [-m machine|--architecture=machine] Page 1/20

 [-M options|--disassembler-options=options]

 [-p|--private-headers]

 [-P options|--private=options]

 [-r|--reloc]

 [-R|--dynamic-reloc]

 [-s|--full-contents]

 [-W[lLiaprmfFsoORtUuTgAck]|

--dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-interp,=str,=str-offsets,=loc,=

Ranges,=pubtypes,=trace_info,=trace_abbrev,=trace_aranges,=gdb_index,=addr,=cu_index,=links]]

 [-WK|--dwarf=follow-links]

 [-WN|--dwarf=no-follow-links]

 [-L|--process-links]

 [--ctf=section]

 [-G|--stabs]

 [-t|--syms]

 [-T|--dynamic-syms]

 [-x|--all-headers]

 [-w|--wide]

 [--start-address=address]

 [--stop-address=address]

 [--no-addresses]

 [--prefix-addresses]

 [--[no-]show-raw-insn]

 [--adjust-vma=offset]

 [--dwarf-depth=n]

 [--dwarf-start=n]

 [--ctf-parent=section]

 [--no-recurse-limit|--recurse-limit]

 [--special-syms]

 [--prefix=prefix]

 [--prefix-strip=level]

 [--insn-width=width] Page 2/20

 [--visualize-jumps[=color|=extended-color|=off]

 [-U method] [--unicode=method]

 [-V|--version]

 [-H|--help]

 objfile...

DESCRIPTION

 objdump displays information about one or more object files. The options control what

 particular information to display. This information is mostly useful to programmers who

 are working on the compilation tools, as opposed to programmers who just want their

 program to compile and work.

 objfile... are the object files to be examined. When you specify archives, objdump shows

 information on each of the member object files.

OPTIONS

 The long and short forms of options, shown here as alternatives, are equivalent. At least

 one option from the list -a,-d,-D,-e,-f,-g,-G,-h,-H,-p,-P,-r,-R,-s,-S,-t,-T,-V,-x must be

 given.

 -a

 --archive-header

 If any of the objfile files are archives, display the archive header information (in a

 format similar to ls -l). Besides the information you could list with ar tv, objdump

 -a shows the object file format of each archive member.

 --adjust-vma=offset

 When dumping information, first add offset to all the section addresses. This is

 useful if the section addresses do not correspond to the symbol table, which can

 happen when putting sections at particular addresses when using a format which can not

 represent section addresses, such as a.out.

 -b bfdname

 --target=bfdname

 Specify that the object-code format for the object files is bfdname. This option may

 not be necessary; objdump can automatically recognize many formats.

 For example,

 objdump -b oasys -m vax -h fu.o

 displays summary information from the section headers (-h) of fu.o, which is Page 3/20

 explicitly identified (-m) as a VAX object file in the format produced by Oasys

 compilers. You can list the formats available with the -i option.

 -C

 --demangle[=style]

 Decode (demangle) low-level symbol names into user-level names. Besides removing any

 initial underscore prepended by the system, this makes C++ function names readable.

 Different compilers have different mangling styles. The optional demangling style

 argument can be used to choose an appropriate demangling style for your compiler.

 --recurse-limit

 --no-recurse-limit

 --recursion-limit

 --no-recursion-limit

 Enables or disables a limit on the amount of recursion performed whilst demangling

 strings. Since the name mangling formats allow for an infinite level of recursion it

 is possible to create strings whose decoding will exhaust the amount of stack space

 available on the host machine, triggering a memory fault. The limit tries to prevent

 this from happening by restricting recursion to 2048 levels of nesting.

 The default is for this limit to be enabled, but disabling it may be necessary in

 order to demangle truly complicated names. Note however that if the recursion limit

 is disabled then stack exhaustion is possible and any bug reports about such an event

 will be rejected.

 -g

 --debugging

 Display debugging information. This attempts to parse STABS debugging format

 information stored in the file and print it out using a C like syntax. If no STABS

 debugging was found this option falls back on the -W option to print any DWARF

 information in the file.

 -e

 --debugging-tags

 Like -g, but the information is generated in a format compatible with ctags tool.

 -d

 --disassemble

 --disassemble=symbol Page 4/20

 Display the assembler mnemonics for the machine instructions from the input file.

 This option only disassembles those sections which are expected to contain

 instructions. If the optional symbol argument is given, then display the assembler

 mnemonics starting at symbol. If symbol is a function name then disassembly will stop

 at the end of the function, otherwise it will stop when the next symbol is

 encountered. If there are no matches for symbol then nothing will be displayed.

 Note if the --dwarf=follow-links option is enabled then any symbol tables in linked

 debug info files will be read in and used when disassembling.

 -D

 --disassemble-all

 Like -d, but disassemble the contents of all sections, not just those expected to

 contain instructions.

 This option also has a subtle effect on the disassembly of instructions in code

 sections. When option -d is in effect objdump will assume that any symbols present in

 a code section occur on the boundary between instructions and it will refuse to

 disassemble across such a boundary. When option -D is in effect however this

 assumption is supressed. This means that it is possible for the output of -d and -D

 to differ if, for example, data is stored in code sections.

 If the target is an ARM architecture this switch also has the effect of forcing the

 disassembler to decode pieces of data found in code sections as if they were

 instructions.

 Note if the --dwarf=follow-links option is enabled then any symbol tables in linked

 debug info files will be read in and used when disassembling.

 --no-addresses

 When disassembling, don't print addresses on each line or for symbols and relocation

 offsets. In combination with --no-show-raw-insn this may be useful for comparing

 compiler output.

 --prefix-addresses

 When disassembling, print the complete address on each line. This is the older

 disassembly format.

 -EB

 -EL

 --endian={big|little} Page 5/20

 Specify the endianness of the object files. This only affects disassembly. This can

 be useful when disassembling a file format which does not describe endianness

 information, such as S-records.

 -f

 --file-headers

 Display summary information from the overall header of each of the objfile files.

 -F

 --file-offsets

 When disassembling sections, whenever a symbol is displayed, also display the file

 offset of the region of data that is about to be dumped. If zeroes are being skipped,

 then when disassembly resumes, tell the user how many zeroes were skipped and the file

 offset of the location from where the disassembly resumes. When dumping sections,

 display the file offset of the location from where the dump starts.

 --file-start-context

 Specify that when displaying interlisted source code/disassembly (assumes -S) from a

 file that has not yet been displayed, extend the context to the start of the file.

 -h

 --section-headers

 --headers

 Display summary information from the section headers of the object file.

 File segments may be relocated to nonstandard addresses, for example by using the

 -Ttext, -Tdata, or -Tbss options to ld. However, some object file formats, such as

 a.out, do not store the starting address of the file segments. In those situations,

 although ld relocates the sections correctly, using objdump -h to list the file

 section headers cannot show the correct addresses. Instead, it shows the usual

 addresses, which are implicit for the target.

 Note, in some cases it is possible for a section to have both the READONLY and the

 NOREAD attributes set. In such cases the NOREAD attribute takes precedence, but

 objdump will report both since the exact setting of the flag bits might be important.

 -H

 --help

 Print a summary of the options to objdump and exit.

 -i Page 6/20

 --info

 Display a list showing all architectures and object formats available for

 specification with -b or -m.

 -j name

 --section=name

 Display information only for section name.

 -L

 --process-links

 Display the contents of non-debug sections found in separate debuginfo files that are

 linked to the main file. This option automatically implies the -WK option, and only

 sections requested by other command line options will be displayed.

 -l

 --line-numbers

 Label the display (using debugging information) with the filename and source line

 numbers corresponding to the object code or relocs shown. Only useful with -d, -D, or

 -r.

 -m machine

 --architecture=machine

 Specify the architecture to use when disassembling object files. This can be useful

 when disassembling object files which do not describe architecture information, such

 as S-records. You can list the available architectures with the -i option.

 If the target is an ARM architecture then this switch has an additional effect. It

 restricts the disassembly to only those instructions supported by the architecture

 specified by machine. If it is necessary to use this switch because the input file

 does not contain any architecture information, but it is also desired to disassemble

 all the instructions use -marm.

 -M options

 --disassembler-options=options

 Pass target specific information to the disassembler. Only supported on some targets.

 If it is necessary to specify more than one disassembler option then multiple -M

 options can be used or can be placed together into a comma separated list.

 For ARC, dsp controls the printing of DSP instructions, spfp selects the printing of

 FPX single precision FP instructions, dpfp selects the printing of FPX double Page 7/20

 precision FP instructions, quarkse_em selects the printing of special QuarkSE-EM

 instructions, fpuda selects the printing of double precision assist instructions, fpus

 selects the printing of FPU single precision FP instructions, while fpud selects the

 printing of FPU double precision FP instructions. Additionally, one can choose to

 have all the immediates printed in hexadecimal using hex. By default, the short

 immediates are printed using the decimal representation, while the long immediate

 values are printed as hexadecimal.

 cpu=... allows one to enforce a particular ISA when disassembling instructions,

 overriding the -m value or whatever is in the ELF file. This might be useful to

 select ARC EM or HS ISA, because architecture is same for those and disassembler

 relies on private ELF header data to decide if code is for EM or HS. This option

 might be specified multiple times - only the latest value will be used. Valid values

 are same as for the assembler -mcpu=... option.

 If the target is an ARM architecture then this switch can be used to select which

 register name set is used during disassembler. Specifying -M reg-names-std (the

 default) will select the register names as used in ARM's instruction set

 documentation, but with register 13 called 'sp', register 14 called 'lr' and register

 15 called 'pc'. Specifying -M reg-names-apcs will select the name set used by the ARM

 Procedure Call Standard, whilst specifying -M reg-names-raw will just use r followed

 by the register number.

 There are also two variants on the APCS register naming scheme enabled by -M reg-

 names-atpcs and -M reg-names-special-atpcs which use the ARM/Thumb Procedure Call

 Standard naming conventions. (Either with the normal register names or the special

 register names).

 This option can also be used for ARM architectures to force the disassembler to

 interpret all instructions as Thumb instructions by using the switch

 --disassembler-options=force-thumb. This can be useful when attempting to disassemble

 thumb code produced by other compilers.

 For AArch64 targets this switch can be used to set whether instructions are

 disassembled as the most general instruction using the -M no-aliases option or whether

 instruction notes should be generated as comments in the disasssembly using -M notes.

 For the x86, some of the options duplicate functions of the -m switch, but allow finer

 grained control. Page 8/20

 "x86-64"

 "i386"

 "i8086"

 Select disassembly for the given architecture.

 "intel"

 "att"

 Select between intel syntax mode and AT&T syntax mode.

 "amd64"

 "intel64"

 Select between AMD64 ISA and Intel64 ISA.

 "intel-mnemonic"

 "att-mnemonic"

 Select between intel mnemonic mode and AT&T mnemonic mode. Note: "intel-mnemonic"

 implies "intel" and "att-mnemonic" implies "att".

 "addr64"

 "addr32"

 "addr16"

 "data32"

 "data16"

 Specify the default address size and operand size. These five options will be

 overridden if "x86-64", "i386" or "i8086" appear later in the option string.

 "suffix"

 When in AT&T mode and also for a limited set of instructions when in Intel mode,

 instructs the disassembler to print a mnemonic suffix even when the suffix could

 be inferred by the operands or, for certain instructions, the execution mode's

 defaults.

 For PowerPC, the -M argument raw selects disasssembly of hardware insns rather than

 aliases. For example, you will see "rlwinm" rather than "clrlwi", and "addi" rather

 than "li". All of the -m arguments for gas that select a CPU are supported. These

 are: 403, 405, 440, 464, 476, 601, 603, 604, 620, 7400, 7410, 7450, 7455, 750cl, 821,

 850, 860, a2, booke, booke32, cell, com, e200z4, e300, e500, e500mc, e500mc64, e500x2,

 e5500, e6500, efs, power4, power5, power6, power7, power8, power9, power10, ppc,

 ppc32, ppc64, ppc64bridge, ppcps, pwr, pwr2, pwr4, pwr5, pwr5x, pwr6, pwr7, pwr8, Page 9/20

 pwr9, pwr10, pwrx, titan, and vle. 32 and 64 modify the default or a prior CPU

 selection, disabling and enabling 64-bit insns respectively. In addition, altivec,

 any, htm, vsx, and spe add capabilities to a previous or later CPU selection. any

 will disassemble any opcode known to binutils, but in cases where an opcode has two

 different meanings or different arguments, you may not see the disassembly you expect.

 If you disassemble without giving a CPU selection, a default will be chosen from

 information gleaned by BFD from the object files headers, but the result again may not

 be as you expect.

 For MIPS, this option controls the printing of instruction mnemonic names and register

 names in disassembled instructions. Multiple selections from the following may be

 specified as a comma separated string, and invalid options are ignored:

 "no-aliases"

 Print the 'raw' instruction mnemonic instead of some pseudo instruction mnemonic.

 I.e., print 'daddu' or 'or' instead of 'move', 'sll' instead of 'nop', etc.

 "msa"

 Disassemble MSA instructions.

 "virt"

 Disassemble the virtualization ASE instructions.

 "xpa"

 Disassemble the eXtended Physical Address (XPA) ASE instructions.

 "gpr-names=ABI"

 Print GPR (general-purpose register) names as appropriate for the specified ABI.

 By default, GPR names are selected according to the ABI of the binary being

 disassembled.

 "fpr-names=ABI"

 Print FPR (floating-point register) names as appropriate for the specified ABI.

 By default, FPR numbers are printed rather than names.

 "cp0-names=ARCH"

 Print CP0 (system control coprocessor; coprocessor 0) register names as

 appropriate for the CPU or architecture specified by ARCH. By default, CP0

 register names are selected according to the architecture and CPU of the binary

 being disassembled.

 "hwr-names=ARCH" Page 10/20

 Print HWR (hardware register, used by the "rdhwr" instruction) names as

 appropriate for the CPU or architecture specified by ARCH. By default, HWR names

 are selected according to the architecture and CPU of the binary being

 disassembled.

 "reg-names=ABI"

 Print GPR and FPR names as appropriate for the selected ABI.

 "reg-names=ARCH"

 Print CPU-specific register names (CP0 register and HWR names) as appropriate for

 the selected CPU or architecture.

 For any of the options listed above, ABI or ARCH may be specified as numeric to have

 numbers printed rather than names, for the selected types of registers. You can list

 the available values of ABI and ARCH using the --help option.

 For VAX, you can specify function entry addresses with -M entry:0xf00ba. You can use

 this multiple times to properly disassemble VAX binary files that don't contain symbol

 tables (like ROM dumps). In these cases, the function entry mask would otherwise be

 decoded as VAX instructions, which would probably lead the rest of the function being

 wrongly disassembled.

 -p

 --private-headers

 Print information that is specific to the object file format. The exact information

 printed depends upon the object file format. For some object file formats, no

 additional information is printed.

 -P options

 --private=options

 Print information that is specific to the object file format. The argument options is

 a comma separated list that depends on the format (the lists of options is displayed

 with the help).

 For XCOFF, the available options are:

 "header"

 "aout"

 "sections"

 "syms"

 "relocs" Page 11/20

 "lineno,"

 "loader"

 "except"

 "typchk"

 "traceback"

 "toc"

 "ldinfo"

 Not all object formats support this option. In particular the ELF format does not use

 it.

 -r

 --reloc

 Print the relocation entries of the file. If used with -d or -D, the relocations are

 printed interspersed with the disassembly.

 -R

 --dynamic-reloc

 Print the dynamic relocation entries of the file. This is only meaningful for dynamic

 objects, such as certain types of shared libraries. As for -r, if used with -d or -D,

 the relocations are printed interspersed with the disassembly.

 -s

 --full-contents

 Display the full contents of any sections requested. By default all non-empty

 sections are displayed.

 -S

 --source

 Display source code intermixed with disassembly, if possible. Implies -d.

 --source-comment[=txt]

 Like the -S option, but all source code lines are displayed with a prefix of txt.

 Typically txt will be a comment string which can be used to distinguish the assembler

 code from the source code. If txt is not provided then a default string of "# " (hash

 followed by a space), will be used.

 --prefix=prefix

 Specify prefix to add to the absolute paths when used with -S.

 --prefix-strip=level Page 12/20

 Indicate how many initial directory names to strip off the hardwired absolute paths.

 It has no effect without --prefix=prefix.

 --show-raw-insn

 When disassembling instructions, print the instruction in hex as well as in symbolic

 form. This is the default except when --prefix-addresses is used.

 --no-show-raw-insn

 When disassembling instructions, do not print the instruction bytes. This is the

 default when --prefix-addresses is used.

 --insn-width=width

 Display width bytes on a single line when disassembling instructions.

 --visualize-jumps[=color|=extended-color|=off]

 Visualize jumps that stay inside a function by drawing ASCII art between the start and

 target addresses. The optional =color argument adds color to the output using simple

 terminal colors. Alternatively the =extended-color argument will add color using 8bit

 colors, but these might not work on all terminals.

 If it is necessary to disable the visualize-jumps option after it has previously been

 enabled then use visualize-jumps=off.

 -W[lLiaprmfFsoORtUuTgAckK]

--dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-interp,=str,=str-offsets,=loc,=

Ranges,=pubtypes,=trace_info,=trace_abbrev,=trace_aranges,=gdb_index,=addr,=cu_index,=links,=follow-links]

 Displays the contents of the DWARF debug sections in the file, if any are present.

 Compressed debug sections are automatically decompressed (temporarily) before they are

 displayed. If one or more of the optional letters or words follows the switch then

 only those type(s) of data will be dumped. The letters and words refer to the

 following information:

 "a"

 "=abbrev"

 Displays the contents of the .debug_abbrev section.

 "A"

 "=addr"

 Displays the contents of the .debug_addr section.

 "c" Page 13/20

 "=cu_index"

 Displays the contents of the .debug_cu_index and/or .debug_tu_index sections.

 "f"

 "=frames"

 Display the raw contents of a .debug_frame section.

 "F"

 "=frames-interp"

 Display the interpreted contents of a .debug_frame section.

 "g"

 "=gdb_index"

 Displays the contents of the .gdb_index and/or .debug_names sections.

 "i"

 "=info"

 Displays the contents of the .debug_info section. Note: the output from this

 option can also be restricted by the use of the --dwarf-depth and --dwarf-start

 options.

 "k"

 "=links"

 Displays the contents of the .gnu_debuglink, .gnu_debugaltlink and .debug_sup

 sections, if any of them are present. Also displays any links to separate dwarf

 object files (dwo), if they are specified by the DW_AT_GNU_dwo_name or

 DW_AT_dwo_name attributes in the .debug_info section.

 "K"

 "=follow-links"

 Display the contents of any selected debug sections that are found in linked,

 separate debug info file(s). This can result in multiple versions of the same

 debug section being displayed if it exists in more than one file.

 In addition, when displaying DWARF attributes, if a form is found that references

 the separate debug info file, then the referenced contents will also be displayed.

 Note - in some distributions this option is enabled by default. It can be

 disabled via the N debug option. The default can be chosen when configuring the

 binutils via the --enable-follow-debug-links=yes or --enable-follow-debug-links=no

 options. If these are not used then the default is to enable the following of Page 14/20

 debug links.

 "N"

 "=no-follow-links"

 Disables the following of links to separate debug info files.

 "l"

 "=rawline"

 Displays the contents of the .debug_line section in a raw format.

 "L"

 "=decodedline"

 Displays the interpreted contents of the .debug_line section.

 "m"

 "=macro"

 Displays the contents of the .debug_macro and/or .debug_macinfo sections.

 "o"

 "=loc"

 Displays the contents of the .debug_loc and/or .debug_loclists sections.

 "O"

 "=str-offsets"

 Displays the contents of the .debug_str_offsets section.

 "p"

 "=pubnames"

 Displays the contents of the .debug_pubnames and/or .debug_gnu_pubnames sections.

 "r"

 "=aranges"

 Displays the contents of the .debug_aranges section.

 "R"

 "=Ranges"

 Displays the contents of the .debug_ranges and/or .debug_rnglists sections.

 "s"

 "=str"

 Displays the contents of the .debug_str, .debug_line_str and/or .debug_str_offsets

 sections.

 "t" Page 15/20

 "=pubtype"

 Displays the contents of the .debug_pubtypes and/or .debug_gnu_pubtypes sections.

 "T"

 "=trace_aranges"

 Displays the contents of the .trace_aranges section.

 "u"

 "=trace_abbrev"

 Displays the contents of the .trace_abbrev section.

 "U"

 "=trace_info"

 Displays the contents of the .trace_info section.

 Note: displaying the contents of .debug_static_funcs, .debug_static_vars and

 debug_weaknames sections is not currently supported.

 --dwarf-depth=n

 Limit the dump of the ".debug_info" section to n children. This is only useful with

 --debug-dump=info. The default is to print all DIEs; the special value 0 for n will

 also have this effect.

 With a non-zero value for n, DIEs at or deeper than n levels will not be printed. The

 range for n is zero-based.

 --dwarf-start=n

 Print only DIEs beginning with the DIE numbered n. This is only useful with

 --debug-dump=info.

 If specified, this option will suppress printing of any header information and all

 DIEs before the DIE numbered n. Only siblings and children of the specified DIE will

 be printed.

 This can be used in conjunction with --dwarf-depth.

 --dwarf-check

 Enable additional checks for consistency of Dwarf information.

 --ctf[=section]

 Display the contents of the specified CTF section. CTF sections themselves contain

 many subsections, all of which are displayed in order.

 By default, display the name of the section named .ctf, which is the name emitted by

 ld. Page 16/20

 --ctf-parent=member

 If the CTF section contains ambiguously-defined types, it will consist of an archive

 of many CTF dictionaries, all inheriting from one dictionary containing unambiguous

 types. This member is by default named .ctf, like the section containing it, but it

 is possible to change this name using the "ctf_link_set_memb_name_changer" function at

 link time. When looking at CTF archives that have been created by a linker that uses

 the name changer to rename the parent archive member, --ctf-parent can be used to

 specify the name used for the parent.

 -G

 --stabs

 Display the full contents of any sections requested. Display the contents of the

 .stab and .stab.index and .stab.excl sections from an ELF file. This is only useful

 on systems (such as Solaris 2.0) in which ".stab" debugging symbol-table entries are

 carried in an ELF section. In most other file formats, debugging symbol-table entries

 are interleaved with linkage symbols, and are visible in the --syms output.

 --start-address=address

 Start displaying data at the specified address. This affects the output of the -d, -r

 and -s options.

 --stop-address=address

 Stop displaying data at the specified address. This affects the output of the -d, -r

 and -s options.

 -t

 --syms

 Print the symbol table entries of the file. This is similar to the information

 provided by the nm program, although the display format is different. The format of

 the output depends upon the format of the file being dumped, but there are two main

 types. One looks like this:

 [4](sec 3)(fl 0x00)(ty 0)(scl 3) (nx 1) 0x00000000 .bss

 [6](sec 1)(fl 0x00)(ty 0)(scl 2) (nx 0) 0x00000000 fred

 where the number inside the square brackets is the number of the entry in the symbol

 table, the sec number is the section number, the fl value are the symbol's flag bits,

 the ty number is the symbol's type, the scl number is the symbol's storage class and

 the nx value is the number of auxiliary entries associated with the symbol. The last Page 17/20

 two fields are the symbol's value and its name.

 The other common output format, usually seen with ELF based files, looks like this:

 00000000 l d .bss 00000000 .bss

 00000000 g .text 00000000 fred

 Here the first number is the symbol's value (sometimes referred to as its address).

 The next field is actually a set of characters and spaces indicating the flag bits

 that are set on the symbol. These characters are described below. Next is the

 section with which the symbol is associated or *ABS* if the section is absolute (ie

 not connected with any section), or *UND* if the section is referenced in the file

 being dumped, but not defined there.

 After the section name comes another field, a number, which for common symbols is the

 alignment and for other symbol is the size. Finally the symbol's name is displayed.

 The flag characters are divided into 7 groups as follows:

 "l"

 "g"

 "u"

 "!" The symbol is a local (l), global (g), unique global (u), neither global nor local

 (a space) or both global and local (!). A symbol can be neither local or global

 for a variety of reasons, e.g., because it is used for debugging, but it is

 probably an indication of a bug if it is ever both local and global. Unique

 global symbols are a GNU extension to the standard set of ELF symbol bindings.

 For such a symbol the dynamic linker will make sure that in the entire process

 there is just one symbol with this name and type in use.

 "w" The symbol is weak (w) or strong (a space).

 "C" The symbol denotes a constructor (C) or an ordinary symbol (a space).

 "W" The symbol is a warning (W) or a normal symbol (a space). A warning symbol's name

 is a message to be displayed if the symbol following the warning symbol is ever

 referenced.

 "I"

 "i" The symbol is an indirect reference to another symbol (I), a function to be

 evaluated during reloc processing (i) or a normal symbol (a space).

 "d"

 "D" The symbol is a debugging symbol (d) or a dynamic symbol (D) or a normal symbol (a Page 18/20

 space).

 "F"

 "f"

 "O" The symbol is the name of a function (F) or a file (f) or an object (O) or just a

 normal symbol (a space).

 -T

 --dynamic-syms

 Print the dynamic symbol table entries of the file. This is only meaningful for

 dynamic objects, such as certain types of shared libraries. This is similar to the

 information provided by the nm program when given the -D (--dynamic) option.

 The output format is similar to that produced by the --syms option, except that an

 extra field is inserted before the symbol's name, giving the version information

 associated with the symbol. If the version is the default version to be used when

 resolving unversioned references to the symbol then it's displayed as is, otherwise

 it's put into parentheses.

 --special-syms

 When displaying symbols include those which the target considers to be special in some

 way and which would not normally be of interest to the user.

 -U [d|i|l|e|x|h]

 --unicode=[default|invalid|locale|escape|hex|highlight]

 Controls the display of UTF-8 encoded multibyte characters in strings. The default

 (--unicode=default) is to give them no special treatment. The --unicode=locale option

 displays the sequence in the current locale, which may or may not support them. The

 options --unicode=hex and --unicode=invalid display them as hex byte sequences

 enclosed by either angle brackets or curly braces.

 The --unicode=escape option displays them as escape sequences (\uxxxx) and the

 --unicode=highlight option displays them as escape sequences highlighted in red (if

 supported by the output device). The colouring is intended to draw attention to the

 presence of unicode sequences where they might not be expected.

 -V

 --version

 Print the version number of objdump and exit.

 -x Page 19/20

 --all-headers

 Display all available header information, including the symbol table and relocation

 entries. Using -x is equivalent to specifying all of -a -f -h -p -r -t.

 -w

 --wide

 Format some lines for output devices that have more than 80 columns. Also do not

 truncate symbol names when they are displayed.

 -z

 --disassemble-zeroes

 Normally the disassembly output will skip blocks of zeroes. This option directs the

 disassembler to disassemble those blocks, just like any other data.

 @file

 Read command-line options from file. The options read are inserted in place of the

 original @file option. If file does not exist, or cannot be read, then the option

 will be treated literally, and not removed.

 Options in file are separated by whitespace. A whitespace character may be included

 in an option by surrounding the entire option in either single or double quotes. Any

 character (including a backslash) may be included by prefixing the character to be

 included with a backslash. The file may itself contain additional @file options; any

 such options will be processed recursively.

SEE ALSO

 nm(1), readelf(1), and the Info entries for binutils.

COPYRIGHT

 Copyright (c) 1991-2022 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this document under the terms of

 the GNU Free Documentation License, Version 1.3 or any later version published by the Free

 Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no

 Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

 Documentation License".

binutils-2.38 2024-01-23 OBJDUMP(1)

Page 20/20

