PDF generator

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'x86_64-linux-gnu-objdump.1’
$ man x86_64-linux-gnu-objdump.1
OBJDUMP(1) GNU Development Tools OBJDUMP(1)
NAME

objdump - display information from object files

SYNOPSIS

objdump [-a|--archive-headers]
[-b bfdname|--target=bfdname]
[-C|--demangle[=style]]
[-d]--disassemble[=symbol]]
[-D|--disassemble-all]
[-z|--disassemble-zeroes]
[-EBJ-EL|--endian={big | little }]
[-f|--file-headers]
[-F|--file-offsets]
[--file-start-context]
[-g]--debugging]
[-e|--debugging-tags]
[-h]|--section-headers|--headers]
[-i|--info]
[-] section|--section=section]
[-1]--line-numbers]
[-S|--source]
[--source-comment[=text]]

[-m machine|--architecture=machine] Page 1/20

[-M options|--disassembler-options=options]
[-p|--private-headers]

[-P options|--private=options]

[-r]--reloc]

[-R]--dynamic-reloc]

[-s|--full-contents]

[-WIILiaprmfFsoORtUuTgACK]|

--dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-interp,=str,=str-offsets,=loc,=
Ranges,=pubtypes,=trace_info,=trace_abbrev,=trace_aranges,=gdb_index,=addr,=cu_index,=links]]
[-WK|--dwarf=follow-links]
[-WN|--dwarf=no-follow-links]
[-L|--process-links]
[--ctf=section]
[-G|--stabs]
[-t]--syms]
[-T|--dynamic-syms]
[-x|--all-headers]
[-w|--wide]
[--start-address=address]
[--stop-address=address]
[--no-addresses]
[--prefix-addresses]
[--[no-]show-raw-insn]
[--adjust-vma=offset]
[--dwarf-depth=n]
[--dwarf-start=n]
[--ctf-parent=section]
[--no-recurse-limit|--recurse-limit]
[--special-syms]
[--prefix=prefix]
[--prefix-strip=level]

[--insn-width=width] Page 2/20

[--visualize-jumps[=color|=extended-color|=0ff]
[-U method] [--unicode=method]
[-V]--version]
[-HI--help]
objfile...
DESCRIPTION
objdump displays information about one or more object files. The options control what
particular information to display. This information is mostly useful to programmers who
are working on the compilation tools, as opposed to programmers who just want their
program to compile and work.
objffile... are the object files to be examined. When you specify archives, objdump shows
information on each of the member object files.
OPTIONS
The long and short forms of options, shown here as alternatives, are equivalent. At least
one option from the list -a,-d,-D,-e,-f,-g,-G,-h,-H,-p,-P,-r,-R,-s,-S,-t,-T,-V,-x must be
given.
-a
--archive-header
If any of the obifile files are archives, display the archive header information (in a
format similar to Is -I). Besides the information you could list with ar tv, objdump
-a shows the object file format of each archive member.
--adjust-vma=offset
When dumping information, first add offset to all the section addresses. This is
useful if the section addresses do not correspond to the symbol table, which can
happen when putting sections at particular addresses when using a format which can not
represent section addresses, such as a.out.
-b bfdname
--target=bfdname
Specify that the object-code format for the object files is bfdname. This option may
not be necessary; objdump can automatically recognize many formats.
For example,
objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (-h) of fu.o, which is

Page 3/20

explicitly identified (-m) as a VAX object file in the format produced by Oasys
compilers. You can list the formats available with the -i option.

-C

--demangle[=style]
Decode (demangle) low-level symbol names into user-level names. Besides removing any
initial underscore prepended by the system, this makes C++ function names readable.
Different compilers have different mangling styles. The optional demangling style
argument can be used to choose an appropriate demangling style for your compiler.

--recurse-limit

--no-recurse-limit

--recursion-limit

--no-recursion-limit
Enables or disables a limit on the amount of recursion performed whilst demangling
strings. Since the name mangling formats allow for an infinite level of recursion it
is possible to create strings whose decoding will exhaust the amount of stack space
available on the host machine, triggering a memory fault. The limit tries to prevent
this from happening by restricting recursion to 2048 levels of nesting.
The default is for this limit to be enabled, but disabling it may be necessary in
order to demangle truly complicated names. Note however that if the recursion limit
is disabled then stack exhaustion is possible and any bug reports about such an event
will be rejected.

-9

--debugging
Display debugging information. This attempts to parse STABS debugging format
information stored in the file and print it out using a C like syntax. If no STABS
debugging was found this option falls back on the -W option to print any DWARF
information in the file.

-e

--debugging-tags
Like -g, but the information is generated in a format compatible with ctags tool.

-d

--disassemble

--disassemble=symbol Page 4/20

Display the assembler mnemonics for the machine instructions from the input file.
This option only disassembles those sections which are expected to contain
instructions. If the optional symbol argument is given, then display the assembler
mnemonics starting at symbol. If symbol is a function name then disassembly will stop
at the end of the function, otherwise it will stop when the next symbol is
encountered. If there are no matches for symbol then nothing will be displayed.
Note if the --dwarf=follow-links option is enabled then any symbol tables in linked
debug info files will be read in and used when disassembling.

-D

--disassemble-all
Like -d, but disassemble the contents of all sections, not just those expected to
contain instructions.
This option also has a subtle effect on the disassembly of instructions in code
sections. When option -d is in effect objdump will assume that any symbols present in
a code section occur on the boundary between instructions and it will refuse to
disassemble across such a boundary. When option -D is in effect however this
assumption is supressed. This means that it is possible for the output of -d and -D
to differ if, for example, data is stored in code sections.
If the target is an ARM architecture this switch also has the effect of forcing the
disassembler to decode pieces of data found in code sections as if they were
instructions.
Note if the --dwarf=follow-links option is enabled then any symbol tables in linked
debug info files will be read in and used when disassembling.

--no-addresses
When disassembling, don't print addresses on each line or for symbols and relocation
offsets. In combination with --no-show-raw-insn this may be useful for comparing
compiler output.

--prefix-addresses
When disassembling, print the complete address on each line. This is the older
disassembly format.

-EB

-EL

--endian={big|little} Page 5/20

Specify the endianness of the object files. This only affects disassembly. This can
be useful when disassembling a file format which does not describe endianness
information, such as S-records.

-f

--file-headers
Display summary information from the overall header of each of the objfile files.

-F

--file-offsets
When disassembling sections, whenever a symbol is displayed, also display the file
offset of the region of data that is about to be dumped. If zeroes are being skipped,
then when disassembly resumes, tell the user how many zeroes were skipped and the file
offset of the location from where the disassembly resumes. When dumping sections,
display the file offset of the location from where the dump starts.

--file-start-context
Specify that when displaying interlisted source code/disassembly (assumes -S) from a
file that has not yet been displayed, extend the context to the start of the file.

-h

--section-headers

--headers
Display summary information from the section headers of the object file.
File segments may be relocated to nonstandard addresses, for example by using the
-Ttext, -Tdata, or -Thss options to Id. However, some object file formats, such as
a.out, do not store the starting address of the file segments. In those situations,
although Id relocates the sections correctly, using objdump -h to list the file
section headers cannot show the correct addresses. Instead, it shows the usual
addresses, which are implicit for the target.
Note, in some cases it is possible for a section to have both the READONLY and the
NOREAD attributes set. In such cases the NOREAD attribute takes precedence, but
objdump will report both since the exact setting of the flag bits might be important.

-H

--help
Print a summary of the options to objdump and exit.

-i Page 6/20

--info
Display a list showing all architectures and object formats available for
specification with -b or -m.

-j name

--section=name
Display information only for section name.

-L

--process-links
Display the contents of non-debug sections found in separate debuginfo files that are
linked to the main file. This option automatically implies the -WK option, and only
sections requested by other command line options will be displayed.

-l

--line-numbers
Label the display (using debugging information) with the filename and source line
numbers corresponding to the object code or relocs shown. Only useful with -d, -D, or
-r.

-m machine

--architecture=machine
Specify the architecture to use when disassembling object files. This can be useful
when disassembling object files which do not describe architecture information, such
as S-records. You can list the available architectures with the -i option.
If the target is an ARM architecture then this switch has an additional effect. It
restricts the disassembly to only those instructions supported by the architecture
specified by machine. If it is necessary to use this switch because the input file
does not contain any architecture information, but it is also desired to disassemble
all the instructions use -marm.

-M options

--disassembler-options=options
Pass target specific information to the disassembler. Only supported on some targets.
If it is necessary to specify more than one disassembler option then multiple -M
options can be used or can be placed together into a comma separated list.
For ARC, dsp controls the printing of DSP instructions, spfp selects the printing of

FPX single precision FP instructions, dpfp selects the printing of FPX double

Page 7/20

precision FP instructions, quarkse_em selects the printing of special QuarkSE-EM
instructions, fpuda selects the printing of double precision assist instructions, fpus
selects the printing of FPU single precision FP instructions, while fpud selects the
printing of FPU double precision FP instructions. Additionally, one can choose to

have all the immediates printed in hexadecimal using hex. By default, the short
immediates are printed using the decimal representation, while the long immediate
values are printed as hexadecimal.

cpu=... allows one to enforce a particular ISA when disassembling instructions,
overriding the -m value or whatever is in the ELF file. This might be useful to

select ARC EM or HS ISA, because architecture is same for those and disassembler
relies on private ELF header data to decide if code is for EM or HS. This option

might be specified multiple times - only the latest value will be used. Valid values

are same as for the assembler -mcpu=... option.

If the target is an ARM architecture then this switch can be used to select which
register name set is used during disassembler. Specifying -M reg-names-std (the
default) will select the register names as used in ARM's instruction set

documentation, but with register 13 called 'sp', register 14 called 'Ir' and register

15 called 'pc'. Specifying -M reg-names-apcs will select the name set used by the ARM
Procedure Call Standard, whilst specifying -M reg-names-raw will just use r followed

by the register number.

There are also two variants on the APCS register naming scheme enabled by -M reg-
names-atpcs and -M reg-names-special-atpcs which use the ARM/Thumb Procedure Call
Standard naming conventions. (Either with the normal register names or the special
register names).

This option can also be used for ARM architectures to force the disassembler to
interpret all instructions as Thumb instructions by using the switch
--disassembler-options=force-thumb. This can be useful when attempting to disassemble
thumb code produced by other compilers.

For AArch64 targets this switch can be used to set whether instructions are
disassembled as the most general instruction using the -M no-aliases option or whether
instruction notes should be generated as comments in the disasssembly using -M notes.
For the x86, some of the options duplicate functions of the -m switch, but allow finer

grained control. Page 8/20

"x86-64"
"i386"
"i8086"
Select disassembly for the given architecture.
"intel"
"att"
Select between intel syntax mode and AT&T syntax mode.
"amd64"
"intel64"
Select between AMDG64 ISA and Intel64 ISA.
"intel-mnemonic"
"att-mnemonic"
Select between intel mnemonic mode and AT&T mnemonic mode. Note: “"intel-mnemonic”
implies "intel" and "att-mnemonic" implies "att".
"addré4"
"addr32"
"addr16"
"data32"
"datal6"
Specify the default address size and operand size. These five options will be
overridden if "x86-64", "i386" or "i8086" appear later in the option string.
"suffix"
When in AT&T mode and also for a limited set of instructions when in Intel mode,
instructs the disassembler to print a mnemonic suffix even when the suffix could
be inferred by the operands or, for certain instructions, the execution mode's
defaults.
For PowerPC, the -M argument raw selects disasssembly of hardware insns rather than
aliases. For example, you will see "rlwinm" rather than "clrlwi", and "addi" rather
than "li". All of the -m arguments for gas that select a CPU are supported. These
are: 403, 405, 440, 464, 476, 601, 603, 604, 620, 7400, 7410, 7450, 7455, 750cl, 821,
850, 860, a2, booke, booke32, cell, com, e200z4, e300, €500, e500mc, e500mc64, e500x2,
e5500, e6500, efs, power4, power5, power6, power7, power8, power9, powerl0, ppc,

ppc32, ppc64, ppcb4bridge, ppeps, pwr, pwr2, pwrd, pwrb, pwrbx, pwr6, pwr7, pwr8, Page 9/20

pwr9, pwrl0, pwrx, titan, and vle. 32 and 64 modify the default or a prior CPU
selection, disabling and enabling 64-bit insns respectively. In addition, altivec,
any, htm, vsx, and spe add capabilities to a previous or later CPU selection. any

will disassemble any opcode known to binutils, but in cases where an opcode has two

different meanings or different arguments, you may not see the disassembly you expect.

If you disassemble without giving a CPU selection, a default will be chosen from
information gleaned by BFD from the object files headers, but the result again may not
be as you expect.
For MIPS, this option controls the printing of instruction mnemonic names and register
names in disassembled instructions. Multiple selections from the following may be
specified as a comma separated string, and invalid options are ignored:
"no-aliases"

Print the 'raw' instruction mnemonic instead of some pseudo instruction mnemonic.

I.e., print 'daddu’ or 'or' instead of 'move’, 'slI' instead of 'nop’, etc.

msa’
Disassemble MSA instructions.
Ilvirtll

Disassemble the virtualization ASE instructions.

xpa
Disassemble the eXtended Physical Address (XPA) ASE instructions.
"gpr-names=ABI"
Print GPR (general-purpose register) names as appropriate for the specified ABI.
By default, GPR names are selected according to the ABI of the binary being
disassembled.
"fpr-names=ABI"
Print FPR (floating-point register) names as appropriate for the specified ABI.
By default, FPR numbers are printed rather than names.
"cp0-names=ARCH"
Print CPO (system control coprocessor; coprocessor 0) register names as
appropriate for the CPU or architecture specified by ARCH. By default, CPO
register names are selected according to the architecture and CPU of the binary
being disassembled.

"hwr-names=ARCH"

Page 10/20

Print HWR (hardware register, used by the "rdhwr" instruction) names as
appropriate for the CPU or architecture specified by ARCH. By default, HWR names
are selected according to the architecture and CPU of the binary being
disassembled.
"reg-names=ABI"
Print GPR and FPR names as appropriate for the selected ABI.
"reg-names=ARCH"
Print CPU-specific register names (CPO register and HWR names) as appropriate for
the selected CPU or architecture.
For any of the options listed above, ABI or ARCH may be specified as numeric to have
numbers printed rather than names, for the selected types of registers. You can list
the available values of ABI and ARCH using the --help option.
For VAX, you can specify function entry addresses with -M entry:0xfO0Oba. You can use
this multiple times to properly disassemble VAX binary files that don't contain symbol
tables (like ROM dumps). In these cases, the function entry mask would otherwise be
decoded as VAX instructions, which would probably lead the rest of the function being
wrongly disassembled.
P
--private-headers
Print information that is specific to the object file format. The exact information
printed depends upon the object file format. For some object file formats, no
additional information is printed.
-P options
--private=options
Print information that is specific to the object file format. The argument options is
a comma separated list that depends on the format (the lists of options is displayed
with the help).
For XCOFF, the available options are:
"header"
"aout"
"sections"

"syms"

"relocs" Page 11/20

"lineno,”
"loader"
"except"
"typchk"
"traceback"
"toc"
"ldinfo"
Not all object formats support this option. In particular the ELF format does not use
it.
-r
--reloc
Print the relocation entries of the file. If used with -d or -D, the relocations are
printed interspersed with the disassembly.
R
--dynamic-reloc
Print the dynamic relocation entries of the file. This is only meaningful for dynamic
objects, such as certain types of shared libraries. As for -r, if used with -d or -D,
the relocations are printed interspersed with the disassembly.
-s
--full-contents
Display the full contents of any sections requested. By default all non-empty
sections are displayed.
-S
--source
Display source code intermixed with disassembly, if possible. Implies -d.
--source-comment[=txt]
Like the -S option, but all source code lines are displayed with a prefix of txt.
Typically txt will be a comment string which can be used to distinguish the assembler
code from the source code. If txt is not provided then a default string of "# " (hash
followed by a space), will be used.
--prefix=prefix
Specify prefix to add to the absolute paths when used with -S.

--prefix-strip=level Page 12/20

Indicate how many initial directory names to strip off the hardwired absolute paths.
It has no effect without --prefix=prefix.
--show-raw-insn
When disassembling instructions, print the instruction in hex as well as in symbolic
form. This is the default except when --prefix-addresses is used.
--no-show-raw-insn
When disassembling instructions, do not print the instruction bytes. This is the
default when --prefix-addresses is used.
--insn-width=width
Display width bytes on a single line when disassembling instructions.
--visualize-jumps[=color|=extended-color|=0ff]
Visualize jumps that stay inside a function by drawing ASCII art between the start and
target addresses. The optional =color argument adds color to the output using simple
terminal colors. Alternatively the =extended-color argument will add color using 8bit
colors, but these might not work on all terminals.
If it is necessary to disable the visualize-jumps option after it has previously been
enabled then use visualize-jumps=off.

-WI[lLiaprmfFsoORtUuTgACckK]

--dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-interp,=str,=str-offsets,=loc,=
Ranges,=pubtypes,=trace_info,=trace_abbrev,=trace_aranges,=gdb_index,=addr,=cu_index,=links,=follow-links]

Displays the contents of the DWARF debug sections in the file, if any are present.

Compressed debug sections are automatically decompressed (temporarily) before they are

displayed. If one or more of the optional letters or words follows the switch then

only those type(s) of data will be dumped. The letters and words refer to the

following information:

a
"=abbrev"

Displays the contents of the .debug_abbrev section.
"
"=addr"

Displays the contents of the .debug_addr section.

o Page 13/20

"=cu_index"
Displays the contents of the .debug_cu_index and/or .debug_tu_index sections.
npo
"=frames"
Display the raw contents of a .debug_frame section.
=
"=frames-interp"

Display the interpreted contents of a .debug_frame section.

g
"=gdb_index"
Displays the contents of the .gdb_index and/or .debug_names sections.
i
"=info"
Displays the contents of the .debug_info section. Note: the output from this
option can also be restricted by the use of the --dwarf-depth and --dwarf-start
options.
e
"=links"
Displays the contents of the .gnu_debuglink, .gnu_debugaltlink and .debug_sup
sections, if any of them are present. Also displays any links to separate dwarf
object files (dwo), if they are specified by the DW_AT_GNU_dwo_name or
DW_AT_dwo_name attributes in the .debug_info section.
g
"=follow-links"
Display the contents of any selected debug sections that are found in linked,
separate debug info file(s). This can result in multiple versions of the same
debug section being displayed if it exists in more than one file.
In addition, when displaying DWARF attributes, if a form is found that references
the separate debug info file, then the referenced contents will also be displayed.
Note - in some distributions this option is enabled by default. It can be
disabled via the N debug option. The default can be chosen when configuring the
binutils via the --enable-follow-debug-links=yes or --enable-follow-debug-links=no

options. If these are not used then the default is to enable the following of Page 14/20

debug links.
NG

"=no-follow-links"

Disables the following of links to separate debug info files.

IIIII
"=rawline"

Displays the contents of the
n.n

"=decodedline"

.debug_line section in a raw format.

Displays the interpreted contents of the .debug_line section.

m
"=macro"

Displays the contents of the

"=loc"

Displays the contents of the
non
"=str-offsets"”

Displays the contents of the

p

"=pubnames"

Displays the contents of the
np
"=aranges"

Displays the contents of the
"R
"=Ranges"

Displays the contents of the

s
"=str"

Displays the contents of the
sections.

ngn

.debug_macro and/or .debug_macinfo sections.

.debug_loc and/or .debug_loclists sections.

.debug_str_offsets section.

.debug_pubnames and/or .debug_gnu_pubnames sections.

.debug_aranges section.

.debug_ranges and/or .debug_rnglists sections.

.debug_str, .debug_line_str and/or .debug_str_offsets

Page 15/20

"=pubtype”

Displays the contents of the .debug_pubtypes and/or .debug_gnu_pubtypes sections.

W
"=trace_aranges"

Displays the contents of the .trace_aranges section.

u
"=trace_abbrev"
Displays the contents of the .trace_abbrev section.
g
"=trace_info"
Displays the contents of the .trace_info section.
Note: displaying the contents of .debug_static_funcs, .debug_static_vars and
debug_weaknames sections is not currently supported.
--dwarf-depth=n
Limit the dump of the ".debug_info" section to n children. This is only useful with
--debug-dump=info. The default is to print all DIEs; the special value 0 for n will
also have this effect.
With a non-zero value for n, DIEs at or deeper than n levels will not be printed. The
range for n is zero-based.
--dwarf-start=n
Print only DIEs beginning with the DIE numbered n. This is only useful with
--debug-dump=info.
If specified, this option will suppress printing of any header information and all
DIEs before the DIE numbered n. Only siblings and children of the specified DIE will
be printed.
This can be used in conjunction with --dwarf-depth.
--dwarf-check
Enable additional checks for consistency of Dwarf information.
--ctf[=section]
Display the contents of the specified CTF section. CTF sections themselves contain
many subsections, all of which are displayed in order.
By default, display the name of the section named .ctf, which is the name emitted by

Id.

Page 16/20

--ctf-parent=member
If the CTF section contains ambiguously-defined types, it will consist of an archive
of many CTF dictionaries, all inheriting from one dictionary containing unambiguous
types. This member is by default named .ctf, like the section containing it, but it
is possible to change this name using the "ctf_link_set_memb_name_changer" function at
link time. When looking at CTF archives that have been created by a linker that uses
the name changer to rename the parent archive member, --ctf-parent can be used to
specify the name used for the parent.
-G
--stabs
Display the full contents of any sections requested. Display the contents of the
.stab and .stab.index and .stab.excl sections from an ELF file. This is only useful
on systems (such as Solaris 2.0) in which ".stab" debugging symbol-table entries are
carried in an ELF section. In most other file formats, debugging symbol-table entries
are interleaved with linkage symbols, and are visible in the --syms output.
--start-address=address
Start displaying data at the specified address. This affects the output of the -d, -r
and -s options.
--stop-address=address
Stop displaying data at the specified address. This affects the output of the -d, -r
and -s options.
-t
--syms
Print the symbol table entries of the file. This is similar to the information
provided by the nm program, although the display format is different. The format of
the output depends upon the format of the file being dumped, but there are two main
types. One looks like this:
[4](sec 3)(fl Ox00)(ty 0)(scl 3) (nx 1) 0x00000000 .bss
[6](sec 1)(fl Ox00)(ty 0)(scl 2) (nx 0) 0x00000000 fred
where the number inside the square brackets is the number of the entry in the symbol
table, the sec number is the section number, the fl value are the symbol's flag bits,
the ty number is the symbol's type, the scl number is the symbol's storage class and

the nx value is the number of auxiliary entries associated with the symbol. The last Page 17/20

two fields are the symbol's value and its name.
The other common output format, usually seen with ELF based files, looks like this:
000000001 d .bss 00000000 .bss
00000000 g .text 00000000 fred
Here the first number is the symbol's value (sometimes referred to as its address).
The next field is actually a set of characters and spaces indicating the flag bits
that are set on the symbol. These characters are described below. Next is the
section with which the symbol is associated or *ABS* if the section is absolute (ie
not connected with any section), or *UND?* if the section is referenced in the file
being dumped, but not defined there.
After the section name comes another field, a number, which for common symbols is the
alignment and for other symbol is the size. Finally the symbol's name is displayed.

The flag characters are divided into 7 groups as follows:

g

u

"I" The symbol is a local (l), global (g), unique global (u), neither global nor local
(a space) or both global and local (!). A symbol can be neither local or global
for a variety of reasons, e.g., because it is used for debugging, but it is
probably an indication of a bug if it is ever both local and global. Unique
global symbols are a GNU extension to the standard set of ELF symbol bindings.

For such a symbol the dynamic linker will make sure that in the entire process
there is just one symbol with this name and type in use.

"w" The symbol is weak (w) or strong (a space).

"C" The symbol denotes a constructor (C) or an ordinary symbol (a space).

"W" The symbol is a warning (W) or a normal symbol (a space). A warning symbol's name
is a message to be displayed if the symbol following the warning symbol is ever
referenced.

e

"I" The symbol is an indirect reference to another symbol (1), a function to be
evaluated during reloc processing (i) or a normal symbol (a space).

ng

"D" The symbol is a debugging symbol (d) or a dynamic symbol (D) or a normal symbol (a

Page 18/20

space).
nen
nfo
"O" The symbol is the name of a function (F) or a file (f) or an object (O) or just a
normal symbol (a space).

T

--dynamic-syms
Print the dynamic symbol table entries of the file. This is only meaningful for
dynamic objects, such as certain types of shared libraries. This is similar to the
information provided by the nm program when given the -D (--dynamic) option.
The output format is similar to that produced by the --syms option, except that an
extra field is inserted before the symbol's name, giving the version information
associated with the symbol. If the version is the default version to be used when
resolving unversioned references to the symbol then it's displayed as is, otherwise
it's put into parentheses.

--special-syms
When displaying symbols include those which the target considers to be special in some
way and which would not normally be of interest to the user.

-U [d[i|lle|x|h]

--unicode=[default|invalid|locale|escape|hex|highlight]
Controls the display of UTF-8 encoded multibyte characters in strings. The default
(--unicode=default) is to give them no special treatment. The --unicode=locale option
displays the sequence in the current locale, which may or may not support them. The
options --unicode=hex and --unicode=invalid display them as hex byte sequences
enclosed by either angle brackets or curly braces.
The --unicode=escape option displays them as escape sequences (\uxxxx) and the
--unicode=highlight option displays them as escape sequences highlighted in red (if
supported by the output device). The colouring is intended to draw attention to the
presence of unicode sequences where they might not be expected.

-V

--version

Print the version number of objdump and exit.

-X Page 19/20

--all-headers
Display all available header information, including the symbol table and relocation
entries. Using -x is equivalent to specifying all of -a -f -h -p -r -t.

-W

--wide
Format some lines for output devices that have more than 80 columns. Also do not
truncate symbol names when they are displayed.

-z

--disassemble-zeroes
Normally the disassembly output will skip blocks of zeroes. This option directs the
disassembler to disassemble those blocks, just like any other data.

@file
Read command-line options from file. The options read are inserted in place of the
original @file option. If file does not exist, or cannot be read, then the option
will be treated literally, and not removed.
Options in file are separated by whitespace. A whitespace character may be included
in an option by surrounding the entire option in either single or double quotes. Any
character (including a backslash) may be included by prefixing the character to be
included with a backslash. The file may itself contain additional @file options; any
such options will be processed recursively.

SEE ALSO
nm(1), readelf(1), and the Info entries for binutils.
COPYRIGHT

Copyright (c) 1991-2022 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.3 or any later version published by the Free

Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

Documentation License".

binutils-2.38 2024-01-23 OBJDUMP(1)

Page 20/20

