
Rocky Enterprise Linux 9.2 Manual Pages on command 'xdrmem_create.3'

$ man xdrmem_create.3

XDR(3) Linux Programmer's Manual XDR(3)

NAME

 xdr - library routines for external data representation

SYNOPSIS AND DESCRIPTION

 These routines allow C programmers to describe arbitrary data structures in a machine-in?

 dependent fashion. Data for remote procedure calls are transmitted using these routines.

 The prototypes below are declared in <rpc/xdr.h> and make use of the following types:

 typedef int bool_t;

 typedef bool_t (*xdrproc_t) (XDR *, void *,...);

 For the declaration of the XDR type, see <rpc/xdr.h>.

 bool_t xdr_array(XDR *xdrs, char **arrp, unsigned int *sizep,

 unsigned int maxsize, unsigned int elsize,

 xdrproc_t elproc);

 A filter primitive that translates between variable-length arrays and their corre?

 sponding external representations. The argument arrp is the address of the pointer

 to the array, while sizep is the address of the element count of the array; this

 element count cannot exceed maxsize. The argument elsize is the sizeof each of the

 array's elements, and elproc is an XDR filter that translates between the array el?

 ements' C form, and their external representation. This routine returns one if it

 succeeds, zero otherwise.

 bool_t xdr_bool(XDR *xdrs, bool_t *bp);

 A filter primitive that translates between booleans (C integers) and their external

 representations. When encoding data, this filter produces values of either one or Page 1/8

 zero. This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_bytes(XDR *xdrs, char **sp, unsigned int *sizep,

 unsigned int maxsize);

 A filter primitive that translates between counted byte strings and their external

 representations. The argument sp is the address of the string pointer. The length

 of the string is located at address sizep; strings cannot be longer than maxsize.

 This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_char(XDR *xdrs, char *cp);

 A filter primitive that translates between C characters and their external repre?

 sentations. This routine returns one if it succeeds, zero otherwise. Note: en?

 coded characters are not packed, and occupy 4 bytes each. For arrays of charac?

 ters, it is worthwhile to consider xdr_bytes(), xdr_opaque() or xdr_string().

 void xdr_destroy(XDR *xdrs);

 A macro that invokes the destroy routine associated with the XDR stream, xdrs. De?

 struction usually involves freeing private data structures associated with the

 stream. Using xdrs after invoking xdr_destroy() is undefined.

 bool_t xdr_double(XDR *xdrs, double *dp);

 A filter primitive that translates between C double precision numbers and their ex?

 ternal representations. This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_enum(XDR *xdrs, enum_t *ep);

 A filter primitive that translates between C enums (actually integers) and their

 external representations. This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_float(XDR *xdrs, float *fp);

 A filter primitive that translates between C floats and their external representa?

 tions. This routine returns one if it succeeds, zero otherwise.

 void xdr_free(xdrproc_t proc, char *objp);

 Generic freeing routine. The first argument is the XDR routine for the object be?

 ing freed. The second argument is a pointer to the object itself. Note: the

 pointer passed to this routine is not freed, but what it points to is freed (recur?

 sively).

 unsigned int xdr_getpos(XDR *xdrs);

 A macro that invokes the get-position routine associated with the XDR stream, xdrs.

 The routine returns an unsigned integer, which indicates the position of the XDR Page 2/8

 byte stream. A desirable feature of XDR streams is that simple arithmetic works

 with this number, although the XDR stream instances need not guarantee this.

 long *xdr_inline(XDR *xdrs, int len);

 A macro that invokes the inline routine associated with the XDR stream, xdrs. The

 routine returns a pointer to a contiguous piece of the stream's buffer; len is the

 byte length of the desired buffer. Note: pointer is cast to long *.

 Warning: xdr_inline() may return NULL (0) if it cannot allocate a contiguous piece

 of a buffer. Therefore the behavior may vary among stream instances; it exists for

 the sake of efficiency.

 bool_t xdr_int(XDR *xdrs, int *ip);

 A filter primitive that translates between C integers and their external represen?

 tations. This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_long(XDR *xdrs, long *lp);

 A filter primitive that translates between C long integers and their external rep?

 resentations. This routine returns one if it succeeds, zero otherwise.

 void xdrmem_create(XDR *xdrs, char *addr, unsigned int size,

 enum xdr_op op);

 This routine initializes the XDR stream object pointed to by xdrs. The stream's

 data is written to, or read from, a chunk of memory at location addr whose length

 is no more than size bytes long. The op determines the direction of the XDR stream

 (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

 bool_t xdr_opaque(XDR *xdrs, char *cp, unsigned int cnt);

 A filter primitive that translates between fixed size opaque data and its external

 representation. The argument cp is the address of the opaque object, and cnt is

 its size in bytes. This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_pointer(XDR *xdrs, char **objpp,

 unsigned int objsize, xdrproc_t xdrobj);

 Like xdr_reference() except that it serializes null pointers, whereas xdr_refer?

 ence() does not. Thus, xdr_pointer() can represent recursive data structures, such

 as binary trees or linked lists.

 void xdrrec_create(XDR *xdrs, unsigned int sendsize,

 unsigned int recvsize, char *handle,

 int (*readit) (char *, char *, int), Page 3/8

 int (*writeit) (char *, char *, int));

 This routine initializes the XDR stream object pointed to by xdrs. The stream's

 data is written to a buffer of size sendsize; a value of zero indicates the system

 should use a suitable default. The stream's data is read from a buffer of size

 recvsize; it too can be set to a suitable default by passing a zero value. When a

 stream's output buffer is full, writeit is called. Similarly, when a stream's in?

 put buffer is empty, readit is called. The behavior of these two routines is simi?

 lar to the system calls read(2) and write(2), except that handle is passed to the

 former routines as the first argument. Note: the XDR stream's op field must be set

 by the caller.

 Warning: to read from an XDR stream created by this API, you'll need to call xdr?

 rec_skiprecord() first before calling any other XDR APIs. This inserts additional

 bytes in the stream to provide record boundary information. Also, XDR streams cre?

 ated with different xdr*_create APIs are not compatible for the same reason.

 bool_t xdrrec_endofrecord(XDR *xdrs, int sendnow);

 This routine can be invoked only on streams created by xdrrec_create(). The data

 in the output buffer is marked as a completed record, and the output buffer is op?

 tionally written out if sendnow is nonzero. This routine returns one if it suc?

 ceeds, zero otherwise.

 bool_t xdrrec_eof(XDR *xdrs);

 This routine can be invoked only on streams created by xdrrec_create(). After con?

 suming the rest of the current record in the stream, this routine returns one if

 the stream has no more input, zero otherwise.

 bool_t xdrrec_skiprecord(XDR *xdrs);

 This routine can be invoked only on streams created by xdrrec_create(). It tells

 the XDR implementation that the rest of the current record in the stream's input

 buffer should be discarded. This routine returns one if it succeeds, zero other?

 wise.

 bool_t xdr_reference(XDR *xdrs, char **pp, unsigned int size,

 xdrproc_t proc);

 A primitive that provides pointer chasing within structures. The argument pp is

 the address of the pointer; size is the sizeof the structure that *pp points to;

 and proc is an XDR procedure that filters the structure between its C form and its Page 4/8

 external representation. This routine returns one if it succeeds, zero otherwise.

 Warning: this routine does not understand null pointers. Use xdr_pointer() in?

 stead.

 xdr_setpos(XDR *xdrs, unsigned int pos);

 A macro that invokes the set position routine associated with the XDR stream xdrs.

 The argument pos is a position value obtained from xdr_getpos(). This routine re?

 turns one if the XDR stream could be repositioned, and zero otherwise.

 Warning: it is difficult to reposition some types of XDR streams, so this routine

 may fail with one type of stream and succeed with another.

 bool_t xdr_short(XDR *xdrs, short *sp);

 A filter primitive that translates between C short integers and their external rep?

 resentations. This routine returns one if it succeeds, zero otherwise.

 void xdrstdio_create(XDR *xdrs, FILE *file, enum xdr_op op);

 This routine initializes the XDR stream object pointed to by xdrs. The XDR stream

 data is written to, or read from, the stdio stream file. The argument op deter?

 mines the direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

 Warning: the destroy routine associated with such XDR streams calls fflush(3) on

 the file stream, but never fclose(3).

 bool_t xdr_string(XDR *xdrs, char **sp, unsigned int maxsize);

 A filter primitive that translates between C strings and their corresponding exter?

 nal representations. Strings cannot be longer than maxsize. Note: sp is the ad?

 dress of the string's pointer. This routine returns one if it succeeds, zero oth?

 erwise.

 bool_t xdr_u_char(XDR *xdrs, unsigned char *ucp);

 A filter primitive that translates between unsigned C characters and their external

 representations. This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_u_int(XDR *xdrs, unsigned *up);

 A filter primitive that translates between C unsigned integers and their external

 representations. This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_u_long(XDR *xdrs, unsigned long *ulp);

 A filter primitive that translates between C unsigned long integers and their ex?

 ternal representations. This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_u_short(XDR *xdrs, unsigned short *usp); Page 5/8

 A filter primitive that translates between C unsigned short integers and their ex?

 ternal representations. This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_union(XDR *xdrs, int *dscmp, char *unp,

 struct xdr_discrim *choices,

 xdrproc_t defaultarm); /* may equal NULL */

 A filter primitive that translates between a discriminated C union and its corre?

 sponding external representation. It first translates the discriminant of the

 union located at dscmp. This discriminant is always an enum_t. Next the union lo?

 cated at unp is translated. The argument choices is a pointer to an array of

 xdr_discrim() structures. Each structure contains an ordered pair of [value,proc].

 If the union's discriminant is equal to the associated value, then the proc is

 called to translate the union. The end of the xdr_discrim() structure array is de?

 noted by a routine of value NULL. If the discriminant is not found in the choices

 array, then the defaultarm procedure is called (if it is not NULL). Returns one if

 it succeeds, zero otherwise.

 bool_t xdr_vector(XDR *xdrs, char *arrp, unsigned int size,

 unsigned int elsize, xdrproc_t elproc);

 A filter primitive that translates between fixed-length arrays and their corre?

 sponding external representations. The argument arrp is the address of the pointer

 to the array, while size is the element count of the array. The argument elsize is

 the sizeof each of the array's elements, and elproc is an XDR filter that trans?

 lates between the array elements' C form, and their external representation. This

 routine returns one if it succeeds, zero otherwise.

 bool_t xdr_void(void);

 This routine always returns one. It may be passed to RPC routines that require a

 function argument, where nothing is to be done.

 bool_t xdr_wrapstring(XDR *xdrs, char **sp);

 A primitive that calls xdr_string(xdrs, sp,MAXUN.UNSIGNED); where MAXUN.UNSIGNED

 is the maximum value of an unsigned integer. xdr_wrapstring() is handy because the

 RPC package passes a maximum of two XDR routines as arguments, and xdr_string(),

 one of the most frequently used primitives, requires three. Returns one if it suc?

 ceeds, zero otherwise.

ATTRIBUTES Page 6/8

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?xdr_array(), xdr_bool(), ? Thread safety ? MT-Safe ?

 ?xdr_bytes(), xdr_char(), ? ? ?

 ?xdr_destroy(), xdr_double(), ? ? ?

 ?xdr_enum(), xdr_float(), ? ? ?

 ?xdr_free(), xdr_getpos(), ? ? ?

 ?xdr_inline(), xdr_int(), ? ? ?

 ?xdr_long(), xdrmem_create(), ? ? ?

 ?xdr_opaque(), xdr_pointer(), ? ? ?

 ?xdrrec_create(), xdrrec_eof(), ? ? ?

 ?xdrrec_endofrecord(), ? ? ?

 ?xdrrec_skiprecord(), ? ? ?

 ?xdr_reference(), xdr_setpos(), ? ? ?

 ?xdr_short(), xdrstdio_create(), ? ? ?

 ?xdr_string(), xdr_u_char(), ? ? ?

 ?xdr_u_int(), xdr_u_long(), ? ? ?

 ?xdr_u_short(), xdr_union(), ? ? ?

 ?xdr_vector(), xdr_void(), ? ? ?

 ?xdr_wrapstring() ? ? ?

 ??

SEE ALSO

 rpc(3)

 The following manuals:

 eXternal Data Representation Standard: Protocol Specification

 eXternal Data Representation: Sun Technical Notes

 XDR: External Data Representation Standard, RFC 1014, Sun Microsystems, Inc., USC-

 ISI.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be Page 7/8

 found at https://www.kernel.org/doc/man-pages/.

 2017-09-15 XDR(3)

Page 8/8

