
Rocky Enterprise Linux 9.2 Manual Pages on command 'zip.1'

$ man zip.1

ZIP(1) General Commands Manual ZIP(1)

NAME

 zip - package and compress (archive) files

SYNOPSIS

 zip [-aABcdDeEfFghjklLmoqrRSTuvVwXyz!@$] [--longoption ...] [-b path] [-n suffixes] [-t

 date] [-tt date] [zipfile [file ...]] [-xi list]

 zipcloak (see separate man page)

 zipnote (see separate man page)

 zipsplit (see separate man page)

 Note: Command line processing in zip has been changed to support long options and handle

 all options and arguments more consistently. Some old command lines that depend on com?

 mand line inconsistencies may no longer work.

DESCRIPTION

 zip is a compression and file packaging utility for Unix, VMS, MSDOS, OS/2, Windows

 9x/NT/XP, Minix, Atari, Macintosh, Amiga, and Acorn RISC OS. It is analogous to a combi?

 nation of the Unix commands tar(1) and compress(1) and is compatible with PKZIP (Phil

 Katz's ZIP for MSDOS systems).

 A companion program (unzip(1)) unpacks zip archives. The zip and unzip(1) programs can

 work with archives produced by PKZIP (supporting most PKZIP features up to PKZIP version

 4.6), and PKZIP and PKUNZIP can work with archives produced by zip (with some exceptions,

 notably streamed archives, but recent changes in the zip file standard may facilitate bet?

 ter compatibility). zip version 3.0 is compatible with PKZIP 2.04 and also supports the

 Zip64 extensions of PKZIP 4.5 which allow archives as well as files to exceed the previous Page 1/41

 2 GB limit (4 GB in some cases). zip also now supports bzip2 compression if the bzip2 li?

 brary is included when zip is compiled. Note that PKUNZIP 1.10 cannot extract files pro?

 duced by PKZIP 2.04 or zip 3.0. You must use PKUNZIP 2.04g or unzip 5.0p1 (or later ver?

 sions) to extract them.

 See the EXAMPLES section at the bottom of this page for examples of some typical uses of

 zip.

 Large Archives and Zip64. zip automatically uses the Zip64 extensions when files larger

 than 4 GB are added to an archive, an archive containing Zip64 entries is updated (if the

 resulting archive still needs Zip64), the size of the archive will exceed 4 GB, or when

 the number of entries in the archive will exceed about 64K. Zip64 is also used for ar?

 chives streamed from standard input as the size of such archives are not known in advance,

 but the option -fz- can be used to force zip to create PKZIP 2 compatible archives (as

 long as Zip64 extensions are not needed). You must use a PKZIP 4.5 compatible unzip, such

 as unzip 6.0 or later, to extract files using the Zip64 extensions.

 In addition, streamed archives, entries encrypted with standard encryption, or split ar?

 chives created with the pause option may not be compatible with PKZIP as data descriptors

 are used and PKZIP at the time of this writing does not support data descriptors (but re?

 cent changes in the PKWare published zip standard now include some support for the data

 descriptor format zip uses).

 Mac OS X. Though previous Mac versions had their own zip port, zip supports Mac OS X as

 part of the Unix port and most Unix features apply. References to "MacOS" below generally

 refer to MacOS versions older than OS X. Support for some Mac OS features in the Unix Mac

 OS X port, such as resource forks, is expected in the next zip release.

 For a brief help on zip and unzip, run each without specifying any parameters on the com?

 mand line.

USE

 The program is useful for packaging a set of files for distribution; for archiving files;

 and for saving disk space by temporarily compressing unused files or directories.

 The zip program puts one or more compressed files into a single zip archive, along with

 information about the files (name, path, date, time of last modification, protection, and

 check information to verify file integrity). An entire directory structure can be packed

 into a zip archive with a single command. Compression ratios of 2:1 to 3:1 are common for

 text files. zip has one compression method (deflation) and can also store files without Page 2/41

 compression. (If bzip2 support is added, zip can also compress using bzip2 compression,

 but such entries require a reasonably modern unzip to decompress. When bzip2 compression

 is selected, it replaces deflation as the default method.) zip automatically chooses the

 better of the two (deflation or store or, if bzip2 is selected, bzip2 or store) for each

 file to be compressed.

 Command format. The basic command format is

 zip options archive inpath inpath ...

 where archive is a new or existing zip archive and inpath is a directory or file path op?

 tionally including wildcards. When given the name of an existing zip archive, zip will

 replace identically named entries in the zip archive (matching the relative names as

 stored in the archive) or add entries for new names. For example, if foo.zip exists and

 contains foo/file1 and foo/file2, and the directory foo contains the files foo/file1 and

 foo/file3, then:

 zip -r foo.zip foo

 or more concisely

 zip -r foo foo

 will replace foo/file1 in foo.zip and add foo/file3 to foo.zip. After this, foo.zip con?

 tains foo/file1, foo/file2, and foo/file3, with foo/file2 unchanged from before.

 So if before the zip command is executed foo.zip has:

 foo/file1 foo/file2

 and directory foo has:

 file1 file3

 then foo.zip will have:

 foo/file1 foo/file2 foo/file3

 where foo/file1 is replaced and foo/file3 is new.

 -@ file lists. If a file list is specified as -@ [Not on MacOS], zip takes the list of

 input files from standard input instead of from the command line. For example,

 zip -@ foo

 will store the files listed one per line on stdin in foo.zip.

 Under Unix, this option can be used to powerful effect in conjunction with the find (1)

 command. For example, to archive all the C source files in the current directory and its

 subdirectories:

 find . -name "*.[ch]" -print | zip source -@ Page 3/41

 (note that the pattern must be quoted to keep the shell from expanding it).

 Streaming input and output. zip will also accept a single dash ("-") as the zip file

 name, in which case it will write the zip file to standard output, allowing the output to

 be piped to another program. For example:

 zip -r - . | dd of=/dev/nrst0 obs=16k

 would write the zip output directly to a tape with the specified block size for the pur?

 pose of backing up the current directory.

 zip also accepts a single dash ("-") as the name of a file to be compressed, in which case

 it will read the file from standard input, allowing zip to take input from another pro?

 gram. For example:

 tar cf - . | zip backup -

 would compress the output of the tar command for the purpose of backing up the current di?

 rectory. This generally produces better compression than the previous example using the -r

 option because zip can take advantage of redundancy between files. The backup can be re?

 stored using the command

 unzip -p backup | tar xf -

 When no zip file name is given and stdout is not a terminal, zip acts as a filter, com?

 pressing standard input to standard output. For example,

 tar cf - . | zip | dd of=/dev/nrst0 obs=16k

 is equivalent to

 tar cf - . | zip - - | dd of=/dev/nrst0 obs=16k

 zip archives created in this manner can be extracted with the program funzip which is pro?

 vided in the unzip package, or by gunzip which is provided in the gzip package (but some

 gunzip may not support this if zip used the Zip64 extensions). For example:

 dd if=/dev/nrst0 ibs=16k | funzip | tar xvf -

 The stream can also be saved to a file and unzip used.

 If Zip64 support for large files and archives is enabled and zip is used as a filter, zip

 creates a Zip64 archive that requires a PKZIP 4.5 or later compatible unzip to read it.

 This is to avoid ambiguities in the zip file structure as defined in the current zip stan?

 dard (PKWARE AppNote) where the decision to use Zip64 needs to be made before data is

 written for the entry, but for a stream the size of the data is not known at that point.

 If the data is known to be smaller than 4 GB, the option -fz- can be used to prevent use

 of Zip64, but zip will exit with an error if Zip64 was in fact needed. zip 3 and unzip 6 Page 4/41

 and later can read archives with Zip64 entries. Also, zip removes the Zip64 extensions if

 not needed when archive entries are copied (see the -U (--copy) option).

 When directing the output to another file, note that all options should be before the re?

 direction including -x. For example:

 zip archive "*.h" "*.c" -x donotinclude.h orthis.h > tofile

 Zip files. When changing an existing zip archive, zip will write a temporary file with

 the new contents, and only replace the old one when the process of creating the new ver?

 sion has been completed without error.

 If the name of the zip archive does not contain an extension, the extension .zip is added.

 If the name already contains an extension other than .zip, the existing extension is kept

 unchanged. However, split archives (archives split over multiple files) require the .zip

 extension on the last split.

 Scanning and reading files. When zip starts, it scans for files to process (if needed).

 If this scan takes longer than about 5 seconds, zip will display a "Scanning files" mes?

 sage and start displaying progress dots every 2 seconds or every so many entries pro?

 cessed, whichever takes longer. If there is more than 2 seconds between dots it could in?

 dicate that finding each file is taking time and could mean a slow network connection for

 example. (Actually the initial file scan is a two-step process where the directory scan

 is followed by a sort and these two steps are separated with a space in the dots. If up?

 dating an existing archive, a space also appears between the existing file scan and the

 new file scan.) The scanning files dots are not controlled by the -ds dot size option,

 but the dots are turned off by the -q quiet option. The -sf show files option can be used

 to scan for files and get the list of files scanned without actually processing them.

 If zip is not able to read a file, it issues a warning but continues. See the -MM option

 below for more on how zip handles patterns that are not matched and files that are not

 readable. If some files were skipped, a warning is issued at the end of the zip operation

 noting how many files were read and how many skipped.

 Command modes. zip now supports two distinct types of command modes, external and inter?

 nal. The external modes (add, update, and freshen) read files from the file system (as

 well as from an existing archive) while the internal modes (delete and copy) operate ex?

 clusively on entries in an existing archive.

 add

 Update existing entries and add new files. If the archive does not exist create Page 5/41

 it. This is the default mode.

 update (-u)

 Update existing entries if newer on the file system and add new files. If the ar?

 chive does not exist issue warning then create a new archive.

 freshen (-f)

 Update existing entries of an archive if newer on the file system. Does not add

 new files to the archive.

 delete (-d)

 Select entries in an existing archive and delete them.

 copy (-U)

 Select entries in an existing archive and copy them to a new archive. This new

 mode is similar to update but command line patterns select entries in the existing

 archive rather than files from the file system and it uses the --out option to

 write the resulting archive to a new file rather than update the existing archive,

 leaving the original archive unchanged.

 The new File Sync option (-FS) is also considered a new mode, though it is similar to up?

 date. This mode synchronizes the archive with the files on the OS, only replacing files

 in the archive if the file time or size of the OS file is different, adding new files, and

 deleting entries from the archive where there is no matching file. As this mode can

 delete entries from the archive, consider making a backup copy of the archive.

 Also see -DF for creating difference archives.

 See each option description below for details and the EXAMPLES section below for examples.

 Split archives. zip version 3.0 and later can create split archives. A split archive is

 a standard zip archive split over multiple files. (Note that split archives are not just

 archives split in to pieces, as the offsets of entries are now based on the start of each

 split. Concatenating the pieces together will invalidate these offsets, but unzip can

 usually deal with it. zip will usually refuse to process such a spliced archive unless

 the -FF fix option is used to fix the offsets.)

 One use of split archives is storing a large archive on multiple removable media. For a

 split archive with 20 split files the files are typically named (replace ARCHIVE with the

 name of your archive) ARCHIVE.z01, ARCHIVE.z02, ..., ARCHIVE.z19, ARCHIVE.zip. Note that

 the last file is the .zip file. In contrast, spanned archives are the original multi-disk

 archive generally requiring floppy disks and using volume labels to store disk numbers. Page 6/41

 zip supports split archives but not spanned archives, though a procedure exists for con?

 verting split archives of the right size to spanned archives. The reverse is also true,

 where each file of a spanned archive can be copied in order to files with the above names

 to create a split archive.

 Use -s to set the split size and create a split archive. The size is given as a number

 followed optionally by one of k (kB), m (MB), g (GB), or t (TB) (the default is m). The

 -sp option can be used to pause zip between splits to allow changing removable media, for

 example, but read the descriptions and warnings for both -s and -sp below.

 Though zip does not update split archives, zip provides the new option -O (--output-file

 or --out) to allow split archives to be updated and saved in a new archive. For example,

 zip inarchive.zip foo.c bar.c --out outarchive.zip

 reads archive inarchive.zip, even if split, adds the files foo.c and bar.c, and writes the

 resulting archive to outarchive.zip. If inarchive.zip is split then outarchive.zip de?

 faults to the same split size. Be aware that if outarchive.zip and any split files that

 are created with it already exist, these are always overwritten as needed without warning.

 This may be changed in the future.

 Unicode. Though the zip standard requires storing paths in an archive using a specific

 character set, in practice zips have stored paths in archives in whatever the local char?

 acter set is. This creates problems when an archive is created or updated on a system us?

 ing one character set and then extracted on another system using a different character

 set. When compiled with Unicode support enabled on platforms that support wide charac?

 ters, zip now stores, in addition to the standard local path for backward compatibility,

 the UTF-8 translation of the path. This provides a common universal character set for

 storing paths that allows these paths to be fully extracted on other systems that support

 Unicode and to match as close as possible on systems that don't.

 On Win32 systems where paths are internally stored as Unicode but represented in the local

 character set, it's possible that some paths will be skipped during a local character set

 directory scan. zip with Unicode support now can read and store these paths. Note that

 Win 9x systems and FAT file systems don't fully support Unicode.

 Be aware that console windows on Win32 and Unix, for example, sometimes don't accurately

 show all characters due to how each operating system switches in character sets for dis?

 play. However, directory navigation tools should show the correct paths if the needed

 fonts are loaded. Page 7/41

 Command line format. This version of zip has updated command line processing and support

 for long options.

 Short options take the form

 -s[-][s[-]...][value][=value][value]

 where s is a one or two character short option. A short option that takes a value is last

 in an argument and anything after it is taken as the value. If the option can be negated

 and "-" immediately follows the option, the option is negated. Short options can also be

 given as separate arguments

 -s[-][value][=value][value] -s[-][value][=value][value] ...

 Short options in general take values either as part of the same argument or as the follow?

 ing argument. An optional = is also supported. So

 -ttmmddyyyy

 and

 -tt=mmddyyyy

 and

 -tt mmddyyyy

 all work. The -x and -i options accept lists of values and use a slightly different for?

 mat described below. See the -x and -i options.

 Long options take the form

 --longoption[-][=value][value]

 where the option starts with --, has a multicharacter name, can include a trailing dash to

 negate the option (if the option supports it), and can have a value (option argument)

 specified by preceding it with = (no spaces). Values can also follow the argument. So

 --before-date=mmddyyyy

 and

 --before-date mmddyyyy

 both work.

 Long option names can be shortened to the shortest unique abbreviation. See the option

 descriptions below for which support long options. To avoid confusion, avoid abbreviating

 a negatable option with an embedded dash ("-") at the dash if you plan to negate it (the

 parser would consider a trailing dash, such as for the option --some-option using --some-

 as the option, as part of the name rather than a negating dash). This may be changed to

 force the last dash in --some- to be negating in the future. Page 8/41

OPTIONS

 -a

 --ascii

 [Systems using EBCDIC] Translate file to ASCII format.

 -A

 --adjust-sfx

 Adjust self-extracting executable archive. A self-extracting executable archive is

 created by prepending the SFX stub to an existing archive. The -A option tells zip

 to adjust the entry offsets stored in the archive to take into account this "pream?

 ble" data.

 Note: self-extracting archives for the Amiga are a special case. At present, only the

 Amiga port of zip is capable of adjusting or updating these without corrupting them. -J

 can be used to remove the SFX stub if other updates need to be made.

 -AC

 --archive-clear

 [WIN32] Once archive is created (and tested if -T is used, which is recommended),

 clear the archive bits of files processed. WARNING: Once the bits are cleared they

 are cleared. You may want to use the -sf show files option to store the list of

 files processed in case the archive operation must be repeated. Also consider us?

 ing the -MM must match option. Be sure to check out -DF as a possibly better way

 to do incremental backups.

 -AS

 --archive-set

 [WIN32] Only include files that have the archive bit set. Directories are not

 stored when -AS is used, though by default the paths of entries, including directo?

 ries, are stored as usual and can be used by most unzips to recreate directories.

 The archive bit is set by the operating system when a file is modified and, if used

 with -AC, -AS can provide an incremental backup capability. However, other appli?

 cations can modify the archive bit and it may not be a reliable indicator of which

 files have changed since the last archive operation. Alternative ways to create

 incremental backups are using -t to use file dates, though this won't catch old

 files copied to directories being archived, and -DF to create a differential ar?

 chive. Page 9/41

 -B

 --binary

 [VM/CMS and MVS] force file to be read binary (default is text).

 -Bn [TANDEM] set Edit/Enscribe formatting options with n defined as

 bit 0: Don't add delimiter (Edit/Enscribe)

 bit 1: Use LF rather than CR/LF as delimiter (Edit/Enscribe)

 bit 2: Space fill record to maximum record length (Enscribe)

 bit 3: Trim trailing space (Enscribe)

 bit 8: Force 30K (Expand) large read for unstructured files

 -b path

 --temp-path path

 Use the specified path for the temporary zip archive. For example:

 zip -b /tmp stuff *

 will put the temporary zip archive in the directory /tmp, copying over stuff.zip to

 the current directory when done. This option is useful when updating an existing

 archive and the file system containing this old archive does not have enough space

 to hold both old and new archives at the same time. It may also be useful when

 streaming in some cases to avoid the need for data descriptors. Note that using

 this option may require zip take additional time to copy the archive file when done

 to the destination file system.

 -c

 --entry-comments

 Add one-line comments for each file. File operations (adding, updating) are done

 first, and the user is then prompted for a one-line comment for each file. Enter

 the comment followed by return, or just return for no comment.

 -C

 --preserve-case

 [VMS] Preserve case all on VMS. Negating this option (-C-) downcases.

 -C2

 --preserve-case-2

 [VMS] Preserve case ODS2 on VMS. Negating this option (-C2-) downcases.

 -C5

 --preserve-case-5 Page 10/41

 [VMS] Preserve case ODS5 on VMS. Negating this option (-C5-) downcases.

 -d

 --delete

 Remove (delete) entries from a zip archive. For example:

 zip -d foo foo/tom/junk foo/harry/* *.o

 will remove the entry foo/tom/junk, all of the files that start with foo/harry/,

 and all of the files that end with .o (in any path). Note that shell pathname ex?

 pansion has been inhibited with backslashes, so that zip can see the asterisks, en?

 abling zip to match on the contents of the zip archive instead of the contents of

 the current directory. (The backslashes are not used on MSDOS-based platforms.)

 Can also use quotes to escape the asterisks as in

 zip -d foo foo/tom/junk "foo/harry/*" "*.o"

 Not escaping the asterisks on a system where the shell expands wildcards could re?

 sult in the asterisks being converted to a list of files in the current directory

 and that list used to delete entries from the archive.

 Under MSDOS, -d is case sensitive when it matches names in the zip archive. This

 requires that file names be entered in upper case if they were zipped by PKZIP on

 an MSDOS system. (We considered making this case insensitive on systems where

 paths were case insensitive, but it is possible the archive came from a system

 where case does matter and the archive could include both Bar and bar as separate

 files in the archive.) But see the new option -ic to ignore case in the archive.

 -db

 --display-bytes

 Display running byte counts showing the bytes zipped and the bytes to go.

 -dc

 --display-counts

 Display running count of entries zipped and entries to go.

 -dd

 --display-dots

 Display dots while each entry is zipped (except on ports that have their own

 progress indicator). See -ds below for setting dot size. The default is a dot ev?

 ery 10 MB of input file processed. The -v option also displays dots (previously at

 a much higher rate than this but now -v also defaults to 10 MB) and this rate is Page 11/41

 also controlled by -ds.

 -df

 --datafork

 [MacOS] Include only data-fork of files zipped into the archive. Good for export?

 ing files to foreign operating-systems. Resource-forks will be ignored at all.

 -dg

 --display-globaldots

 Display progress dots for the archive instead of for each file. The command

 zip -qdgds 10m

 will turn off most output except dots every 10 MB.

 -ds size

 --dot-size size

 Set amount of input file processed for each dot displayed. See -dd to enable dis?

 playing dots. Setting this option implies -dd. Size is in the format nm where n

 is a number and m is a multiplier. Currently m can be k (KB), m (MB), g (GB), or t

 (TB), so if n is 100 and m is k, size would be 100k which is 100 KB. The default

 is 10 MB.

 The -v option also displays dots and now defaults to 10 MB also. This rate is also

 controlled by this option. A size of 0 turns dots off.

 This option does not control the dots from the "Scanning files" message as zip

 scans for input files. The dot size for that is fixed at 2 seconds or a fixed num?

 ber of entries, whichever is longer.

 -du

 --display-usize

 Display the uncompressed size of each entry.

 -dv

 --display-volume

 Display the volume (disk) number each entry is being read from, if reading an ex?

 isting archive, and being written to.

 -D

 --no-dir-entries

 Do not create entries in the zip archive for directories. Directory entries are

 created by default so that their attributes can be saved in the zip archive. The Page 12/41

 environment variable ZIPOPT can be used to change the default options. For example

 under Unix with sh:

 ZIPOPT="-D"; export ZIPOPT

 (The variable ZIPOPT can be used for any option, including -i and -x using a new

 option format detailed below, and can include several options.) The option -D is a

 shorthand for -x "*/" but the latter previously could not be set as default in the

 ZIPOPT environment variable as the contents of ZIPOPT gets inserted near the begin?

 ning of the command line and the file list had to end at the end of the line.

 This version of zip does allow -x and -i options in ZIPOPT if the form

 -x file file ... @

 is used, where the @ (an argument that is just @) terminates the list.

 -DF

 --difference-archive

 Create an archive that contains all new and changed files since the original ar?

 chive was created. For this to work, the input file list and current directory

 must be the same as during the original zip operation.

 For example, if the existing archive was created using

 zip -r foofull .

 from the bar directory, then the command

 zip -r foofull . -DF --out foonew

 also from the bar directory creates the archive foonew with just the files not in

 foofull and the files where the size or file time of the files do not match those

 in foofull.

 Note that the timezone environment variable TZ should be set according to the local

 timezone in order for this option to work correctly. A change in timezone since

 the original archive was created could result in no times matching and all files

 being included.

 A possible approach to backing up a directory might be to create a normal archive

 of the contents of the directory as a full backup, then use this option to create

 incremental backups.

 -e

 --encrypt

 Encrypt the contents of the zip archive using a password which is entered on the Page 13/41

 terminal in response to a prompt (this will not be echoed; if standard error is not

 a tty, zip will exit with an error). The password prompt is repeated to save the

 user from typing errors.

 -E

 --longnames

 [OS/2] Use the .LONGNAME Extended Attribute (if found) as filename.

 -f

 --freshen

 Replace (freshen) an existing entry in the zip archive only if it has been modified

 more recently than the version already in the zip archive; unlike the update option

 (-u) this will not add files that are not already in the zip archive. For example:

 zip -f foo

 This command should be run from the same directory from which the original zip com?

 mand was run, since paths stored in zip archives are always relative.

 Note that the timezone environment variable TZ should be set according to the local

 timezone in order for the -f, -u and -o options to work correctly.

 The reasons behind this are somewhat subtle but have to do with the differences be?

 tween the Unix-format file times (always in GMT) and most of the other operating

 systems (always local time) and the necessity to compare the two. A typical TZ

 value is ``MET-1MEST'' (Middle European time with automatic adjustment for ``sum?

 mertime'' or Daylight Savings Time).

 The format is TTThhDDD, where TTT is the time zone such as MET, hh is the differ?

 ence between GMT and local time such as -1 above, and DDD is the time zone when

 daylight savings time is in effect. Leave off the DDD if there is no daylight sav?

 ings time. For the US Eastern time zone EST5EDT.

 -F

 --fix

 -FF

 --fixfix

 Fix the zip archive. The -F option can be used if some portions of the archive are

 missing, but requires a reasonably intact central directory. The input archive is

 scanned as usual, but zip will ignore some problems. The resulting archive should

 be valid, but any inconsistent entries will be left out. Page 14/41

 When doubled as in -FF, the archive is scanned from the beginning and zip scans for

 special signatures to identify the limits between the archive members. The single

 -F is more reliable if the archive is not too much damaged, so try this option

 first.

 If the archive is too damaged or the end has been truncated, you must use -FF.

 This is a change from zip 2.32, where the -F option is able to read a truncated ar?

 chive. The -F option now more reliably fixes archives with minor damage and the

 -FF option is needed to fix archives where -F might have been sufficient before.

 Neither option will recover archives that have been incorrectly transferred in

 ascii mode instead of binary. After the repair, the -t option of unzip may show

 that some files have a bad CRC. Such files cannot be recovered; you can remove them

 from the archive using the -d option of zip.

 Note that -FF may have trouble fixing archives that include an embedded zip archive

 that was stored (without compression) in the archive and, depending on the damage,

 it may find the entries in the embedded archive rather than the archive itself.

 Try -F first as it does not have this problem.

 The format of the fix commands have changed. For example, to fix the damaged ar?

 chive foo.zip,

 zip -F foo --out foofix

 tries to read the entries normally, copying good entries to the new archive

 foofix.zip. If this doesn't work, as when the archive is truncated, or if some en?

 tries you know are in the archive are missed, then try

 zip -FF foo --out foofixfix

 and compare the resulting archive to the archive created by -F. The -FF option may

 create an inconsistent archive. Depending on what is damaged, you can then use the

 -F option to fix that archive.

 A split archive with missing split files can be fixed using -F if you have the last

 split of the archive (the .zip file). If this file is missing, you must use -FF to

 fix the archive, which will prompt you for the splits you have.

 Currently the fix options can't recover entries that have a bad checksum or are

 otherwise damaged.

 -FI

 --fifo [Unix] Normally zip skips reading any FIFOs (named pipes) encountered, as zip can Page 15/41

 hang if the FIFO is not being fed. This option tells zip to read the contents of

 any FIFO it finds.

 -FS

 --filesync

 Synchronize the contents of an archive with the files on the OS. Normally when an

 archive is updated, new files are added and changed files are updated but files

 that no longer exist on the OS are not deleted from the archive. This option en?

 ables a new mode that checks entries in the archive against the file system. If

 the file time and file size of the entry matches that of the OS file, the entry is

 copied from the old archive instead of being read from the file system and com?

 pressed. If the OS file has changed, the entry is read and compressed as usual.

 If the entry in the archive does not match a file on the OS, the entry is deleted.

 Enabling this option should create archives that are the same as new archives, but

 since existing entries are copied instead of compressed, updating an existing ar?

 chive with -FS can be much faster than creating a new archive. Also consider using

 -u for updating an archive.

 For this option to work, the archive should be updated from the same directory it

 was created in so the relative paths match. If few files are being copied from the

 old archive, it may be faster to create a new archive instead.

 Note that the timezone environment variable TZ should be set according to the local

 timezone in order for this option to work correctly. A change in timezone since

 the original archive was created could result in no times matching and recompres?

 sion of all files.

 This option deletes files from the archive. If you need to preserve the original

 archive, make a copy of the archive first or use the --out option to output the up?

 dated archive to a new file. Even though it may be slower, creating a new archive

 with a new archive name is safer, avoids mismatches between archive and OS paths,

 and is preferred.

 -g

 --grow

 Grow (append to) the specified zip archive, instead of creating a new one. If this

 operation fails, zip attempts to restore the archive to its original state. If the

 restoration fails, the archive might become corrupted. This option is ignored when Page 16/41

 there's no existing archive or when at least one archive member must be updated or

 deleted.

 -h

 -?

 --help

 Display the zip help information (this also appears if zip is run with no argu?

 ments).

 -h2

 --more-help

 Display extended help including more on command line format, pattern matching, and

 more obscure options.

 -i files

 --include files

 Include only the specified files, as in:

 zip -r foo . -i *.c

 which will include only the files that end in .c in the current directory and its

 subdirectories. (Note for PKZIP users: the equivalent command is

 pkzip -rP foo *.c

 PKZIP does not allow recursion in directories other than the current one.) The

 backslash avoids the shell filename substitution, so that the name matching is per?

 formed by zip at all directory levels. [This is for Unix and other systems where \

 escapes the next character. For other systems where the shell does not process *

 do not use \ and the above is

 zip -r foo . -i *.c

 Examples are for Unix unless otherwise specified.] So to include dir, a directory

 directly under the current directory, use

 zip -r foo . -i dir/*

 or

 zip -r foo . -i "dir/*"

 to match paths such as dir/a and dir/b/file.c [on ports without wildcard expansion

 in the shell such as MSDOS and Windows

 zip -r foo . -i dir/*

 is used.] Note that currently the trailing / is needed for directories (as in Page 17/41

 zip -r foo . -i dir/

 to include directory dir).

 The long option form of the first example is

 zip -r foo . --include *.c

 and does the same thing as the short option form.

 Though the command syntax used to require -i at the end of the command line, this

 version actually allows -i (or --include) anywhere. The list of files terminates

 at the next argument starting with -, the end of the command line, or the list ter?

 minator @ (an argument that is just @). So the above can be given as

 zip -i *.c @ -r foo .

 for example. There must be a space between the option and the first file of a

 list. For just one file you can use the single value form

 zip -i*.c -r foo .

 (no space between option and value) or

 zip --include=*.c -r foo .

 as additional examples. The single value forms are not recommended because they

 can be confusing and, in particular, the -ifile format can cause problems if the

 first letter of file combines with i to form a two-letter option starting with i.

 Use -sc to see how your command line will be parsed.

 Also possible:

 zip -r foo . -i@include.lst

 which will only include the files in the current directory and its subdirectories

 that match the patterns in the file include.lst.

 Files to -i and -x are patterns matching internal archive paths. See -R for more

 on patterns.

 -I

 --no-image

 [Acorn RISC OS] Don't scan through Image files. When used, zip will not consider

 Image files (eg. DOS partitions or Spark archives when SparkFS is loaded) as direc?

 tories but will store them as single files.

 For example, if you have SparkFS loaded, zipping a Spark archive will result in a

 zipfile containing a directory (and its content) while using the 'I' option will

 result in a zipfile containing a Spark archive. Obviously this second case will Page 18/41

 also be obtained (without the 'I' option) if SparkFS isn't loaded.

 -ic

 --ignore-case

 [VMS, WIN32] Ignore case when matching archive entries. This option is only avail?

 able on systems where the case of files is ignored. On systems with case-insensi?

 tive file systems, case is normally ignored when matching files on the file system

 but is not ignored for -f (freshen), -d (delete), -U (copy), and similar modes when

 matching against archive entries (currently -f ignores case on VMS) because archive

 entries can be from systems where case does matter and names that are the same ex?

 cept for case can exist in an archive. The -ic option makes all matching case in?

 sensitive. This can result in multiple archive entries matching a command line

 pattern.

 -j

 --junk-paths

 Store just the name of a saved file (junk the path), and do not store directory

 names. By default, zip will store the full path (relative to the current direc?

 tory).

 -jj

 --absolute-path

 [MacOS] record Fullpath (+ Volname). The complete path including volume will be

 stored. By default the relative path will be stored.

 -J

 --junk-sfx

 Strip any prepended data (e.g. a SFX stub) from the archive.

 -k

 --DOS-names

 Attempt to convert the names and paths to conform to MSDOS, store only the MSDOS

 attribute (just the user write attribute from Unix), and mark the entry as made un?

 der MSDOS (even though it was not); for compatibility with PKUNZIP under MSDOS

 which cannot handle certain names such as those with two dots.

 -l

 --to-crlf

 Translate the Unix end-of-line character LF into the MSDOS convention CR LF. This Page 19/41

 option should not be used on binary files. This option can be used on Unix if the

 zip file is intended for PKUNZIP under MSDOS. If the input files already contain CR

 LF, this option adds an extra CR. This is to ensure that unzip -a on Unix will get

 back an exact copy of the original file, to undo the effect of zip -l. See -ll for

 how binary files are handled.

 -la

 --log-append

 Append to existing logfile. Default is to overwrite.

 -lf logfilepath

 --logfile-path logfilepath

 Open a logfile at the given path. By default any existing file at that location is

 overwritten, but the -la option will result in an existing file being opened and

 the new log information appended to any existing information. Only warnings and

 errors are written to the log unless the -li option is also given, then all infor?

 mation messages are also written to the log.

 -li

 --log-info

 Include information messages, such as file names being zipped, in the log. The de?

 fault is to only include the command line, any warnings and errors, and the final

 status.

 -ll

 --from-crlf

 Translate the MSDOS end-of-line CR LF into Unix LF. This option should not be used

 on binary files. This option can be used on MSDOS if the zip file is intended for

 unzip under Unix. If the file is converted and the file is later determined to be

 binary a warning is issued and the file is probably corrupted. In this release if

 -ll detects binary in the first buffer read from a file, zip now issues a warning

 and skips line end conversion on the file. This check seems to catch all binary

 files tested, but the original check remains and if a converted file is later de?

 termined to be binary that warning is still issued. A new algorithm is now being

 used for binary detection that should allow line end conversion of text files in

 UTF-8 and similar encodings.

 -L Page 20/41

 --license

 Display the zip license.

 -m

 --move

 Move the specified files into the zip archive; actually, this deletes the target

 directories/files after making the specified zip archive. If a directory becomes

 empty after removal of the files, the directory is also removed. No deletions are

 done until zip has created the archive without error. This is useful for conserv?

 ing disk space, but is potentially dangerous so it is recommended to use it in com?

 bination with -T to test the archive before removing all input files.

 -MM

 --must-match

 All input patterns must match at least one file and all input files found must be

 readable. Normally when an input pattern does not match a file the "name not

 matched" warning is issued and when an input file has been found but later is miss?

 ing or not readable a missing or not readable warning is issued. In either case

 zip continues creating the archive, with missing or unreadable new files being

 skipped and files already in the archive remaining unchanged. After the archive is

 created, if any files were not readable zip returns the OPEN error code (18 on most

 systems) instead of the normal success return (0 on most systems). With -MM set,

 zip exits as soon as an input pattern is not matched (whenever the "name not

 matched" warning would be issued) or when an input file is not readable. In either

 case zip exits with an OPEN error and no archive is created.

 This option is useful when a known list of files is to be zipped so any missing or

 unreadable files will result in an error. It is less useful when used with wild?

 cards, but zip will still exit with an error if any input pattern doesn't match at

 least one file and if any matched files are unreadable. If you want to create the

 archive anyway and only need to know if files were skipped, don't use -MM and just

 check the return code. Also -lf could be useful.

 -n suffixes

 --suffixes suffixes

 Do not attempt to compress files named with the given suffixes. Such files are

 simply stored (0% compression) in the output zip file, so that zip doesn't waste Page 21/41

 its time trying to compress them. The suffixes are separated by either colons or

 semicolons. For example:

 zip -rn .Z:.zip:.tiff:.gif:.snd foo foo

 will copy everything from foo into foo.zip, but will store any files that end in

 .Z, .zip, .tiff, .gif, or .snd without trying to compress them (image and sound

 files often have their own specialized compression methods). By default, zip does

 not compress files with extensions in the list .Z:.zip:.zoo:.arc:.lzh:.arj. Such

 files are stored directly in the output archive. The environment variable ZIPOPT

 can be used to change the default options. For example under Unix with csh:

 setenv ZIPOPT "-n .gif:.zip"

 To attempt compression on all files, use:

 zip -n : foo

 The maximum compression option -9 also attempts compression on all files regardless

 of extension.

 On Acorn RISC OS systems the suffixes are actually filetypes (3 hex digit format).

 By default, zip does not compress files with filetypes in the list DDC:D96:68E

 (i.e. Archives, CFS files and PackDir files).

 -nw

 --no-wild

 Do not perform internal wildcard processing (shell processing of wildcards is still

 done by the shell unless the arguments are escaped). Useful if a list of paths is

 being read and no wildcard substitution is desired.

 -N

 --notes

 [Amiga, MacOS] Save Amiga or MacOS filenotes as zipfile comments. They can be re?

 stored by using the -N option of unzip. If -c is used also, you are prompted for

 comments only for those files that do not have filenotes.

 -o

 --latest-time

 Set the "last modified" time of the zip archive to the latest (oldest) "last modi?

 fied" time found among the entries in the zip archive. This can be used without

 any other operations, if desired. For example:

 zip -o foo Page 22/41

 will change the last modified time of foo.zip to the latest time of the entries in

 foo.zip.

 -O output-file

 --output-file output-file

 Process the archive changes as usual, but instead of updating the existing archive,

 output the new archive to output-file. Useful for updating an archive without

 changing the existing archive and the input archive must be a different file than

 the output archive.

 This option can be used to create updated split archives. It can also be used with

 -U to copy entries from an existing archive to a new archive. See the EXAMPLES

 section below.

 Another use is converting zip files from one split size to another. For instance,

 to convert an archive with 700 MB CD splits to one with 2 GB DVD splits, can use:

 zip -s 2g cd-split.zip --out dvd-split.zip

 which uses copy mode. See -U below. Also:

 zip -s 0 split.zip --out unsplit.zip

 will convert a split archive to a single-file archive.

 Copy mode will convert stream entries (using data descriptors and which should be

 compatible with most unzips) to normal entries (which should be compatible with all

 unzips), except if standard encryption was used. For archives with encrypted en?

 tries, zipcloak will decrypt the entries and convert them to normal entries.

 -p

 --paths

 Include relative file paths as part of the names of files stored in the archive.

 This is the default. The -j option junks the paths and just stores the names of

 the files.

 -P password

 --password password

 Use password to encrypt zipfile entries (if any). THIS IS INSECURE! Many multi-

 user operating systems provide ways for any user to see the current command line of

 any other user; even on stand-alone systems there is always the threat of over-the-

 shoulder peeking. Storing the plaintext password as part of a command line in an

 automated script is even worse. Whenever possible, use the non-echoing, interac? Page 23/41

 tive prompt to enter passwords. (And where security is truly important, use strong

 encryption such as Pretty Good Privacy instead of the relatively weak standard en?

 cryption provided by zipfile utilities.)

 -q

 --quiet

 Quiet mode; eliminate informational messages and comment prompts. (Useful, for ex?

 ample, in shell scripts and background tasks).

 -Qn

 --Q-flag n

 [QDOS] store information about the file in the file header with n defined as

 bit 0: Don't add headers for any file

 bit 1: Add headers for all files

 bit 2: Don't wait for interactive key press on exit

 -r

 --recurse-paths

 Travel the directory structure recursively; for example:

 zip -r foo.zip foo

 or more concisely

 zip -r foo foo

 In this case, all the files and directories in foo are saved in a zip archive named

 foo.zip, including files with names starting with ".", since the recursion does not

 use the shell's file-name substitution mechanism. If you wish to include only a

 specific subset of the files in directory foo and its subdirectories, use the -i

 option to specify the pattern of files to be included. You should not use -r with

 the name ".*", since that matches ".." which will attempt to zip up the parent di?

 rectory (probably not what was intended).

 Multiple source directories are allowed as in

 zip -r foo foo1 foo2

 which first zips up foo1 and then foo2, going down each directory.

 Note that while wildcards to -r are typically resolved while recursing down direc?

 tories in the file system, any -R, -x, and -i wildcards are applied to internal ar?

 chive pathnames once the directories are scanned. To have wildcards apply to files

 in subdirectories when recursing on Unix and similar systems where the shell does Page 24/41

 wildcard substitution, either escape all wildcards or put all arguments with wild?

 cards in quotes. This lets zip see the wildcards and match files in subdirectories

 using them as it recurses.

 -R

 --recurse-patterns

 Travel the directory structure recursively starting at the current directory; for

 example:

 zip -R foo "*.c"

 In this case, all the files matching *.c in the tree starting at the current direc?

 tory are stored into a zip archive named foo.zip. Note that *.c will match file.c,

 a/file.c and a/b/.c. More than one pattern can be listed as separate arguments.

 Note for PKZIP users: the equivalent command is

 pkzip -rP foo *.c

 Patterns are relative file paths as they appear in the archive, or will after zip?

 ping, and can have optional wildcards in them. For example, given the current di?

 rectory is foo and under it are directories foo1 and foo2 and in foo1 is the file

 bar.c,

 zip -R foo/*

 will zip up foo, foo/foo1, foo/foo1/bar.c, and foo/foo2.

 zip -R */bar.c

 will zip up foo/foo1/bar.c. See the note for -r on escaping wildcards.

 -RE

 --regex

 [WIN32] Before zip 3.0, regular expression list matching was enabled by default on

 Windows platforms. Because of confusion resulting from the need to escape "[" and

 "]" in names, it is now off by default for Windows so "[" and "]" are just normal

 characters in names. This option enables [] matching again.

 -s splitsize

 --split-size splitsize

 Enable creating a split archive and set the split size. A split archive is an ar?

 chive that could be split over many files. As the archive is created, if the size

 of the archive reaches the specified split size, that split is closed and the next

 split opened. In general all splits but the last will be the split size and the Page 25/41

 last will be whatever is left. If the entire archive is smaller than the split

 size a single-file archive is created.

 Split archives are stored in numbered files. For example, if the output archive is

 named archive and three splits are required, the resulting archive will be in the

 three files archive.z01, archive.z02, and archive.zip. Do not change the numbering

 of these files or the archive will not be readable as these are used to determine

 the order the splits are read.

 Split size is a number optionally followed by a multiplier. Currently the number

 must be an integer. The multiplier can currently be one of k (kilobytes), m

 (megabytes), g (gigabytes), or t (terabytes). As 64k is the minimum split size,

 numbers without multipliers default to megabytes. For example, to create a split

 archive called foo with the contents of the bar directory with splits of 670 MB

 that might be useful for burning on CDs, the command:

 zip -s 670m -r foo bar

 could be used.

 Currently the old splits of a split archive are not excluded from a new archive,

 but they can be specifically excluded. If possible, keep the input and output ar?

 chives out of the path being zipped when creating split archives.

 Using -s without -sp as above creates all the splits where foo is being written, in

 this case the current directory. This split mode updates the splits as the archive

 is being created, requiring all splits to remain writable, but creates split ar?

 chives that are readable by any unzip that supports split archives. See -sp below

 for enabling split pause mode which allows splits to be written directly to remov?

 able media.

 The option -sv can be used to enable verbose splitting and provide details of how

 the splitting is being done. The -sb option can be used to ring the bell when zip

 pauses for the next split destination.

 Split archives cannot be updated, but see the -O (--out) option for how a split ar?

 chive can be updated as it is copied to a new archive. A split archive can also be

 converted into a single-file archive using a split size of 0 or negating the -s op?

 tion:

 zip -s 0 split.zip --out single.zip

 Also see -U (--copy) for more on using copy mode. Page 26/41

 -sb

 --split-bell

 If splitting and using split pause mode, ring the bell when zip pauses for each

 split destination.

 -sc

 --show-command

 Show the command line starting zip as processed and exit. The new command parser

 permutes the arguments, putting all options and any values associated with them be?

 fore any non-option arguments. This allows an option to appear anywhere in the

 command line as long as any values that go with the option go with it. This option

 displays the command line as zip sees it, including any arguments from the environ?

 ment such as from the ZIPOPT variable. Where allowed, options later in the command

 line can override options earlier in the command line.

 -sf

 --show-files

 Show the files that would be operated on, then exit. For instance, if creating a

 new archive, this will list the files that would be added. If the option is

 negated, -sf-, output only to an open log file. Screen display is not recommended

 for large lists.

 -so

 --show-options

 Show all available options supported by zip as compiled on the current system. As

 this command reads the option table, it should include all options. Each line in?

 cludes the short option (if defined), the long option (if defined), the format of

 any value that goes with the option, if the option can be negated, and a small de?

 scription. The value format can be no value, required value, optional value, sin?

 gle character value, number value, or a list of values. The output of this option

 is not intended to show how to use any option but only show what options are avail?

 able.

 -sp

 --split-pause

 If splitting is enabled with -s, enable split pause mode. This creates split ar?

 chives as -s does, but stream writing is used so each split can be closed as soon Page 27/41

 as it is written and zip will pause between each split to allow changing split des?

 tination or media.

 Though this split mode allows writing splits directly to removable media, it uses

 stream archive format that may not be readable by some unzips. Before relying on

 splits created with -sp, test a split archive with the unzip you will be using.

 To convert a stream split archive (created with -sp) to a standard archive see the

 --out option.

 -su

 --show-unicode

 As -sf, but also show Unicode version of the path if exists.

 -sU

 --show-just-unicode

 As -sf, but only show Unicode version of the path if exists, otherwise show the

 standard version of the path.

 -sv

 --split-verbose

 Enable various verbose messages while splitting, showing how the splitting is being

 done.

 -S

 --system-hidden

 [MSDOS, OS/2, WIN32 and ATARI] Include system and hidden files.

 [MacOS] Includes finder invisible files, which are ignored otherwise.

 -t mmddyyyy

 --from-date mmddyyyy

 Do not operate on files modified prior to the specified date, where mm is the month

 (00-12), dd is the day of the month (01-31), and yyyy is the year. The ISO 8601

 date format yyyy-mm-dd is also accepted. For example:

 zip -rt 12071991 infamy foo

 zip -rt 1991-12-07 infamy foo

 will add all the files in foo and its subdirectories that were last modified on or

 after 7 December 1991, to the zip archive infamy.zip.

 -tt mmddyyyy

 --before-date mmddyyyy Page 28/41

 Do not operate on files modified after or at the specified date, where mm is the

 month (00-12), dd is the day of the month (01-31), and yyyy is the year. The

 ISO 8601 date format yyyy-mm-dd is also accepted. For example:

 zip -rtt 11301995 infamy foo

 zip -rtt 1995-11-30 infamy foo

 will add all the files in foo and its subdirectories that were last modified before

 30 November 1995, to the zip archive infamy.zip.

 -T

 --test

 Test the integrity of the new zip file. If the check fails, the old zip file is un?

 changed and (with the -m option) no input files are removed.

 -TT cmd

 --unzip-command cmd

 Use command cmd instead of 'unzip -tqq' to test an archive when the -T option is

 used. On Unix, to use a copy of unzip in the current directory instead of the

 standard system unzip, could use:

 zip archive file1 file2 -T -TT "./unzip -tqq"

 In cmd, {} is replaced by the name of the temporary archive, otherwise the name of

 the archive is appended to the end of the command. The return code is checked for

 success (0 on Unix).

 -u

 --update

 Replace (update) an existing entry in the zip archive only if it has been modified

 more recently than the version already in the zip archive. For example:

 zip -u stuff *

 will add any new files in the current directory, and update any files which have

 been modified since the zip archive stuff.zip was last created/modified (note that

 zip will not try to pack stuff.zip into itself when you do this).

 Note that the -u option with no input file arguments acts like the -f (freshen) op?

 tion.

 -U

 --copy-entries

 Copy entries from one archive to another. Requires the --out option to specify a Page 29/41

 different output file than the input archive. Copy mode is the reverse of -d

 delete. When delete is being used with --out, the selected entries are deleted

 from the archive and all other entries are copied to the new archive, while copy

 mode selects the files to include in the new archive. Unlike -u update, input pat?

 terns on the command line are matched against archive entries only and not the file

 system files. For instance,

 zip inarchive "*.c" --copy --out outarchive

 copies entries with names ending in .c from inarchive to outarchive. The wildcard

 must be escaped on some systems to prevent the shell from substituting names of

 files from the file system which may have no relevance to the entries in the ar?

 chive.

 If no input files appear on the command line and --out is used, copy mode is as?

 sumed:

 zip inarchive --out outarchive

 This is useful for changing split size for instance. Encrypting and decrypting en?

 tries is not yet supported using copy mode. Use zipcloak for that.

 -UN v

 --unicode v

 Determine what zip should do with Unicode file names. zip 3.0, in addition to the

 standard file path, now includes the UTF-8 translation of the path if the entry

 path is not entirely 7-bit ASCII. When an entry is missing the Unicode path, zip

 reverts back to the standard file path. The problem with using the standard path

 is this path is in the local character set of the zip that created the entry, which

 may contain characters that are not valid in the character set being used by the

 unzip. When zip is reading an archive, if an entry also has a Unicode path, zip

 now defaults to using the Unicode path to recreate the standard path using the cur?

 rent local character set.

 This option can be used to determine what zip should do with this path if there is

 a mismatch between the stored standard path and the stored UTF-8 path (which can

 happen if the standard path was updated). In all cases, if there is a mismatch it

 is assumed that the standard path is more current and zip uses that. Values for v

 are

 q - quit if paths do not match Page 30/41

 w - warn, continue with standard path

 i - ignore, continue with standard path

 n - no Unicode, do not use Unicode paths

 The default is to warn and continue.

 Characters that are not valid in the current character set are escaped as #Uxxxx

 and #Lxxxxxx, where x is an ASCII character for a hex digit. The first is used if

 a 16-bit character number is sufficient to represent the Unicode character and the

 second if the character needs more than 16 bits to represent it's Unicode character

 code. Setting -UN to

 e - escape

 as in

 zip archive -sU -UN=e

 forces zip to escape all characters that are not printable 7-bit ASCII.

 Normally zip stores UTF-8 directly in the standard path field on systems where

 UTF-8 is the current character set and stores the UTF-8 in the new extra fields

 otherwise. The option

 u - UTF-8

 as in

 zip archive dir -r -UN=UTF8

 forces zip to store UTF-8 as native in the archive. Note that storing UTF-8 di?

 rectly is the default on Unix systems that support it. This option could be useful

 on Windows systems where the escaped path is too large to be a valid path and the

 UTF-8 version of the path is smaller, but native UTF-8 is not backward compatible

 on Windows systems.

 -v

 --verbose

 Verbose mode or print diagnostic version info.

 Normally, when applied to real operations, this option enables the display of a

 progress indicator during compression (see -dd for more on dots) and requests ver?

 bose diagnostic info about zipfile structure oddities.

 However, when -v is the only command line argument a diagnostic screen is printed

 instead. This should now work even if stdout is redirected to a file, allowing

 easy saving of the information for sending with bug reports to Info-ZIP. The ver? Page 31/41

 sion screen provides the help screen header with program name, version, and release

 date, some pointers to the Info-ZIP home and distribution sites, and shows informa?

 tion about the target environment (compiler type and version, OS version, compila?

 tion date and the enabled optional features used to create the zip executable).

 -V

 --VMS-portable

 [VMS] Save VMS file attributes. (Files are truncated at EOF.) When a -V archive

 is unpacked on a non-VMS system, some file types (notably Stream_LF text files

 and pure binary files like fixed-512) should be extracted intact. Indexed files

 and file types with embedded record sizes (notably variable-length record types)

 will probably be seen as corrupt elsewhere.

 -VV

 --VMS-specific

 [VMS] Save VMS file attributes, and all allocated blocks in a file, including

 any data beyond EOF. Useful for moving ill-formed files among VMS systems.

 When a -VV archive is unpacked on a non-VMS system, almost all files will appear

 corrupt.

 -w

 --VMS-versions

 [VMS] Append the version number of the files to the name, including multiple ver?

 sions of files. Default is to use only the most recent version of a specified

 file.

 -ww

 --VMS-dot-versions

 [VMS] Append the version number of the files to the name, including multiple ver?

 sions of files, using the .nnn format. Default is to use only the most recent ver?

 sion of a specified file.

 -ws

 --wild-stop-dirs

 Wildcards match only at a directory level. Normally zip handles paths as strings

 and given the paths

 /foo/bar/dir/file1.c

 /foo/bar/file2.c Page 32/41

 an input pattern such as

 /foo/bar/*

 normally would match both paths, the * matching dir/file1.c and file2.c. Note that

 in the first case a directory boundary (/) was crossed in the match. With -ws no

 directory bounds will be included in the match, making wildcards local to a spe?

 cific directory level. So, with -ws enabled, only the second path would be

 matched.

 When using -ws, use ** to match across directory boundaries as * does normally.

 -x files

 --exclude files

 Explicitly exclude the specified files, as in:

 zip -r foo foo -x *.o

 which will include the contents of foo in foo.zip while excluding all the files

 that end in .o. The backslash avoids the shell filename substitution, so that the

 name matching is performed by zip at all directory levels.

 Also possible:

 zip -r foo foo -x@exclude.lst

 which will include the contents of foo in foo.zip while excluding all the files

 that match the patterns in the file exclude.lst.

 The long option forms of the above are

 zip -r foo foo --exclude *.o

 and

 zip -r foo foo --exclude @exclude.lst

 Multiple patterns can be specified, as in:

 zip -r foo foo -x *.o *.c

 If there is no space between -x and the pattern, just one value is assumed (no

 list):

 zip -r foo foo -x*.o

 See -i for more on include and exclude.

 -X

 --no-extra

 Do not save extra file attributes (Extended Attributes on OS/2, uid/gid and file

 times on Unix). The zip format uses extra fields to include additional information Page 33/41

 for each entry. Some extra fields are specific to particular systems while others

 are applicable to all systems. Normally when zip reads entries from an existing

 archive, it reads the extra fields it knows, strips the rest, and adds the extra

 fields applicable to that system. With -X, zip strips all old fields and only in?

 cludes the Unicode and Zip64 extra fields (currently these two extra fields cannot

 be disabled).

 Negating this option, -X-, includes all the default extra fields, but also copies

 over any unrecognized extra fields.

 -y

 --symlinks

 For UNIX and VMS (V8.3 and later), store symbolic links as such in the zip archive,

 instead of compressing and storing the file referred to by the link. This can

 avoid multiple copies of files being included in the archive as zip recurses the

 directory trees and accesses files directly and by links.

 -z

 --archive-comment

 Prompt for a multi-line comment for the entire zip archive. The comment is ended

 by a line containing just a period, or an end of file condition (^D on Unix, ^Z on

 MSDOS, OS/2, and VMS). The comment can be taken from a file:

 zip -z foo < foowhat

 -Z cm

 --compression-method cm

 Set the default compression method. Currently the main methods supported by zip

 are store and deflate. Compression method can be set to:

 store - Setting the compression method to store forces zip to store entries with no

 compression. This is generally faster than compressing entries, but results in no

 space savings. This is the same as using -0 (compression level zero).

 deflate - This is the default method for zip. If zip determines that storing is

 better than deflation, the entry will be stored instead.

 bzip2 - If bzip2 support is compiled in, this compression method also becomes

 available. Only some modern unzips currently support the bzip2 compression method,

 so test the unzip you will be using before relying on archives using this method

 (compression method 12). Page 34/41

 For example, to add bar.c to archive foo using bzip2 compression:

 zip -Z bzip2 foo bar.c

 The compression method can be abbreviated:

 zip -Zb foo bar.c

 -#

 (-0, -1, -2, -3, -4, -5, -6, -7, -8, -9)

 Regulate the speed of compression using the specified digit #, where -0 indicates

 no compression (store all files), -1 indicates the fastest compression speed (less

 compression) and -9 indicates the slowest compression speed (optimal compression,

 ignores the suffix list). The default compression level is -6.

 Though still being worked, the intention is this setting will control compression

 speed for all compression methods. Currently only deflation is controlled.

 -!

 --use-privileges

 [WIN32] Use privileges (if granted) to obtain all aspects of WinNT security.

 -@

 --names-stdin

 Take the list of input files from standard input. Only one filename per line.

 -$

 --volume-label

 [MSDOS, OS/2, WIN32] Include the volume label for the drive holding the first file

 to be compressed. If you want to include only the volume label or to force a spe?

 cific drive, use the drive name as first file name, as in:

 zip -$ foo a: c:bar

EXAMPLES

 The simplest example:

 zip stuff *

 creates the archive stuff.zip (assuming it does not exist) and puts all the files in the

 current directory in it, in compressed form (the .zip suffix is added automatically, un?

 less the archive name contains a dot already; this allows the explicit specification of

 other suffixes).

 Because of the way the shell on Unix does filename substitution, files starting with "."

 are not included; to include these as well: Page 35/41

 zip stuff .* *

 Even this will not include any subdirectories from the current directory.

 To zip up an entire directory, the command:

 zip -r foo foo

 creates the archive foo.zip, containing all the files and directories in the directory foo

 that is contained within the current directory.

 You may want to make a zip archive that contains the files in foo, without recording the

 directory name, foo. You can use the -j option to leave off the paths, as in:

 zip -j foo foo/*

 If you are short on disk space, you might not have enough room to hold both the original

 directory and the corresponding compressed zip archive. In this case, you can create the

 archive in steps using the -m option. If foo contains the subdirectories tom, dick, and

 harry, you can:

 zip -rm foo foo/tom

 zip -rm foo foo/dick

 zip -rm foo foo/harry

 where the first command creates foo.zip, and the next two add to it. At the completion of

 each zip command, the last created archive is deleted, making room for the next zip com?

 mand to function.

 Use -s to set the split size and create a split archive. The size is given as a number

 followed optionally by one of k (kB), m (MB), g (GB), or t (TB). The command

 zip -s 2g -r split.zip foo

 creates a split archive of the directory foo with splits no bigger than 2 GB each. If foo

 contained 5 GB of contents and the contents were stored in the split archive without com?

 pression (to make this example simple), this would create three splits, split.z01 at 2 GB,

 split.z02 at 2 GB, and split.zip at a little over 1 GB.

 The -sp option can be used to pause zip between splits to allow changing removable media,

 for example, but read the descriptions and warnings for both -s and -sp below.

 Though zip does not update split archives, zip provides the new option -O (--output-file)

 to allow split archives to be updated and saved in a new archive. For example,

 zip inarchive.zip foo.c bar.c --out outarchive.zip

 reads archive inarchive.zip, even if split, adds the files foo.c and bar.c, and writes the

 resulting archive to outarchive.zip. If inarchive.zip is split then outarchive.zip de? Page 36/41

 faults to the same split size. Be aware that outarchive.zip and any split files that are

 created with it are always overwritten without warning. This may be changed in the fu?

 ture.

PATTERN MATCHING

 This section applies only to Unix. Watch this space for details on MSDOS and VMS opera?

 tion. However, the special wildcard characters * and [] below apply to at least MSDOS

 also.

 The Unix shells (sh, csh, bash, and others) normally do filename substitution (also called

 "globbing") on command arguments. Generally the special characters are:

 ? match any single character

 * match any number of characters (including none)

 [] match any character in the range indicated within the brackets (example: [a-f],

 [0-9]). This form of wildcard matching allows a user to specify a list of charac?

 ters between square brackets and if any of the characters match the expression

 matches. For example:

 zip archive "*.[hc]"

 would archive all files in the current directory that end in .h or .c.

 Ranges of characters are supported:

 zip archive "[a-f]*"

 would add to the archive all files starting with "a" through "f".

 Negation is also supported, where any character in that position not in the list

 matches. Negation is supported by adding ! or ^ to the beginning of the list:

 zip archive "*.[!o]"

 matches files that don't end in ".o".

 On WIN32, [] matching needs to be turned on with the -RE option to avoid the confu?

 sion that names with [or] have caused.

 When these characters are encountered (without being escaped with a backslash or quotes),

 the shell will look for files relative to the current path that match the pattern, and re?

 place the argument with a list of the names that matched.

 The zip program can do the same matching on names that are in the zip archive being modi?

 fied or, in the case of the -x (exclude) or -i (include) options, on the list of files to

 be operated on, by using backslashes or quotes to tell the shell not to do the name expan?

 sion. In general, when zip encounters a name in the list of files to do, it first looks Page 37/41

 for the name in the file system. If it finds it, it then adds it to the list of files to

 do. If it does not find it, it looks for the name in the zip archive being modified (if

 it exists), using the pattern matching characters described above, if present. For each

 match, it will add that name to the list of files to be processed, unless this name

 matches one given with the -x option, or does not match any name given with the -i option.

 The pattern matching includes the path, and so patterns like *.o match names that end in

 ".o", no matter what the path prefix is. Note that the backslash must precede every spe?

 cial character (i.e. ?*[]), or the entire argument must be enclosed in double quotes ("").

 In general, use backslashes or double quotes for paths that have wildcards to make zip do

 the pattern matching for file paths, and always for paths and strings that have spaces or

 wildcards for -i, -x, -R, -d, and -U and anywhere zip needs to process the wildcards.

ENVIRONMENT

 The following environment variables are read and used by zip as described.

 ZIPOPT

 contains default options that will be used when running zip. The contents of this

 environment variable will get added to the command line just after the zip command.

 ZIP

 [Not on RISC OS and VMS] see ZIPOPT

 Zip$Options

 [RISC OS] see ZIPOPT

 Zip$Exts

 [RISC OS] contains extensions separated by a : that will cause native filenames

 with one of the specified extensions to be added to the zip file with basename and

 extension swapped.

 ZIP_OPTS

 [VMS] see ZIPOPT

SEE ALSO

 compress(1), shar(1), tar(1), unzip(1), gzip(1)

DIAGNOSTICS

 The exit status (or error level) approximates the exit codes defined by PKWARE and takes

 on the following values, except under VMS:

 0 normal; no errors or warnings detected.

 2 unexpected end of zip file. Page 38/41

 3 a generic error in the zipfile format was detected. Processing may have

 completed successfully anyway; some broken zipfiles created by other

 archivers have simple work-arounds.

 4 zip was unable to allocate memory for one or more buffers during program

 initialization.

 5 a severe error in the zipfile format was detected. Processing probably

 failed immediately.

 6 entry too large to be processed (such as input files larger than 2 GB when

 not using Zip64 or trying to read an existing archive that is too large) or

 entry too large to be split with zipsplit

 7 invalid comment format

 8 zip -T failed or out of memory

 9 the user aborted zip prematurely with control-C (or similar)

 10 zip encountered an error while using a temp file

 11 read or seek error

 12 zip has nothing to do

 13 missing or empty zip file

 14 error writing to a file

 15 zip was unable to create a file to write to

 16 bad command line parameters

 18 zip could not open a specified file to read

 19 zip was compiled with options not supported on this system

 VMS interprets standard Unix (or PC) return values as other, scarier-looking things, so

 zip instead maps them into VMS-style status codes. In general, zip sets VMS Facility =

 1955 (0x07A3), Code = 2* Unix_status, and an appropriate Severity (as specified in

 ziperr.h). More details are included in the VMS-specific documentation. See

 [.vms]NOTES.TXT and [.vms]vms_msg_gen.c.

BUGS

 zip 3.0 is not compatible with PKUNZIP 1.10. Use zip 1.1 to produce zip files which can be

 extracted by PKUNZIP 1.10.

 zip files produced by zip 3.0 must not be updated by zip 1.1 or PKZIP 1.10, if they con?

 tain encrypted members or if they have been produced in a pipe or on a non-seekable de?

 vice. The old versions of zip or PKZIP would create an archive with an incorrect format. Page 39/41

 The old versions can list the contents of the zip file but cannot extract it anyway (be?

 cause of the new compression algorithm). If you do not use encryption and use regular

 disk files, you do not have to care about this problem.

 Under VMS, not all of the odd file formats are treated properly. Only stream-LF format

 zip files are expected to work with zip. Others can be converted using Rahul Dhesi's BILF

 program. This version of zip handles some of the conversion internally. When using Ker?

 mit to transfer zip files from VMS to MSDOS, type "set file type block" on VMS. When

 transferring from MSDOS to VMS, type "set file type fixed" on VMS. In both cases, type

 "set file type binary" on MSDOS.

 Under some older VMS versions, zip may hang for file specifications that use DECnet syntax

 foo::*.*.

 On OS/2, zip cannot match some names, such as those including an exclamation mark or a

 hash sign. This is a bug in OS/2 itself: the 32-bit DosFindFirst/Next don't find such

 names. Other programs such as GNU tar are also affected by this bug.

 Under OS/2, the amount of Extended Attributes displayed by DIR is (for compatibility) the

 amount returned by the 16-bit version of DosQueryPathInfo(). Otherwise OS/2 1.3 and 2.0

 would report different EA sizes when DIRing a file. However, the structure layout re?

 turned by the 32-bit DosQueryPathInfo() is a bit different, it uses extra padding bytes

 and link pointers (it's a linked list) to have all fields on 4-byte boundaries for porta?

 bility to future RISC OS/2 versions. Therefore the value reported by zip (which uses this

 32-bit-mode size) differs from that reported by DIR. zip stores the 32-bit format for

 portability, even the 16-bit MS-C-compiled version running on OS/2 1.3, so even this one

 shows the 32-bit-mode size.

AUTHORS

 Copyright (C) 1997-2008 Info-ZIP.

 Currently distributed under the Info-ZIP license.

 Copyright (C) 1990-1997 Mark Adler, Richard B. Wales, Jean-loup Gailly, Onno van der Lin?

 den, Kai Uwe Rommel, Igor Mandrichenko, John Bush and Paul Kienitz.

 Original copyright:

 Permission is granted to any individual or institution to use, copy, or redistribute this

 software so long as all of the original files are included, that it is not sold for

 profit, and that this copyright notice is retained.

 LIKE ANYTHING ELSE THAT'S FREE, ZIP AND ITS ASSOCIATED UTILITIES ARE PROVIDED AS IS ANDPage 40/41

 COME WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. IN NO EVENT WILL THE COPY?

 RIGHT HOLDERS BE LIABLE FOR ANY DAMAGES RESULTING FROM THE USE OF THIS SOFTWARE.

 Please send bug reports and comments using the web page at: www.info-zip.org. For bug re?

 ports, please include the version of zip (see zip -h), the make options used to compile it

 (see zip -v), the machine and operating system in use, and as much additional information

 as possible.

ACKNOWLEDGEMENTS

 Thanks to R. P. Byrne for his Shrink.Pas program, which inspired this project, and from

 which the shrink algorithm was stolen; to Phil Katz for placing in the public domain the

 zip file format, compression format, and .ZIP filename extension, and for accepting minor

 changes to the file format; to Steve Burg for clarifications on the deflate format; to

 Haruhiko Okumura and Leonid Broukhis for providing some useful ideas for the compression

 algorithm; to Keith Petersen, Rich Wales, Hunter Goatley and Mark Adler for providing a

 mailing list and ftp site for the Info-ZIP group to use; and most importantly, to the

 Info-ZIP group itself (listed in the file infozip.who) without whose tireless testing and

 bug-fixing efforts a portable zip would not have been possible. Finally we should thank

 (blame) the first Info-ZIP moderator, David Kirschbaum, for getting us into this mess in

 the first place. The manual page was rewritten for Unix by R. P. C. Rodgers and updated

 by E. Gordon for zip 3.0.

Info-ZIP 16 June 2008 (v3.0) ZIP(1)

Page 41/41

