
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshbuiltins.1'

$ man zshbuiltins.1

ZSHBUILTINS(1) General Commands Manual ZSHBUILTINS(1)

NAME

 zshbuiltins - zsh built-in commands

SHELL BUILTIN COMMANDS

 Some shell builtin commands take options as described in individual entries; these are of?

 ten referred to in the list below as `flags' to avoid confusion with shell options, which

 may also have an effect on the behaviour of builtin commands. In this introductory sec?

 tion, `option' always has the meaning of an option to a command that should be familiar to

 most command line users.

 Typically, options are single letters preceded by a hyphen (-). Options that take an ar?

 gument accept it either immediately following the option letter or after white space, for

 example `print -C3 {1..9}' or `print -C 3 {1..9}' are equivalent. Arguments to options

 are not the same as arguments to the command; the documentation indicates which is which.

 Options that do not take an argument may be combined in a single word, for example `print

 -rca -- *' and `print -r -c -a -- *' are equivalent.

 Some shell builtin commands also take options that begin with `+' instead of `-'. The

 list below makes clear which commands these are.

 Options (together with their individual arguments, if any) must appear in a group before

 any non-option arguments; once the first non-option argument has been found, option pro?

 cessing is terminated.

 All builtin commands other than `echo' and precommand modifiers, even those that have no

 options, can be given the argument `--' to terminate option processing. This indicates

 that the following words are non-option arguments, but is otherwise ignored. This is use? Page 1/57

 ful in cases where arguments to the command may begin with `-'. For historical reasons,

 most builtin commands (including `echo') also recognize a single `-' in a separate word

 for this purpose; note that this is less standard and use of `--' is recommended.

 - simple command

 See the section `Precommand Modifiers' in zshmisc(1).

 . file [arg ...]

 Read commands from file and execute them in the current shell environment.

 If file does not contain a slash, or if PATH_DIRS is set, the shell looks in the

 components of $path to find the directory containing file. Files in the current

 directory are not read unless `.' appears somewhere in $path. If a file named

 `file.zwc' is found, is newer than file, and is the compiled form (created with the

 zcompile builtin) of file, then commands are read from that file instead of file.

 If any arguments arg are given, they become the positional parameters; the old po?

 sitional parameters are restored when the file is done executing. However, if no

 arguments are given, the positional parameters remain those of the calling context,

 and no restoring is done.

 If file was not found the return status is 127; if file was found but contained a

 syntax error the return status is 126; else the return status is the exit status of

 the last command executed.

 : [arg ...]

 This command does nothing, although normal argument expansions is performed which

 may have effects on shell parameters. A zero exit status is returned.

 alias [{+|-}gmrsL] [name[=value] ...]

 For each name with a corresponding value, define an alias with that value. A

 trailing space in value causes the next word to be checked for alias expansion. If

 the -g flag is present, define a global alias; global aliases are expanded even if

 they do not occur in command position.

 If the -s flag is present, define a suffix alias: if the command word on a command

 line is in the form `text.name', where text is any non-empty string, it is replaced

 by the text `value text.name'. Note that name is treated as a literal string, not

 a pattern. A trailing space in value is not special in this case. For example,

 alias -s ps='gv --'

 will cause the command `*.ps' to be expanded to `gv -- *.ps'. As alias expansion Page 2/57

 is carried out earlier than globbing, the `*.ps' will then be expanded. Suffix

 aliases constitute a different name space from other aliases (so in the above exam?

 ple it is still possible to create an alias for the command ps) and the two sets

 are never listed together.

 For each name with no value, print the value of name, if any. With no arguments,

 print all currently defined aliases other than suffix aliases. If the -m flag is

 given the arguments are taken as patterns (they should be quoted to preserve them

 from being interpreted as glob patterns), and the aliases matching these patterns

 are printed. When printing aliases and one of the -g, -r or -s flags is present,

 restrict the printing to global, regular or suffix aliases, respectively; a regular

 alias is one which is neither a global nor a suffix alias. Using `+' instead of

 `-', or ending the option list with a single `+', prevents the values of the

 aliases from being printed.

 If the -L flag is present, then print each alias in a manner suitable for putting

 in a startup script. The exit status is nonzero if a name (with no value) is given

 for which no alias has been defined.

 For more on aliases, include common problems, see the section ALIASING in zsh?

 misc(1).

 autoload [{+|-}RTUXdkmrtWz] [-w] [name ...]

 See the section `Autoloading Functions' in zshmisc(1) for full details. The fpath

 parameter will be searched to find the function definition when the function is

 first referenced.

 If name consists of an absolute path, the function is defined to load from the file

 given (searching as usual for dump files in the given location). The name of the

 function is the basename (non-directory part) of the file. It is normally an error

 if the function is not found in the given location; however, if the option -d is

 given, searching for the function defaults to $fpath. If a function is loaded by

 absolute path, any functions loaded from it that are marked for autoload without an

 absolute path have the load path of the parent function temporarily prepended to

 $fpath.

 If the option -r or -R is given, the function is searched for immediately and the

 location is recorded internally for use when the function is executed; a relative

 path is expanded using the value of $PWD. This protects against a change to $fpath Page 3/57

 after the call to autoload. With -r, if the function is not found, it is silently

 left unresolved until execution; with -R, an error message is printed and command

 processing aborted immediately the search fails, i.e. at the autoload command

 rather than at function execution..

 The flag -X may be used only inside a shell function. It causes the calling func?

 tion to be marked for autoloading and then immediately loaded and executed, with

 the current array of positional parameters as arguments. This replaces the previ?

 ous definition of the function. If no function definition is found, an error is

 printed and the function remains undefined and marked for autoloading. If an argu?

 ment is given, it is used as a directory (i.e. it does not include the name of the

 function) in which the function is to be found; this may be combined with the -d

 option to allow the function search to default to $fpath if it is not in the given

 location.

 The flag +X attempts to load each name as an autoloaded function, but does not exe?

 cute it. The exit status is zero (success) if the function was not previously de?

 fined and a definition for it was found. This does not replace any existing defi?

 nition of the function. The exit status is nonzero (failure) if the function was

 already defined or when no definition was found. In the latter case the function

 remains undefined and marked for autoloading. If ksh-style autoloading is enabled,

 the function created will contain the contents of the file plus a call to the func?

 tion itself appended to it, thus giving normal ksh autoloading behaviour on the

 first call to the function. If the -m flag is also given each name is treated as a

 pattern and all functions already marked for autoload that match the pattern are

 loaded.

 With the -t flag, turn on execution tracing; with -T, turn on execution tracing

 only for the current function, turning it off on entry to any called functions that

 do not also have tracing enabled.

 With the -U flag, alias expansion is suppressed when the function is loaded.

 With the -w flag, the names are taken as names of files compiled with the zcompile

 builtin, and all functions defined in them are marked for autoloading.

 The flags -z and -k mark the function to be autoloaded using the zsh or ksh style,

 as if the option KSH_AUTOLOAD were unset or were set, respectively. The flags

 override the setting of the option at the time the function is loaded. Page 4/57

 Note that the autoload command makes no attempt to ensure the shell options set

 during the loading or execution of the file have any particular value. For this,

 the emulate command can be used:

 emulate zsh -c 'autoload -Uz func'

 arranges that when func is loaded the shell is in native zsh emulation, and this

 emulation is also applied when func is run.

 Some of the functions of autoload are also provided by functions -u or functions

 -U, but autoload is a more comprehensive interface.

 bg [job ...]

 job ... &

 Put each specified job in the background, or the current job if none is specified.

 bindkey

 See the section `Zle Builtins' in zshzle(1).

 break [n]

 Exit from an enclosing for, while, until, select or repeat loop. If an arithmetic

 expression n is specified, then break n levels instead of just one.

 builtin name [args ...]

 Executes the builtin name, with the given args.

 bye Same as exit.

 cap See the section `The zsh/cap Module' in zshmodules(1).

 cd [-qsLP] [arg]

 cd [-qsLP] old new

 cd [-qsLP] {+|-}n

 Change the current directory. In the first form, change the current directory to

 arg, or to the value of $HOME if arg is not specified. If arg is `-', change to

 the previous directory.

 Otherwise, if arg begins with a slash, attempt to change to the directory given by

 arg.

 If arg does not begin with a slash, the behaviour depends on whether the current

 directory `.' occurs in the list of directories contained in the shell parameter

 cdpath. If it does not, first attempt to change to the directory arg under the

 current directory, and if that fails but cdpath is set and contains at least one

 element attempt to change to the directory arg under each component of cdpath in Page 5/57

 turn until successful. If `.' occurs in cdpath, then cdpath is searched strictly

 in order so that `.' is only tried at the appropriate point.

 The order of testing cdpath is modified if the option POSIX_CD is set, as described

 in the documentation for the option.

 If no directory is found, the option CDABLE_VARS is set, and a parameter named arg

 exists whose value begins with a slash, treat its value as the directory. In that

 case, the parameter is added to the named directory hash table.

 The second form of cd substitutes the string new for the string old in the name of

 the current directory, and tries to change to this new directory.

 The third form of cd extracts an entry from the directory stack, and changes to

 that directory. An argument of the form `+n' identifies a stack entry by counting

 from the left of the list shown by the dirs command, starting with zero. An argu?

 ment of the form `-n' counts from the right. If the PUSHD_MINUS option is set, the

 meanings of `+' and `-' in this context are swapped. If the POSIX_CD option is

 set, this form of cd is not recognised and will be interpreted as the first form.

 If the -q (quiet) option is specified, the hook function chpwd and the functions in

 the array chpwd_functions are not called. This is useful for calls to cd that do

 not change the environment seen by an interactive user.

 If the -s option is specified, cd refuses to change the current directory if the

 given pathname contains symlinks. If the -P option is given or the CHASE_LINKS op?

 tion is set, symbolic links are resolved to their true values. If the -L option is

 given symbolic links are retained in the directory (and not resolved) regardless of

 the state of the CHASE_LINKS option.

 chdir Same as cd.

 clone See the section `The zsh/clone Module' in zshmodules(1).

 command [-pvV] simple command

 The simple command argument is taken as an external command instead of a function

 or builtin and is executed. If the POSIX_BUILTINS option is set, builtins will also

 be executed but certain special properties of them are suppressed. The -p flag

 causes a default path to be searched instead of that in $path. With the -v flag,

 command is similar to whence and with -V, it is equivalent to whence -v.

 See also the section `Precommand Modifiers' in zshmisc(1).

 comparguments Page 6/57

 See the section `The zsh/computil Module' in zshmodules(1).

 compcall

 See the section `The zsh/compctl Module' in zshmodules(1).

 compctl

 See the section `The zsh/compctl Module' in zshmodules(1).

 compdescribe

 See the section `The zsh/computil Module' in zshmodules(1).

 compfiles

 See the section `The zsh/computil Module' in zshmodules(1).

 compgroups

 See the section `The zsh/computil Module' in zshmodules(1).

 compquote

 See the section `The zsh/computil Module' in zshmodules(1).

 comptags

 See the section `The zsh/computil Module' in zshmodules(1).

 comptry

 See the section `The zsh/computil Module' in zshmodules(1).

 compvalues

 See the section `The zsh/computil Module' in zshmodules(1).

 continue [n]

 Resume the next iteration of the enclosing for, while, until, select or repeat

 loop. If an arithmetic expression n is specified, break out of n-1 loops and resume

 at the nth enclosing loop.

 declare

 Same as typeset.

 dirs [-c] [arg ...]

 dirs [-lpv]

 With no arguments, print the contents of the directory stack. Directories are

 added to this stack with the pushd command, and removed with the cd or popd com?

 mands. If arguments are specified, load them onto the directory stack, replacing

 anything that was there, and push the current directory onto the stack.

 -c clear the directory stack.

 -l print directory names in full instead of using of using ~ expressions (see Page 7/57

 Dynamic and Static named directories in zshexpn(1)).

 -p print directory entries one per line.

 -v number the directories in the stack when printing.

 disable [-afmprs] name ...

 Temporarily disable the named hash table elements or patterns. The default is to

 disable builtin commands. This allows you to use an external command with the same

 name as a builtin command. The -a option causes disable to act on regular or

 global aliases. The -s option causes disable to act on suffix aliases. The -f op?

 tion causes disable to act on shell functions. The -r options causes disable to

 act on reserved words. Without arguments all disabled hash table elements from the

 corresponding hash table are printed. With the -m flag the arguments are taken as

 patterns (which should be quoted to prevent them from undergoing filename expan?

 sion), and all hash table elements from the corresponding hash table matching these

 patterns are disabled. Disabled objects can be enabled with the enable command.

 With the option -p, name ... refer to elements of the shell's pattern syntax as de?

 scribed in the section `Filename Generation'. Certain elements can be disabled

 separately, as given below.

 Note that patterns not allowed by the current settings for the options EX?

 TENDED_GLOB, KSH_GLOB and SH_GLOB are never enabled, regardless of the setting

 here. For example, if EXTENDED_GLOB is not active, the pattern ^ is ineffective

 even if `disable -p "^"' has not been issued. The list below indicates any option

 settings that restrict the use of the pattern. It should be noted that setting

 SH_GLOB has a wider effect than merely disabling patterns as certain expressions,

 in particular those involving parentheses, are parsed differently.

 The following patterns may be disabled; all the strings need quoting on the command

 line to prevent them from being interpreted immediately as patterns and the pat?

 terns are shown below in single quotes as a reminder.

 '?' The pattern character ? wherever it occurs, including when preceding a

 parenthesis with KSH_GLOB.

 '*' The pattern character * wherever it occurs, including recursive globbing and

 when preceding a parenthesis with KSH_GLOB.

 '[' Character classes.

 '<' (NO_SH_GLOB) Page 8/57

 Numeric ranges.

 '|' (NO_SH_GLOB)

 Alternation in grouped patterns, case statements, or KSH_GLOB parenthesised

 expressions.

 '(' (NO_SH_GLOB)

 Grouping using single parentheses. Disabling this does not disable the use

 of parentheses for KSH_GLOB where they are introduced by a special charac?

 ter, nor for glob qualifiers (use `setopt NO_BARE_GLOB_QUAL' to disable glob

 qualifiers that use parentheses only).

 '~' (EXTENDED_GLOB)

 Exclusion in the form A~B.

 '^' (EXTENDED_GLOB)

 Exclusion in the form A^B.

 '#' (EXTENDED_GLOB)

 The pattern character # wherever it occurs, both for repetition of a previ?

 ous pattern and for indicating globbing flags.

 '?(' (KSH_GLOB)

 The grouping form ?(...). Note this is also disabled if '?' is disabled.

 '*(' (KSH_GLOB)

 The grouping form *(...). Note this is also disabled if '*' is disabled.

 '+(' (KSH_GLOB)

 The grouping form +(...).

 '!(' (KSH_GLOB)

 The grouping form !(...).

 '@(' (KSH_GLOB)

 The grouping form @(...).

 disown [job ...]

 job ... &|

 job ... &!

 Remove the specified jobs from the job table; the shell will no longer report their

 status, and will not complain if you try to exit an interactive shell with them

 running or stopped. If no job is specified, disown the current job.

 If the jobs are currently stopped and the AUTO_CONTINUE option is not set, a warn? Page 9/57

 ing is printed containing information about how to make them running after they

 have been disowned. If one of the latter two forms is used, the jobs will automat?

 ically be made running, independent of the setting of the AUTO_CONTINUE option.

 echo [-neE] [arg ...]

 Write each arg on the standard output, with a space separating each one. If the -n

 flag is not present, print a newline at the end. echo recognizes the following es?

 cape sequences:

 \a bell character

 \b backspace

 \c suppress subsequent characters and final newline

 \e escape

 \f form feed

 \n linefeed (newline)

 \r carriage return

 \t horizontal tab

 \v vertical tab

 \\ backslash

 \0NNN character code in octal

 \xNN character code in hexadecimal

 \uNNNN unicode character code in hexadecimal

 \UNNNNNNNN

 unicode character code in hexadecimal

 The -E flag, or the BSD_ECHO option, can be used to disable these escape sequences.

 In the latter case, -e flag can be used to enable them.

 Note that for standards compliance a double dash does not terminate option process?

 ing; instead, it is printed directly. However, a single dash does terminate option

 processing, so the first dash, possibly following options, is not printed, but ev?

 erything following it is printed as an argument. The single dash behaviour is dif?

 ferent from other shells. For a more portable way of printing text, see printf,

 and for a more controllable way of printing text within zsh, see print.

 echotc See the section `The zsh/termcap Module' in zshmodules(1).

 echoti See the section `The zsh/terminfo Module' in zshmodules(1).

 emulate [-lLR] [{zsh|sh|ksh|csh} [flags ...]] Page 10/57

 Without any argument print current emulation mode.

 With single argument set up zsh options to emulate the specified shell as much as

 possible. csh will never be fully emulated. If the argument is not one of the

 shells listed above, zsh will be used as a default; more precisely, the tests per?

 formed on the argument are the same as those used to determine the emulation at

 startup based on the shell name, see the section COMPATIBILITY in zsh(1) . In ad?

 dition to setting shell options, the command also restores the pristine state of

 pattern enables, as if all patterns had been enabled using enable -p.

 If the emulate command occurs inside a function that has been marked for execution

 tracing with functions -t then the xtrace option will be turned on regardless of

 emulation mode or other options. Note that code executed inside the function by

 the ., source, or eval commands is not considered to be running directly from the

 function, hence does not provoke this behaviour.

 If the -R switch is given, all settable options are reset to their default value

 corresponding to the specified emulation mode, except for certain options describ?

 ing the interactive environment; otherwise, only those options likely to cause

 portability problems in scripts and functions are altered. If the -L switch is

 given, the options LOCAL_OPTIONS, LOCAL_PATTERNS and LOCAL_TRAPS will be set as

 well, causing the effects of the emulate command and any setopt, disable -p or en?

 able -p, and trap commands to be local to the immediately surrounding shell func?

 tion, if any; normally these options are turned off in all emulation modes except

 ksh. The -L switch is mutually exclusive with the use of -c in flags.

 If there is a single argument and the -l switch is given, the options that would be

 set or unset (the latter indicated with the prefix `no') are listed. -l can be

 combined with -L or -R and the list will be modified in the appropriate way. Note

 the list does not depend on the current setting of options, i.e. it includes all

 options that may in principle change, not just those that would actually change.

 The flags may be any of the invocation-time flags described in the section INVOCA?

 TION in zsh(1), except that `-o EMACS' and `-o VI' may not be used. Flags such as

 `+r'/`+o RESTRICTED' may be prohibited in some circumstances.

 If -c arg appears in flags, arg is evaluated while the requested emulation is tem?

 porarily in effect. In this case the emulation mode and all options are restored

 to their previous values before emulate returns. The -R switch may precede the Page 11/57

 name of the shell to emulate; note this has a meaning distinct from including -R in

 flags.

 Use of -c enables `sticky' emulation mode for functions defined within the evalu?

 ated expression: the emulation mode is associated thereafter with the function so

 that whenever the function is executed the emulation (respecting the -R switch, if

 present) and all options are set (and pattern disables cleared) before entry to the

 function, and the state is restored after exit. If the function is called when the

 sticky emulation is already in effect, either within an `emulate shell -c' expres?

 sion or within another function with the same sticky emulation, entry and exit from

 the function do not cause options to be altered (except due to standard processing

 such as the LOCAL_OPTIONS option). This also applies to functions marked for au?

 toload within the sticky emulation; the appropriate set of options will be applied

 at the point the function is loaded as well as when it is run.

 For example:

 emulate sh -c 'fni() { setopt cshnullglob; }

 fno() { fni; }'

 fno

 The two functions fni and fno are defined with sticky sh emulation. fno is then

 executed, causing options associated with emulations to be set to their values in

 sh. fno then calls fni; because fni is also marked for sticky sh emulation, no op?

 tion changes take place on entry to or exit from it. Hence the option cshnullglob,

 turned off by sh emulation, will be turned on within fni and remain on return to

 fno. On exit from fno, the emulation mode and all options will be restored to the

 state they were in before entry to the temporary emulation.

 The documentation above is typically sufficient for the intended purpose of execut?

 ing code designed for other shells in a suitable environment. More detailed rules

 follow.

 1. The sticky emulation environment provided by `emulate shell -c' is identical

 to that provided by entry to a function marked for sticky emulation as a

 consequence of being defined in such an environment. Hence, for example,

 the sticky emulation is inherited by subfunctions defined within functions

 with sticky emulation.

 2. No change of options takes place on entry to or exit from functions that are Page 12/57

 not marked for sticky emulation, other than those that would normally take

 place, even if those functions are called within sticky emulation.

 3. No special handling is provided for functions marked for autoload nor for

 functions present in wordcode created by the zcompile command.

 4. The presence or absence of the -R switch to emulate corresponds to different

 sticky emulation modes, so for example `emulate sh -c', `emulate -R sh -c'

 and `emulate csh -c' are treated as three distinct sticky emulations.

 5. Difference in shell options supplied in addition to the basic emulation also

 mean the sticky emulations are different, so for example `emulate zsh -c'

 and `emulate zsh -o cbases -c' are treated as distinct sticky emulations.

 enable [-afmprs] name ...

 Enable the named hash table elements, presumably disabled earlier with disable.

 The default is to enable builtin commands. The -a option causes enable to act on

 regular or global aliases. The -s option causes enable to act on suffix aliases.

 The -f option causes enable to act on shell functions. The -r option causes enable

 to act on reserved words. Without arguments all enabled hash table elements from

 the corresponding hash table are printed. With the -m flag the arguments are taken

 as patterns (should be quoted) and all hash table elements from the corresponding

 hash table matching these patterns are enabled. Enabled objects can be disabled

 with the disable builtin command.

 enable -p reenables patterns disabled with disable -p. Note that it does not over?

 ride globbing options; for example, `enable -p "~"' does not cause the pattern

 character ~ to be active unless the EXTENDED_GLOB option is also set. To enable

 all possible patterns (so that they may be individually disabled with disable -p),

 use `setopt EXTENDED_GLOB KSH_GLOB NO_SH_GLOB'.

 eval [arg ...]

 Read the arguments as input to the shell and execute the resulting command(s) in

 the current shell process. The return status is the same as if the commands had

 been executed directly by the shell; if there are no args or they contain no com?

 mands (i.e. are an empty string or whitespace) the return status is zero.

 exec [-cl] [-a argv0] [command [arg ...]]

 Replace the current shell with command rather than forking. If command is a shell

 builtin command or a shell function, the shell executes it, and exits when the com? Page 13/57

 mand is complete.

 With -c clear the environment; with -l prepend - to the argv[0] string of the com?

 mand executed (to simulate a login shell); with -a argv0 set the argv[0] string of

 the command executed. See the section `Precommand Modifiers' in zshmisc(1).

 If the option POSIX_BUILTINS is set, command is never interpreted as a shell

 builtin command or shell function. This means further precommand modifiers such as

 builtin and noglob are also not interpreted within the shell. Hence command is al?

 ways found by searching the command path.

 If command is omitted but any redirections are specified, then the redirections

 will take effect in the current shell.

 exit [n]

 Exit the shell with the exit status specified by an arithmetic expression n; if

 none is specified, use the exit status from the last command executed. An EOF con?

 dition will also cause the shell to exit, unless the IGNORE_EOF option is set.

 See notes at the end of the section JOBS in zshmisc(1) for some possibly unexpected

 interactions of the exit command with jobs.

 export [name[=value] ...]

 The specified names are marked for automatic export to the environment of subse?

 quently executed commands. Equivalent to typeset -gx. If a parameter specified

 does not already exist, it is created in the global scope.

 false [arg ...]

 Do nothing and return an exit status of 1.

 fc [-e ename] [-LI] [-m match] [old=new ...] [first [last]]

 fc -l [-LI] [-nrdfEiD] [-t timefmt] [-m match]

 [old=new ...] [first [last]]

 fc -p [-a] [filename [histsize [savehistsize]]]

 fc -P

 fc -ARWI [filename]

 The fc command controls the interactive history mechanism. Note that reading and

 writing of history options is only performed if the shell is interactive. Usually

 this is detected automatically, but it can be forced by setting the interactive op?

 tion when starting the shell.

 The first two forms of this command select a range of events from first to last Page 14/57

 from the history list. The arguments first and last may be specified as a number

 or as a string. A negative number is used as an offset to the current history

 event number. A string specifies the most recent event beginning with the given

 string. All substitutions old=new, if any, are then performed on the text of the

 events.

 In addition to the number range,

 -I restricts to only internal events (not from $HISTFILE)

 -L restricts to only local events (not from other shells, see SHARE_HISTORY in

 zshoptions(1) -- note that $HISTFILE is considered local when read at

 startup)

 -m takes the first argument as a pattern (should be quoted) and only the his?

 tory events matching this pattern are considered

 If first is not specified, it will be set to -1 (the most recent event), or to -16

 if the -l flag is given. If last is not specified, it will be set to first, or to

 -1 if the -l flag is given. However, if the current event has added entries to the

 history with `print -s' or `fc -R', then the default last for -l includes all new

 history entries since the current event began.

 When the -l flag is given, the resulting events are listed on standard output.

 Otherwise the editor program specified by -e ename is invoked on a file containing

 these history events. If -e is not given, the value of the parameter FCEDIT is

 used; if that is not set the value of the parameter EDITOR is used; if that is not

 set a builtin default, usually `vi' is used. If ename is `-', no editor is in?

 voked. When editing is complete, the edited command is executed.

 The flag -r reverses the order of the events and the flag -n suppresses event num?

 bers when listing.

 Also when listing,

 -d prints timestamps for each event

 -f prints full time-date stamps in the US `MM/DD/YY hh:mm' format

 -E prints full time-date stamps in the European `dd.mm.yyyy hh:mm' format

 -i prints full time-date stamps in ISO8601 `yyyy-mm-dd hh:mm' format

 -t fmt prints time and date stamps in the given format; fmt is formatted with the

 strftime function with the zsh extensions described for the %D{string}

 prompt format in the section EXPANSION OF PROMPT SEQUENCES in zshmisc(1). Page 15/57

 The resulting formatted string must be no more than 256 characters or will

 not be printed

 -D prints elapsed times; may be combined with one of the options above

 `fc -p' pushes the current history list onto a stack and switches to a new history

 list. If the -a option is also specified, this history list will be automatically

 popped when the current function scope is exited, which is a much better solution

 than creating a trap function to call `fc -P' manually. If no arguments are speci?

 fied, the history list is left empty, $HISTFILE is unset, and $HISTSIZE & $SAVEHIST

 are set to their default values. If one argument is given, $HISTFILE is set to

 that filename, $HISTSIZE & $SAVEHIST are left unchanged, and the history file is

 read in (if it exists) to initialize the new list. If a second argument is speci?

 fied, $HISTSIZE & $SAVEHIST are instead set to the single specified numeric value.

 Finally, if a third argument is specified, $SAVEHIST is set to a separate value

 from $HISTSIZE. You are free to change these environment values for the new his?

 tory list however you desire in order to manipulate the new history list.

 `fc -P' pops the history list back to an older list saved by `fc -p'. The current

 list is saved to its $HISTFILE before it is destroyed (assuming that $HISTFILE and

 $SAVEHIST are set appropriately, of course). The values of $HISTFILE, $HISTSIZE,

 and $SAVEHIST are restored to the values they had when `fc -p' was called. Note

 that this restoration can conflict with making these variables "local", so your

 best bet is to avoid local declarations for these variables in functions that use

 `fc -p'. The one other guaranteed-safe combination is declaring these variables to

 be local at the top of your function and using the automatic option (-a) with `fc

 -p'. Finally, note that it is legal to manually pop a push marked for automatic

 popping if you need to do so before the function exits.

 `fc -R' reads the history from the given file, `fc -W' writes the history out to

 the given file, and `fc -A' appends the history out to the given file. If no file?

 name is specified, the $HISTFILE is assumed. If the -I option is added to -R, only

 those events that are not already contained within the internal history list are

 added. If the -I option is added to -A or -W, only those events that are new since

 last incremental append/write to the history file are appended/written. In any

 case, the created file will have no more than $SAVEHIST entries.

 fg [job ...] Page 16/57

 job ...

 Bring each specified job in turn to the foreground. If no job is specified, resume

 the current job.

 float [{+|-}Hghlprtux] [{+|-}EFLRZ [n]] [name[=value] ...]

 Equivalent to typeset -E, except that options irrelevant to floating point numbers

 are not permitted.

 functions [{+|-}UkmtTuWz] [-x num] [name ...]

 functions -c oldfn newfn

 functions -M [-s] mathfn [min [max [shellfn]]]

 functions -M [-m pattern ...]

 functions +M [-m] mathfn ...

 Equivalent to typeset -f, with the exception of the -c, -x, -M and -W options. For

 functions -u and functions -U, see autoload, which provides additional options.

 The -x option indicates that any functions output will have each leading tab for

 indentation, added by the shell to show syntactic structure, expanded to the given

 number num of spaces. num can also be 0 to suppress all indentation.

 The -W option turns on the option WARN_NESTED_VAR for the named function or func?

 tions only. The option is turned off at the start of nested functions (apart from

 anonoymous functions) unless the called function also has the -W attribute.

 The -c option causes oldfn to be copied to newfn. The copy is efficiently handled

 internally by reference counting. If oldfn was marked for autoload it is first

 loaded and if this fails the copy fails. Either function may subsequently be rede?

 fined without affecting the other. A typical idiom is that oldfn is the name of a

 library shell function which is then redefined to call newfn, thereby installing a

 modified version of the function.

 Use of the -M option may not be combined with any of the options handled by typeset

 -f.

 functions -M mathfn defines mathfn as the name of a mathematical function recog?

 nised in all forms of arithmetical expressions; see the section `Arithmetic Evalua?

 tion' in zshmisc(1). By default mathfn may take any number of comma-separated ar?

 guments. If min is given, it must have exactly min args; if min and max are both

 given, it must have at least min and at most max args. max may be -1 to indicate

 that there is no upper limit. Page 17/57

 By default the function is implemented by a shell function of the same name; if

 shellfn is specified it gives the name of the corresponding shell function while

 mathfn remains the name used in arithmetical expressions. The name of the function

 in $0 is mathfn (not shellfn as would usually be the case), provided the option

 FUNCTION_ARGZERO is in effect. The positional parameters in the shell function

 correspond to the arguments of the mathematical function call. The result of the

 last arithmetical expression evaluated inside the shell function (even if it is a

 form that normally only returns a status) gives the result of the mathematical

 function.

 If the additional option -s is given to functions -M, the argument to the function

 is a single string: anything between the opening and matching closing parenthesis

 is passed to the function as a single argument, even if it includes commas or white

 space. The minimum and maximum argument specifiers must therefore be 1 if given.

 An empty argument list is passed as a zero-length string.

 functions -M with no arguments lists all such user-defined functions in the same

 form as a definition. With the additional option -m and a list of arguments, all

 functions whose mathfn matches one of the pattern arguments are listed.

 function +M removes the list of mathematical functions; with the additional option

 -m the arguments are treated as patterns and all functions whose mathfn matches the

 pattern are removed. Note that the shell function implementing the behaviour is

 not removed (regardless of whether its name coincides with mathfn).

 For example, the following prints the cube of 3:

 zmath_cube() { (($1 * $1 * $1)) }

 functions -M cube 1 1 zmath_cube

 print $((cube(3)))

 The following string function takes a single argument, including the commas, so

 prints 11:

 stringfn() { (($#1)) }

 functions -Ms stringfn

 print $((stringfn(foo,bar,rod)))

 getcap See the section `The zsh/cap Module' in zshmodules(1).

 getln [-AclneE] name ...

 Read the top value from the buffer stack and put it in the shell parameter name. Page 18/57

 Equivalent to read -zr.

 getopts optstring name [arg ...]

 Checks the args for legal options. If the args are omitted, use the positional pa?

 rameters. A valid option argument begins with a `+' or a `-'. An argument not be?

 ginning with a `+' or a `-', or the argument `--', ends the options. Note that a

 single `-' is not considered a valid option argument. optstring contains the let?

 ters that getopts recognizes. If a letter is followed by a `:', that option re?

 quires an argument. The options can be separated from the argument by blanks.

 Each time it is invoked, getopts places the option letter it finds in the shell pa?

 rameter name, prepended with a `+' when arg begins with a `+'. The index of the

 next arg is stored in OPTIND. The option argument, if any, is stored in OPTARG.

 The first option to be examined may be changed by explicitly assigning to OPTIND.

 OPTIND has an initial value of 1, and is normally set to 1 upon entry to a shell

 function and restored upon exit (this is disabled by the POSIX_BUILTINS option).

 OPTARG is not reset and retains its value from the most recent call to getopts. If

 either of OPTIND or OPTARG is explicitly unset, it remains unset, and the index or

 option argument is not stored. The option itself is still stored in name in this

 case.

 A leading `:' in optstring causes getopts to store the letter of any invalid option

 in OPTARG, and to set name to `?' for an unknown option and to `:' when a required

 argument is missing. Otherwise, getopts sets name to `?' and prints an error mes?

 sage when an option is invalid. The exit status is nonzero when there are no more

 options.

 hash [-Ldfmrv] [name[=value]] ...

 hash can be used to directly modify the contents of the command hash table, and the

 named directory hash table. Normally one would modify these tables by modifying

 one's PATH (for the command hash table) or by creating appropriate shell parameters

 (for the named directory hash table). The choice of hash table to work on is de?

 termined by the -d option; without the option the command hash table is used, and

 with the option the named directory hash table is used.

 A command name starting with a / is never hashed, whether by explicit use of the

 hash command or otherwise. Such a command is always found by direct look up in the

 file system. Page 19/57

 Given no arguments, and neither the -r or -f options, the selected hash table will

 be listed in full.

 The -r option causes the selected hash table to be emptied. It will be subse?

 quently rebuilt in the normal fashion. The -f option causes the selected hash ta?

 ble to be fully rebuilt immediately. For the command hash table this hashes all

 the absolute directories in the PATH, and for the named directory hash table this

 adds all users' home directories. These two options cannot be used with any argu?

 ments.

 The -m option causes the arguments to be taken as patterns (which should be quoted)

 and the elements of the hash table matching those patterns are printed. This is

 the only way to display a limited selection of hash table elements.

 For each name with a corresponding value, put `name' in the selected hash table,

 associating it with the pathname `value'. In the command hash table, this means

 that whenever `name' is used as a command argument, the shell will try to execute

 the file given by `value'. In the named directory hash table, this means that

 `value' may be referred to as `~name'.

 For each name with no corresponding value, attempt to add name to the hash table,

 checking what the appropriate value is in the normal manner for that hash table.

 If an appropriate value can't be found, then the hash table will be unchanged.

 The -v option causes hash table entries to be listed as they are added by explicit

 specification. If has no effect if used with -f.

 If the -L flag is present, then each hash table entry is printed in the form of a

 call to hash.

 history

 Same as fc -l.

 integer [{+|-}Hghlprtux] [{+|-}LRZi [n]] [name[=value] ...]

 Equivalent to typeset -i, except that options irrelevant to integers are not per?

 mitted.

 jobs [-dlprs] [job ...]

 jobs -Z string

 Lists information about each given job, or all jobs if job is omitted. The -l flag

 lists process IDs, and the -p flag lists process groups. If the -r flag is speci?

 fied only running jobs will be listed and if the -s flag is given only stopped jobs Page 20/57

 are shown. If the -d flag is given, the directory from which the job was started

 (which may not be the current directory of the job) will also be shown.

 The -Z option replaces the shell's argument and environment space with the given

 string, truncated if necessary to fit. This will normally be visible in ps (ps(1))

 listings. This feature is typically used by daemons, to indicate their state.

 kill [-s signal_name | -n signal_number | -sig] job ...

 kill -l [sig ...]

 Sends either SIGTERM or the specified signal to the given jobs or processes. Sig?

 nals are given by number or by names, with or without the `SIG' prefix. If the

 signal being sent is not `KILL' or `CONT', then the job will be sent a `CONT' sig?

 nal if it is stopped. The argument job can be the process ID of a job not in the

 job list. In the second form, kill -l, if sig is not specified the signal names

 are listed. Otherwise, for each sig that is a name, the corresponding signal num?

 ber is listed. For each sig that is a signal number or a number representing the

 exit status of a process which was terminated or stopped by a signal the name of

 the signal is printed.

 On some systems, alternative signal names are allowed for a few signals. Typical

 examples are SIGCHLD and SIGCLD or SIGPOLL and SIGIO, assuming they correspond to

 the same signal number. kill -l will only list the preferred form, however kill -l

 alt will show if the alternative form corresponds to a signal number. For example,

 under Linux kill -l IO and kill -l POLL both output 29, hence kill -IO and kill

 -POLL have the same effect.

 Many systems will allow process IDs to be negative to kill a process group or zero

 to kill the current process group.

 let arg ...

 Evaluate each arg as an arithmetic expression. See the section `Arithmetic Evalua?

 tion' in zshmisc(1) for a description of arithmetic expressions. The exit status

 is 0 if the value of the last expression is nonzero, 1 if it is zero, and 2 if an

 error occurred.

 limit [-hs] [resource [limit]] ...

 Set or display resource limits. Unless the -s flag is given, the limit applies

 only the children of the shell. If -s is given without other arguments, the re?

 source limits of the current shell is set to the previously set resource limits of Page 21/57

 the children.

 If limit is not specified, print the current limit placed on resource, otherwise

 set the limit to the specified value. If the -h flag is given, use hard limits in?

 stead of soft limits. If no resource is given, print all limits.

 When looping over multiple resources, the shell will abort immediately if it de?

 tects a badly formed argument. However, if it fails to set a limit for some other

 reason it will continue trying to set the remaining limits.

 resource can be one of:

 addressspace

 Maximum amount of address space used.

 aiomemorylocked

 Maximum amount of memory locked in RAM for AIO operations.

 aiooperations

 Maximum number of AIO operations.

 cachedthreads

 Maximum number of cached threads.

 coredumpsize

 Maximum size of a core dump.

 cputime

 Maximum CPU seconds per process.

 datasize

 Maximum data size (including stack) for each process.

 descriptors

 Maximum value for a file descriptor.

 filesize

 Largest single file allowed.

 kqueues

 Maximum number of kqueues allocated.

 maxproc

 Maximum number of processes.

 maxpthreads

 Maximum number of threads per process.

 memorylocked Page 22/57

 Maximum amount of memory locked in RAM.

 memoryuse

 Maximum resident set size.

 msgqueue

 Maximum number of bytes in POSIX message queues.

 posixlocks

 Maximum number of POSIX locks per user.

 pseudoterminals

 Maximum number of pseudo-terminals.

 resident

 Maximum resident set size.

 sigpending

 Maximum number of pending signals.

 sockbufsize

 Maximum size of all socket buffers.

 stacksize

 Maximum stack size for each process.

 swapsize

 Maximum amount of swap used.

 vmemorysize

 Maximum amount of virtual memory.

 Which of these resource limits are available depends on the system. resource can

 be abbreviated to any unambiguous prefix. It can also be an integer, which corre?

 sponds to the integer defined for the resource by the operating system.

 If argument corresponds to a number which is out of the range of the resources con?

 figured into the shell, the shell will try to read or write the limit anyway, and

 will report an error if this fails. As the shell does not store such resources in?

 ternally, an attempt to set the limit will fail unless the -s option is present.

 limit is a number, with an optional scaling factor, as follows:

 nh hours

 nk kilobytes (default)

 nm megabytes or minutes

 ng gigabytes Page 23/57

 [mm:]ss

 minutes and seconds

 The limit command is not made available by default when the shell starts in a mode

 emulating another shell. It can be made available with the command `zmodload -F

 zsh/rlimits b:limit'.

 local [{+|-}AHUahlprtux] [{+|-}EFLRZi [n]] [name[=value] ...]

 Same as typeset, except that the options -g, and -f are not permitted. In this

 case the -x option does not force the use of -g, i.e. exported variables will be

 local to functions.

 log List all users currently logged in who are affected by the current setting of the

 watch parameter.

 logout [n]

 Same as exit, except that it only works in a login shell.

 noglob simple command

 See the section `Precommand Modifiers' in zshmisc(1).

 popd [-q] [{+|-}n]

 Remove an entry from the directory stack, and perform a cd to the new top direc?

 tory. With no argument, the current top entry is removed. An argument of the form

 `+n' identifies a stack entry by counting from the left of the list shown by the

 dirs command, starting with zero. An argument of the form -n counts from the

 right. If the PUSHD_MINUS option is set, the meanings of `+' and `-' in this con?

 text are swapped.

 If the -q (quiet) option is specified, the hook function chpwd and the functions in

 the array $chpwd_functions are not called, and the new directory stack is not

 printed. This is useful for calls to popd that do not change the environment seen

 by an interactive user.

 print [-abcDilmnNoOpPrsSz] [-u n] [-f format] [-C cols]

 [-v name] [-xX tabstop] [-R [-en]] [arg ...]

 With the `-f' option the arguments are printed as described by printf. With no

 flags or with the flag `-', the arguments are printed on the standard output as de?

 scribed by echo, with the following differences: the escape sequence `\M-x' (or

 `\Mx') metafies the character x (sets the highest bit), `\C-x' (or `\Cx') produces

 a control character (`\C-@' and `\C-?' give the characters NULL and delete), a Page 24/57

 character code in octal is represented by `\NNN' (instead of `\0NNN'), and `\E' is

 a synonym for `\e'. Finally, if not in an escape sequence, `\' escapes the follow?

 ing character and is not printed.

 -a Print arguments with the column incrementing first. Only useful with the -c

 and -C options.

 -b Recognize all the escape sequences defined for the bindkey command, see the

 section `Zle Builtins' in zshzle(1).

 -c Print the arguments in columns. Unless -a is also given, arguments are

 printed with the row incrementing first.

 -C cols

 Print the arguments in cols columns. Unless -a is also given, arguments are

 printed with the row incrementing first.

 -D Treat the arguments as paths, replacing directory prefixes with ~ expres?

 sions corresponding to directory names, as appropriate.

 -i If given together with -o or -O, sorting is performed case-independently.

 -l Print the arguments separated by newlines instead of spaces. Note: if the

 list of arguments is empty, print -l will still output one empty line. To

 print a possibly-empty list of arguments one per line, use print -C1, as in

 `print -rC1 -- "$list[@]"'.

 -m Take the first argument as a pattern (should be quoted), and remove it from

 the argument list together with subsequent arguments that do not match this

 pattern.

 -n Do not add a newline to the output.

 -N Print the arguments separated and terminated by nulls. Again, print -rNC1 --

 "$list[@]" is a canonical way to print an arbitrary list as null-delimited

 records.

 -o Print the arguments sorted in ascending order.

 -O Print the arguments sorted in descending order.

 -p Print the arguments to the input of the coprocess.

 -P Perform prompt expansion (see EXPANSION OF PROMPT SEQUENCES in zshmisc(1)).

 In combination with `-f', prompt escape sequences are parsed only within in?

 terpolated arguments, not within the format string.

 -r Ignore the escape conventions of echo. Page 25/57

 -R Emulate the BSD echo command, which does not process escape sequences unless

 the -e flag is given. The -n flag suppresses the trailing newline. Only

 the -e and -n flags are recognized after -R; all other arguments and options

 are printed.

 -s Place the results in the history list instead of on the standard output.

 Each argument to the print command is treated as a single word in the his?

 tory, regardless of its content.

 -S Place the results in the history list instead of on the standard output. In

 this case only a single argument is allowed; it will be split into words as

 if it were a full shell command line. The effect is similar to reading the

 line from a history file with the HIST_LEX_WORDS option active.

 -u n Print the arguments to file descriptor n.

 -v name

 Store the printed arguments as the value of the parameter name.

 -x tab-stop

 Expand leading tabs on each line of output in the printed string assuming a

 tab stop every tab-stop characters. This is appropriate for formatting code

 that may be indented with tabs. Note that leading tabs of any argument to

 print, not just the first, are expanded, even if print is using spaces to

 separate arguments (the column count is maintained across arguments but may

 be incorrect on output owing to previous unexpanded tabs).

 The start of the output of each print command is assumed to be aligned with

 a tab stop. Widths of multibyte characters are handled if the option MULTI?

 BYTE is in effect. This option is ignored if other formatting options are

 in effect, namely column alignment or printf style, or if output is to a

 special location such as shell history or the command line editor.

 -X tab-stop

 This is similar to -x, except that all tabs in the printed string are ex?

 panded. This is appropriate if tabs in the arguments are being used to pro?

 duce a table format.

 -z Push the arguments onto the editing buffer stack, separated by spaces.

 If any of `-m', `-o' or `-O' are used in combination with `-f' and there are no ar?

 guments (after the removal process in the case of `-m') then nothing is printed. Page 26/57

 printf [-v name] format [arg ...]

 Print the arguments according to the format specification. Formatting rules are the

 same as used in C. The same escape sequences as for echo are recognised in the for?

 mat. All C conversion specifications ending in one of csdiouxXeEfgGn are handled.

 In addition to this, `%b' can be used instead of `%s' to cause escape sequences in

 the argument to be recognised and `%q' can be used to quote the argument in such a

 way that allows it to be reused as shell input. With the numeric format specifiers,

 if the corresponding argument starts with a quote character, the numeric value of

 the following character is used as the number to print; otherwise the argument is

 evaluated as an arithmetic expression. See the section `Arithmetic Evaluation' in

 zshmisc(1) for a description of arithmetic expressions. With `%n', the correspond?

 ing argument is taken as an identifier which is created as an integer parameter.

 Normally, conversion specifications are applied to each argument in order but they

 can explicitly specify the nth argument is to be used by replacing `%' by `%n$' and

 `*' by `*n$'. It is recommended that you do not mix references of this explicit

 style with the normal style and the handling of such mixed styles may be subject to

 future change.

 If arguments remain unused after formatting, the format string is reused until all

 arguments have been consumed. With the print builtin, this can be suppressed by us?

 ing the -r option. If more arguments are required by the format than have been

 specified, the behaviour is as if zero or an empty string had been specified as the

 argument.

 The -v option causes the output to be stored as the value of the parameter name,

 instead of printed. If name is an array and the format string is reused when con?

 suming arguments then one array element will be used for each use of the format

 string.

 pushd [-qsLP] [arg]

 pushd [-qsLP] old new

 pushd [-qsLP] {+|-}n

 Change the current directory, and push the old current directory onto the directory

 stack. In the first form, change the current directory to arg. If arg is not

 specified, change to the second directory on the stack (that is, exchange the top

 two entries), or change to $HOME if the PUSHD_TO_HOME option is set or if there is Page 27/57

 only one entry on the stack. Otherwise, arg is interpreted as it would be by cd.

 The meaning of old and new in the second form is also the same as for cd.

 The third form of pushd changes directory by rotating the directory list. An argu?

 ment of the form `+n' identifies a stack entry by counting from the left of the

 list shown by the dirs command, starting with zero. An argument of the form `-n'

 counts from the right. If the PUSHD_MINUS option is set, the meanings of `+' and

 `-' in this context are swapped.

 If the -q (quiet) option is specified, the hook function chpwd and the functions in

 the array $chpwd_functions are not called, and the new directory stack is not

 printed. This is useful for calls to pushd that do not change the environment seen

 by an interactive user.

 If the option -q is not specified and the shell option PUSHD_SILENT is not set, the

 directory stack will be printed after a pushd is performed.

 The options -s, -L and -P have the same meanings as for the cd builtin.

 pushln [arg ...]

 Equivalent to print -nz.

 pwd [-rLP]

 Print the absolute pathname of the current working directory. If the -r or the -P

 flag is specified, or the CHASE_LINKS option is set and the -L flag is not given,

 the printed path will not contain symbolic links.

 r Same as fc -e -.

 read [-rszpqAclneE] [-t [num]] [-k [num]] [-d delim]

 [-u n] [name[?prompt]] [name ...]

 Read one line and break it into fields using the characters in $IFS as separators,

 except as noted below. The first field is assigned to the first name, the second

 field to the second name, etc., with leftover fields assigned to the last name. If

 name is omitted then REPLY is used for scalars and reply for arrays.

 -r Raw mode: a `\' at the end of a line does not signify line continuation and

 backslashes in the line don't quote the following character and are not re?

 moved.

 -s Don't echo back characters if reading from the terminal.

 -q Read only one character from the terminal and set name to `y' if this char?

 acter was `y' or `Y' and to `n' otherwise. With this flag set the return Page 28/57

 status is zero only if the character was `y' or `Y'. This option may be

 used with a timeout (see -t); if the read times out, or encounters end of

 file, status 2 is returned. Input is read from the terminal unless one of

 -u or -p is present. This option may also be used within zle widgets.

 -k [num]

 Read only one (or num) characters. All are assigned to the first name,

 without word splitting. This flag is ignored when -q is present. Input is

 read from the terminal unless one of -u or -p is present. This option may

 also be used within zle widgets.

 Note that despite the mnemonic `key' this option does read full characters,

 which may consist of multiple bytes if the option MULTIBYTE is set.

 -z Read one entry from the editor buffer stack and assign it to the first name,

 without word splitting. Text is pushed onto the stack with `print -z' or

 with push-line from the line editor (see zshzle(1)). This flag is ignored

 when the -k or -q flags are present.

 -e

 -E The input read is printed (echoed) to the standard output. If the -e flag

 is used, no input is assigned to the parameters.

 -A The first name is taken as the name of an array and all words are assigned

 to it.

 -c

 -l These flags are allowed only if called inside a function used for completion

 (specified with the -K flag to compctl). If the -c flag is given, the words

 of the current command are read. If the -l flag is given, the whole line is

 assigned as a scalar. If both flags are present, -l is used and -c is ig?

 nored.

 -n Together with -c, the number of the word the cursor is on is read. With -l,

 the index of the character the cursor is on is read. Note that the command

 name is word number 1, not word 0, and that when the cursor is at the end of

 the line, its character index is the length of the line plus one.

 -u n Input is read from file descriptor n.

 -p Input is read from the coprocess.

 -d delim Page 29/57

 Input is terminated by the first character of delim instead of by newline.

 -t [num]

 Test if input is available before attempting to read. If num is present, it

 must begin with a digit and will be evaluated to give a number of seconds,

 which may be a floating point number; in this case the read times out if in?

 put is not available within this time. If num is not present, it is taken

 to be zero, so that read returns immediately if no input is available. If

 no input is available, return status 1 and do not set any variables.

 This option is not available when reading from the editor buffer with -z,

 when called from within completion with -c or -l, with -q which clears the

 input queue before reading, or within zle where other mechanisms should be

 used to test for input.

 Note that read does not attempt to alter the input processing mode. The de?

 fault mode is canonical input, in which an entire line is read at a time, so

 usually `read -t' will not read anything until an entire line has been

 typed. However, when reading from the terminal with -k input is processed

 one key at a time; in this case, only availability of the first character is

 tested, so that e.g. `read -t -k 2' can still block on the second character.

 Use two instances of `read -t -k' if this is not what is wanted.

 If the first argument contains a `?', the remainder of this word is used as a

 prompt on standard error when the shell is interactive.

 The value (exit status) of read is 1 when an end-of-file is encountered, or when -c

 or -l is present and the command is not called from a compctl function, or as de?

 scribed for -q. Otherwise the value is 0.

 The behavior of some combinations of the -k, -p, -q, -u and -z flags is undefined.

 Presently -q cancels all the others, -p cancels -u, -k cancels -z, and otherwise -z

 cancels both -p and -u.

 The -c or -l flags cancel any and all of -kpquz.

 readonly

 Same as typeset -r. With the POSIX_BUILTINS option set, same as typeset -gr.

 rehash Same as hash -r.

 return [n]

 Causes a shell function or `.' script to return to the invoking script with the re? Page 30/57

 turn status specified by an arithmetic expression n. If n is omitted, the return

 status is that of the last command executed.

 If return was executed from a trap in a TRAPNAL function, the effect is different

 for zero and non-zero return status. With zero status (or after an implicit return

 at the end of the trap), the shell will return to whatever it was previously pro?

 cessing; with a non-zero status, the shell will behave as interrupted except that

 the return status of the trap is retained. Note that the numeric value of the sig?

 nal which caused the trap is passed as the first argument, so the statement `return

 $((128+$1))' will return the same status as if the signal had not been trapped.

 sched See the section `The zsh/sched Module' in zshmodules(1).

 set [{+|-}options | {+|-}o [option_name]] ... [{+|-}A [name]]

 [arg ...]

 Set the options for the shell and/or set the positional parameters, or declare and

 set an array. If the -s option is given, it causes the specified arguments to be

 sorted before assigning them to the positional parameters (or to the array name if

 -A is used). With +s sort arguments in descending order. For the meaning of the

 other flags, see zshoptions(1). Flags may be specified by name using the -o op?

 tion. If no option name is supplied with -o, the current option states are printed:

 see the description of setopt below for more information on the format. With +o

 they are printed in a form that can be used as input to the shell.

 If the -A flag is specified, name is set to an array containing the given args; if

 no name is specified, all arrays are printed together with their values.

 If +A is used and name is an array, the given arguments will replace the initial

 elements of that array; if no name is specified, all arrays are printed without

 their values.

 The behaviour of arguments after -A name or +A name depends on whether the option

 KSH_ARRAYS is set. If it is not set, all arguments following name are treated as

 values for the array, regardless of their form. If the option is set, normal op?

 tion processing continues at that point; only regular arguments are treated as val?

 ues for the array. This means that

 set -A array -x -- foo

 sets array to `-x -- foo' if KSH_ARRAYS is not set, but sets the array to foo and

 turns on the option `-x' if it is set. Page 31/57

 If the -A flag is not present, but there are arguments beyond the options, the po?

 sitional parameters are set. If the option list (if any) is terminated by `--',

 and there are no further arguments, the positional parameters will be unset.

 If no arguments and no `--' are given, then the names and values of all parameters

 are printed on the standard output. If the only argument is `+', the names of all

 parameters are printed.

 For historical reasons, `set -' is treated as `set +xv' and `set - args' as `set

 +xv -- args' when in any other emulation mode than zsh's native mode.

 setcap See the section `The zsh/cap Module' in zshmodules(1).

 setopt [{+|-}options | {+|-}o option_name] [-m] [name ...]

 Set the options for the shell. All options specified either with flags or by name

 are set.

 If no arguments are supplied, the names of all options currently set are printed.

 The form is chosen so as to minimize the differences from the default options for

 the current emulation (the default emulation being native zsh, shown as <Z> in

 zshoptions(1)). Options that are on by default for the emulation are shown with

 the prefix no only if they are off, while other options are shown without the pre?

 fix no and only if they are on. In addition to options changed from the default

 state by the user, any options activated automatically by the shell (for example,

 SHIN_STDIN or INTERACTIVE) will be shown in the list. The format is further modi?

 fied by the option KSH_OPTION_PRINT, however the rationale for choosing options

 with or without the no prefix remains the same in this case.

 If the -m flag is given the arguments are taken as patterns (which should be quoted

 to protect them from filename expansion), and all options with names matching these

 patterns are set.

 Note that a bad option name does not cause execution of subsequent shell code to be

 aborted; this is behaviour is different from that of `set -o'. This is because set

 is regarded as a special builtin by the POSIX standard, but setopt is not.

 shift [-p] [n] [name ...]

 The positional parameters ${n+1} ... are renamed to $1 ..., where n is an arith?

 metic expression that defaults to 1. If any names are given then the arrays with

 these names are shifted instead of the positional parameters.

 If the option -p is given arguments are instead removed (popped) from the end Page 32/57

 rather than the start of the array.

 source file [arg ...]

 Same as `.', except that the current directory is always searched and is always

 searched first, before directories in $path.

 stat See the section `The zsh/stat Module' in zshmodules(1).

 suspend [-f]

 Suspend the execution of the shell (send it a SIGTSTP) until it receives a SIGCONT.

 Unless the -f option is given, this will refuse to suspend a login shell.

 test [arg ...]

 [[arg ...]]

 Like the system version of test. Added for compatibility; use conditional expres?

 sions instead (see the section `Conditional Expressions'). The main differences

 between the conditional expression syntax and the test and [builtins are: these

 commands are not handled syntactically, so for example an empty variable expansion

 may cause an argument to be omitted; syntax errors cause status 2 to be returned

 instead of a shell error; and arithmetic operators expect integer arguments rather

 than arithmetic expressions.

 The command attempts to implement POSIX and its extensions where these are speci?

 fied. Unfortunately there are intrinsic ambiguities in the syntax; in particular

 there is no distinction between test operators and strings that resemble them. The

 standard attempts to resolve these for small numbers of arguments (up to four); for

 five or more arguments compatibility cannot be relied on. Users are urged wherever

 possible to use the `[[' test syntax which does not have these ambiguities.

 times Print the accumulated user and system times for the shell and for processes run

 from the shell.

 trap [arg] [sig ...]

 arg is a series of commands (usually quoted to protect it from immediate evaluation

 by the shell) to be read and executed when the shell receives any of the signals

 specified by one or more sig args. Each sig can be given as a number, or as the

 name of a signal either with or without the string SIG in front (e.g. 1, HUP, and

 SIGHUP are all the same signal).

 If arg is `-', then the specified signals are reset to their defaults, or, if no

 sig args are present, all traps are reset. Page 33/57

 If arg is an empty string, then the specified signals are ignored by the shell (and

 by the commands it invokes).

 If arg is omitted but one or more sig args are provided (i.e. the first argument

 is a valid signal number or name), the effect is the same as if arg had been speci?

 fied as `-'.

 The trap command with no arguments prints a list of commands associated with each

 signal.

 If sig is ZERR then arg will be executed after each command with a nonzero exit

 status. ERR is an alias for ZERR on systems that have no SIGERR signal (this is

 the usual case).

 If sig is DEBUG then arg will be executed before each command if the option DE?

 BUG_BEFORE_CMD is set (as it is by default), else after each command. Here, a

 `command' is what is described as a `sublist' in the shell grammar, see the section

 SIMPLE COMMANDS & PIPELINES in zshmisc(1). If DEBUG_BEFORE_CMD is set various ad?

 ditional features are available. First, it is possible to skip the next command by

 setting the option ERR_EXIT; see the description of the ERR_EXIT option in zshop?

 tions(1). Also, the shell parameter ZSH_DEBUG_CMD is set to the string correspond?

 ing to the command to be executed following the trap. Note that this string is re?

 constructed from the internal format and may not be formatted the same way as the

 original text. The parameter is unset after the trap is executed.

 If sig is 0 or EXIT and the trap statement is executed inside the body of a func?

 tion, then the command arg is executed after the function completes. The value of

 $? at the start of execution is the exit status of the shell or the return status

 of the function exiting. If sig is 0 or EXIT and the trap statement is not exe?

 cuted inside the body of a function, then the command arg is executed when the

 shell terminates; the trap runs before any zshexit hook functions.

 ZERR, DEBUG, and EXIT traps are not executed inside other traps. ZERR and DEBUG

 traps are kept within subshells, while other traps are reset.

 Note that traps defined with the trap builtin are slightly different from those de?

 fined as `TRAPNAL () { ... }', as the latter have their own function environment

 (line numbers, local variables, etc.) while the former use the environment of the

 command in which they were called. For example,

 trap 'print $LINENO' DEBUG Page 34/57

 will print the line number of a command executed after it has run, while

 TRAPDEBUG() { print $LINENO; }

 will always print the number zero.

 Alternative signal names are allowed as described under kill above. Defining a

 trap under either name causes any trap under an alternative name to be removed.

 However, it is recommended that for consistency users stick exclusively to one name

 or another.

 true [arg ...]

 Do nothing and return an exit status of 0.

 ttyctl [-fu]

 The -f option freezes the tty (i.e. terminal or terminal emulator), and -u un?

 freezes it. When the tty is frozen, no changes made to the tty settings by exter?

 nal programs will be honored by the shell, except for changes in the size of the

 screen; the shell will simply reset the settings to their previous values as soon

 as each command exits or is suspended. Thus, stty and similar programs have no ef?

 fect when the tty is frozen. Freezing the tty does not cause the current state to

 be remembered: instead, it causes future changes to the state to be blocked.

 Without options it reports whether the terminal is frozen or not.

 Note that, regardless of whether the tty is frozen or not, the shell needs to

 change the settings when the line editor starts, so unfreezing the tty does not

 guarantee settings made on the command line are preserved. Strings of commands run

 between editing the command line will see a consistent tty state. See also the

 shell variable STTY for a means of initialising the tty before running external

 commands.

 type [-wfpamsS] name ...

 Equivalent to whence -v.

 typeset [{+|-}AHUaghlmrtux] [{+|-}EFLRZip [n]]

 [+] [name[=value] ...]

 typeset -T [{+|-}Uglrux] [{+|-}LRZp [n]]

 [+ | SCALAR[=value] array[=(value ...)] [sep]]

 typeset -f [{+|-}TUkmtuz] [+] [name ...]

 Set or display attributes and values for shell parameters.

 Except as noted below for control flags that change the behavior, a parameter is Page 35/57

 created for each name that does not already refer to one. When inside a function,

 a new parameter is created for every name (even those that already exist), and is

 unset again when the function completes. See `Local Parameters' in zshparam(1).

 The same rules apply to special shell parameters, which retain their special at?

 tributes when made local.

 For each name=value assignment, the parameter name is set to value.

 If the shell option TYPESET_SILENT is not set, for each remaining name that refers

 to a parameter that is already set, the name and value of the parameter are printed

 in the form of an assignment. Nothing is printed for newly-created parameters, or

 when any attribute flags listed below are given along with the name. Using `+' in?

 stead of minus to introduce an attribute turns it off.

 If no name is present, the names and values of all parameters are printed. In this

 case the attribute flags restrict the display to only those parameters that have

 the specified attributes, and using `+' rather than `-' to introduce the flag sup?

 presses printing of the values of parameters when there is no parameter name.

 All forms of the command handle scalar assignment. Array assignment is possible if

 any of the reserved words declare, export, float, integer, local, readonly or type?

 set is matched when the line is parsed (N.B. not when it is executed). In this

 case the arguments are parsed as assignments, except that the `+=' syntax and the

 GLOB_ASSIGN option are not supported, and scalar values after = are not split fur?

 ther into words, even if expanded (regardless of the setting of the KSH_TYPESET op?

 tion; this option is obsolete).

 Examples of the differences between command and reserved word parsing:

 # Reserved word parsing

 typeset svar=$(echo one word) avar=(several words)

 The above creates a scalar parameter svar and an array parameter avar as if the as?

 signments had been

 svar="one word"

 avar=(several words)

 On the other hand:

 # Normal builtin interface

 builtin typeset svar=$(echo two words)

 The builtin keyword causes the above to use the standard builtin interface to type? Page 36/57

 set in which argument parsing is performed in the same way as for other commands.

 This example creates a scalar svar containing the value two and another scalar pa?

 rameter words with no value. An array value in this case would either cause an er?

 ror or be treated as an obscure set of glob qualifiers.

 Arbitrary arguments are allowed if they take the form of assignments after command

 line expansion; however, these only perform scalar assignment:

 var='svar=val'

 typeset $var

 The above sets the scalar parameter svar to the value val. Parentheses around the

 value within var would not cause array assignment as they will be treated as ordi?

 nary characters when $var is substituted. Any non-trivial expansion in the name

 part of the assignment causes the argument to be treated in this fashion:

 typeset {var1,var2,var3}=name

 The above syntax is valid, and has the expected effect of setting the three parame?

 ters to the same value, but the command line is parsed as a set of three normal

 command line arguments to typeset after expansion. Hence it is not possible to as?

 sign to multiple arrays by this means.

 Note that each interface to any of the commands my be disabled separately. For ex?

 ample, `disable -r typeset' disables the reserved word interface to typeset, expos?

 ing the builtin interface, while `disable typeset' disables the builtin. Note that

 disabling the reserved word interface for typeset may cause problems with the out?

 put of `typeset -p', which assumes the reserved word interface is available in or?

 der to restore array and associative array values.

 Unlike parameter assignment statements, typeset's exit status on an assignment that

 involves a command substitution does not reflect the exit status of the command

 substitution. Therefore, to test for an error in a command substitution, separate

 the declaration of the parameter from its initialization:

 # WRONG

 typeset var1=$(exit 1) || echo "Trouble with var1"

 # RIGHT

 typeset var1 && var1=$(exit 1) || echo "Trouble with var1"

 To initialize a parameter param to a command output and mark it readonly, use type?

 set -r param or readonly param after the parameter assignment statement. Page 37/57

 If no attribute flags are given, and either no name arguments are present or the

 flag +m is used, then each parameter name printed is preceded by a list of the at?

 tributes of that parameter (array, association, exported, float, integer, readonly,

 or undefined for autoloaded parameters not yet loaded). If +m is used with attri?

 bute flags, and all those flags are introduced with +, the matching parameter names

 are printed but their values are not.

 The following control flags change the behavior of typeset:

 + If `+' appears by itself in a separate word as the last option, then the

 names of all parameters (functions with -f) are printed, but the values

 (function bodies) are not. No name arguments may appear, and it is an error

 for any other options to follow `+'. The effect of `+' is as if all attri?

 bute flags which precede it were given with a `+' prefix. For example,

 `typeset -U +' is equivalent to `typeset +U' and displays the names of all

 arrays having the uniqueness attribute, whereas `typeset -f -U +' displays

 the names of all autoloadable functions. If + is the only option, then type

 information (array, readonly, etc.) is also printed for each parameter, in

 the same manner as `typeset +m "*"'.

 -g The -g (global) means that any resulting parameter will not be restricted to

 local scope. Note that this does not necessarily mean that the parameter

 will be global, as the flag will apply to any existing parameter (even if

 unset) from an enclosing function. This flag does not affect the parameter

 after creation, hence it has no effect when listing existing parameters, nor

 does the flag +g have any effect except in combination with -m (see below).

 -m If the -m flag is given the name arguments are taken as patterns (use quot?

 ing to prevent these from being interpreted as file patterns). With no at?

 tribute flags, all parameters (or functions with the -f flag) with matching

 names are printed (the shell option TYPESET_SILENT is not used in this

 case).

 If the +g flag is combined with -m, a new local parameter is created for ev?

 ery matching parameter that is not already local. Otherwise -m applies all

 other flags or assignments to the existing parameters.

 Except when assignments are made with name=value, using +m forces the match?

 ing parameters and their attributes to be printed, even inside a function. Page 38/57

 Note that -m is ignored if no patterns are given, so `typeset -m' displays

 attributes but `typeset -a +m' does not.

 -p [n]

 If the -p option is given, parameters and values are printed in the form of

 a typeset command with an assignment, regardless of other flags and options.

 Note that the -H flag on parameters is respected; no value will be shown for

 these parameters.

 -p may be followed by an optional integer argument. Currently only the

 value 1 is supported. In this case arrays and associative arrays are

 printed with newlines between indented elements for readability.

 -T [scalar[=value] array[=(value ...)] [sep]]

 This flag has a different meaning when used with -f; see below. Otherwise

 the -T option requires zero, two, or three arguments to be present. With no

 arguments, the list of parameters created in this fashion is shown. With

 two or three arguments, the first two are the name of a scalar and of an ar?

 ray parameter (in that order) that will be tied together in the manner of

 $PATH and $path. The optional third argument is a single-character separa?

 tor which will be used to join the elements of the array to form the scalar;

 if absent, a colon is used, as with $PATH. Only the first character of the

 separator is significant; any remaining characters are ignored. Multibyte

 characters are not yet supported.

 Only one of the scalar and array parameters may be assigned an initial value

 (the restrictions on assignment forms described above also apply).

 Both the scalar and the array may be manipulated as normal. If one is un?

 set, the other will automatically be unset too. There is no way of untying

 the variables without unsetting them, nor of converting the type of one of

 them with another typeset command; +T does not work, assigning an array to

 scalar is an error, and assigning a scalar to array sets it to be a sin?

 gle-element array.

 Note that both `typeset -xT ...' and `export -T ...' work, but only the

 scalar will be marked for export. Setting the value using the scalar ver?

 sion causes a split on all separators (which cannot be quoted). It is pos?

 sible to apply -T to two previously tied variables but with a different sep? Page 39/57

 arator character, in which case the variables remain joined as before but

 the separator is changed.

 When an existing scalar is tied to a new array, the value of the scalar is

 preserved but no attribute other than export will be preserved.

 Attribute flags that transform the final value (-L, -R, -Z, -l, -u) are only ap?

 plied to the expanded value at the point of a parameter expansion expression using

 `$'. They are not applied when a parameter is retrieved internally by the shell

 for any purpose.

 The following attribute flags may be specified:

 -A The names refer to associative array parameters; see `Array Parameters' in

 zshparam(1).

 -L [n]

 Left justify and remove leading blanks from the value when the parameter is

 expanded. If n is nonzero, it defines the width of the field. If n is

 zero, the width is determined by the width of the value of the first assign?

 ment. In the case of numeric parameters, the length of the complete value

 assigned to the parameter is used to determine the width, not the value that

 would be output.

 The width is the count of characters, which may be multibyte characters if

 the MULTIBYTE option is in effect. Note that the screen width of the char?

 acter is not taken into account; if this is required, use padding with pa?

 rameter expansion flags ${(ml...)...} as described in `Parameter Expansion

 Flags' in zshexpn(1).

 When the parameter is expanded, it is filled on the right with blanks or

 truncated if necessary to fit the field. Note truncation can lead to unex?

 pected results with numeric parameters. Leading zeros are removed if the -Z

 flag is also set.

 -R [n]

 Similar to -L, except that right justification is used; when the parameter

 is expanded, the field is left filled with blanks or truncated from the end.

 May not be combined with the -Z flag.

 -U For arrays (but not for associative arrays), keep only the first occurrence

 of each duplicated value. This may also be set for tied parameters (see -T) Page 40/57

 or colon-separated special parameters like PATH or FIGNORE, etc. Note the

 flag takes effect on assignment, and the type of the variable being assigned

 to is determinative; for variables with shared values it is therefore recom?

 mended to set the flag for all interfaces, e.g. `typeset -U PATH path'.

 This flag has a different meaning when used with -f; see below.

 -Z [n]

 Specially handled if set along with the -L flag. Otherwise, similar to -R,

 except that leading zeros are used for padding instead of blanks if the

 first non-blank character is a digit. Numeric parameters are specially han?

 dled: they are always eligible for padding with zeroes, and the zeroes are

 inserted at an appropriate place in the output.

 -a The names refer to array parameters. An array parameter may be created this

 way, but it may be assigned to in the typeset statement only if the reserved

 word form of typeset is enabled (as it is by default). When displaying,

 both normal and associative arrays are shown.

 -f The names refer to functions rather than parameters. No assignments can be

 made, and the only other valid flags are -t, -T, -k, -u, -U and -z. The

 flag -t turns on execution tracing for this function; the flag -T does the

 same, but turns off tracing for any named (not anonymous) function called

 from the present one, unless that function also has the -t or -T flag. The

 -u and -U flags cause the function to be marked for autoloading; -U also

 causes alias expansion to be suppressed when the function is loaded. See

 the description of the `autoload' builtin for details.

 Note that the builtin functions provides the same basic capabilities as

 typeset -f but gives access to a few extra options; autoload gives further

 additional options for the case typeset -fu and typeset -fU.

 -h Hide: only useful for special parameters (those marked `<S>' in the table in

 zshparam(1)), and for local parameters with the same name as a special pa?

 rameter, though harmless for others. A special parameter with this attri?

 bute will not retain its special effect when made local. Thus after `type?

 set -h PATH', a function containing `typeset PATH' will create an ordinary

 local parameter without the usual behaviour of PATH. Alternatively, the lo?

 cal parameter may itself be given this attribute; hence inside a function Page 41/57

 `typeset -h PATH' creates an ordinary local parameter and the special PATH

 parameter is not altered in any way. It is also possible to create a local

 parameter using `typeset +h special', where the local copy of special will

 retain its special properties regardless of having the -h attribute. Global

 special parameters loaded from shell modules (currently those in zsh/mapfile

 and zsh/parameter) are automatically given the -h attribute to avoid name

 clashes.

 -H Hide value: specifies that typeset will not display the value of the parame?

 ter when listing parameters; the display for such parameters is always as if

 the `+' flag had been given. Use of the parameter is in other respects nor?

 mal, and the option does not apply if the parameter is specified by name, or

 by pattern with the -m option. This is on by default for the parameters in

 the zsh/parameter and zsh/mapfile modules. Note, however, that unlike the

 -h flag this is also useful for non-special parameters.

 -i [n]

 Use an internal integer representation. If n is nonzero it defines the out?

 put arithmetic base, otherwise it is determined by the first assignment.

 Bases from 2 to 36 inclusive are allowed.

 -E [n]

 Use an internal double-precision floating point representation. On output

 the variable will be converted to scientific notation. If n is nonzero it

 defines the number of significant figures to display; the default is ten.

 -F [n]

 Use an internal double-precision floating point representation. On output

 the variable will be converted to fixed-point decimal notation. If n is

 nonzero it defines the number of digits to display after the decimal point;

 the default is ten.

 -l Convert the result to lower case whenever the parameter is expanded. The

 value is not converted when assigned.

 -r The given names are marked readonly. Note that if name is a special parame?

 ter, the readonly attribute can be turned on, but cannot then be turned off.

 If the POSIX_BUILTINS option is set, the readonly attribute is more restric?

 tive: unset variables can be marked readonly and cannot then be set; fur? Page 42/57

 thermore, the readonly attribute cannot be removed from any variable.

 It is still possible to change other attributes of the variable though, some

 of which like -U or -Z would affect the value. More generally, the readonly

 attribute should not be relied on as a security mechanism.

 Note that in zsh (like in pdksh but unlike most other shells) it is still

 possible to create a local variable of the same name as this is considered a

 different variable (though this variable, too, can be marked readonly). Spe?

 cial variables that have been made readonly retain their value and readonly

 attribute when made local.

 -t Tags the named parameters. Tags have no special meaning to the shell. This

 flag has a different meaning when used with -f; see above.

 -u Convert the result to upper case whenever the parameter is expanded. The

 value is not converted when assigned. This flag has a different meaning

 when used with -f; see above.

 -x Mark for automatic export to the environment of subsequently executed com?

 mands. If the option GLOBAL_EXPORT is set, this implies the option -g, un?

 less +g is also explicitly given; in other words the parameter is not made

 local to the enclosing function. This is for compatibility with previous

 versions of zsh.

 ulimit [-HSa] [{ -bcdfiklmnpqrsTtvwx | -N resource } [limit] ...]

 Set or display resource limits of the shell and the processes started by the shell.

 The value of limit can be a number in the unit specified below or one of the values

 `unlimited', which removes the limit on the resource, or `hard', which uses the

 current value of the hard limit on the resource.

 By default, only soft limits are manipulated. If the -H flag is given use hard lim?

 its instead of soft limits. If the -S flag is given together with the -H flag set

 both hard and soft limits.

 If no options are used, the file size limit (-f) is assumed.

 If limit is omitted the current value of the specified resources are printed. When

 more than one resource value is printed, the limit name and unit is printed before

 each value.

 When looping over multiple resources, the shell will abort immediately if it de?

 tects a badly formed argument. However, if it fails to set a limit for some other Page 43/57

 reason it will continue trying to set the remaining limits.

 Not all the following resources are supported on all systems. Running ulimit -a

 will show which are supported.

 -a Lists all of the current resource limits.

 -b Socket buffer size in bytes (N.B. not kilobytes)

 -c 512-byte blocks on the size of core dumps.

 -d Kilobytes on the size of the data segment.

 -f 512-byte blocks on the size of files written.

 -i The number of pending signals.

 -k The number of kqueues allocated.

 -l Kilobytes on the size of locked-in memory.

 -m Kilobytes on the size of physical memory.

 -n open file descriptors.

 -p The number of pseudo-terminals.

 -q Bytes in POSIX message queues.

 -r Maximum real time priority. On some systems where this is not available,

 such as NetBSD, this has the same effect as -T for compatibility with sh.

 -s Kilobytes on the size of the stack.

 -T The number of simultaneous threads available to the user.

 -t CPU seconds to be used.

 -u The number of processes available to the user.

 -v Kilobytes on the size of virtual memory. On some systems this refers to the

 limit called `address space'.

 -w Kilobytes on the size of swapped out memory.

 -x The number of locks on files.

 A resource may also be specified by integer in the form `-N resource', where re?

 source corresponds to the integer defined for the resource by the operating system.

 This may be used to set the limits for resources known to the shell which do not

 correspond to option letters. Such limits will be shown by number in the output of

 `ulimit -a'.

 The number may alternatively be out of the range of limits compiled into the shell.

 The shell will try to read or write the limit anyway, and will report an error if

 this fails. Page 44/57

 umask [-S] [mask]

 The umask is set to mask. mask can be either an octal number or a symbolic value

 as described in chmod(1). If mask is omitted, the current value is printed. The

 -S option causes the mask to be printed as a symbolic value. Otherwise, the mask

 is printed as an octal number. Note that in the symbolic form the permissions you

 specify are those which are to be allowed (not denied) to the users specified.

 unalias [-ams] name ...

 Removes aliases. This command works the same as unhash -a, except that the -a op?

 tion removes all regular or global aliases, or with -s all suffix aliases: in this

 case no name arguments may appear. The options -m (remove by pattern) and -s with?

 out -a (remove listed suffix aliases) behave as for unhash -a. Note that the mean?

 ing of -a is different between unalias and unhash.

 unfunction

 Same as unhash -f.

 unhash [-adfms] name ...

 Remove the element named name from an internal hash table. The default is remove

 elements from the command hash table. The -a option causes unhash to remove regu?

 lar or global aliases; note when removing a global aliases that the argument must

 be quoted to prevent it from being expanded before being passed to the command.

 The -s option causes unhash to remove suffix aliases. The -f option causes unhash

 to remove shell functions. The -d options causes unhash to remove named directo?

 ries. If the -m flag is given the arguments are taken as patterns (should be

 quoted) and all elements of the corresponding hash table with matching names will

 be removed.

 unlimit [-hs] resource ...

 The resource limit for each resource is set to the hard limit. If the -h flag is

 given and the shell has appropriate privileges, the hard resource limit for each

 resource is removed. The resources of the shell process are only changed if the -s

 flag is given.

 The unlimit command is not made available by default when the shell starts in a

 mode emulating another shell. It can be made available with the command `zmodload

 -F zsh/rlimits b:unlimit'.

 unset [-fmv] name ... Page 45/57

 Each named parameter is unset. Local parameters remain local even if unset; they

 appear unset within scope, but the previous value will still reappear when the

 scope ends.

 Individual elements of associative array parameters may be unset by using subscript

 syntax on name, which should be quoted (or the entire command prefixed with noglob)

 to protect the subscript from filename generation.

 If the -m flag is specified the arguments are taken as patterns (should be quoted)

 and all parameters with matching names are unset. Note that this cannot be used

 when unsetting associative array elements, as the subscript will be treated as part

 of the pattern.

 The -v flag specifies that name refers to parameters. This is the default behav?

 iour.

 unset -f is equivalent to unfunction.

 unsetopt [{+|-}options | {+|-}o option_name] [name ...]

 Unset the options for the shell. All options specified either with flags or by

 name are unset. If no arguments are supplied, the names of all options currently

 unset are printed. If the -m flag is given the arguments are taken as patterns

 (which should be quoted to preserve them from being interpreted as glob patterns),

 and all options with names matching these patterns are unset.

 vared See the section `Zle Builtins' in zshzle(1).

 wait [job ...]

 Wait for the specified jobs or processes. If job is not given then all currently

 active child processes are waited for. Each job can be either a job specification

 or the process ID of a job in the job table. The exit status from this command is

 that of the job waited for. If job represents an unknown job or process ID, a

 warning is printed (unless the POSIX_BUILTINS option is set) and the exit status is

 127.

 It is possible to wait for recent processes (specified by process ID, not by job)

 that were running in the background even if the process has exited. Typically the

 process ID will be recorded by capturing the value of the variable $! immediately

 after the process has been started. There is a limit on the number of process IDs

 remembered by the shell; this is given by the value of the system configuration pa?

 rameter CHILD_MAX. When this limit is reached, older process IDs are discarded, Page 46/57

 least recently started processes first.

 Note there is no protection against the process ID wrapping, i.e. if the wait is

 not executed soon enough there is a chance the process waited for is the wrong one.

 A conflict implies both process IDs have been generated by the shell, as other pro?

 cesses are not recorded, and that the user is potentially interested in both, so

 this problem is intrinsic to process IDs.

 whence [-vcwfpamsS] [-x num] name ...

 For each name, indicate how it would be interpreted if used as a command name.

 If name is not an alias, built-in command, external command, shell function, hashed

 command, or a reserved word, the exit status shall be non-zero, and -- if -v, -c,

 or -w was passed -- a message will be written to standard output. (This is differ?

 ent from other shells that write that message to standard error.)

 whence is most useful when name is only the last path component of a command, i.e.

 does not include a `/'; in particular, pattern matching only succeeds if just the

 non-directory component of the command is passed.

 -v Produce a more verbose report.

 -c Print the results in a csh-like format. This takes precedence over -v.

 -w For each name, print `name: word' where word is one of alias, builtin, com?

 mand, function, hashed, reserved or none, according as name corresponds to

 an alias, a built-in command, an external command, a shell function, a com?

 mand defined with the hash builtin, a reserved word, or is not recognised.

 This takes precedence over -v and -c.

 -f Causes the contents of a shell function to be displayed, which would other?

 wise not happen unless the -c flag were used.

 -p Do a path search for name even if it is an alias, reserved word, shell func?

 tion or builtin.

 -a Do a search for all occurrences of name throughout the command path. Nor?

 mally only the first occurrence is printed.

 -m The arguments are taken as patterns (pattern characters should be quoted),

 and the information is displayed for each command matching one of these pat?

 terns.

 -s If a pathname contains symlinks, print the symlink-free pathname as well.

 -S As -s, but if the pathname had to be resolved by following multiple sym? Page 47/57

 links, the intermediate steps are printed, too. The symlink resolved at

 each step might be anywhere in the path.

 -x num Expand tabs when outputting shell functions using the -c option. This has

 the same effect as the -x option to the functions builtin.

 where [-wpmsS] [-x num] name ...

 Equivalent to whence -ca.

 which [-wpamsS] [-x num] name ...

 Equivalent to whence -c.

 zcompile [-U] [-z | -k] [-R | -M] file [name ...]

 zcompile -ca [-m] [-R | -M] file [name ...]

 zcompile -t file [name ...]

 This builtin command can be used to compile functions or scripts, storing the com?

 piled form in a file, and to examine files containing the compiled form. This al?

 lows faster autoloading of functions and sourcing of scripts by avoiding parsing of

 the text when the files are read.

 The first form (without the -c, -a or -t options) creates a compiled file. If only

 the file argument is given, the output file has the name `file.zwc' and will be

 placed in the same directory as the file. The shell will load the compiled file

 instead of the normal function file when the function is autoloaded; see the sec?

 tion `Autoloading Functions' in zshmisc(1) for a description of how autoloaded

 functions are searched. The extension .zwc stands for `zsh word code'.

 If there is at least one name argument, all the named files are compiled into the

 output file given as the first argument. If file does not end in .zwc, this exten?

 sion is automatically appended. Files containing multiple compiled functions are

 called `digest' files, and are intended to be used as elements of the FPATH/fpath

 special array.

 The second form, with the -c or -a options, writes the compiled definitions for all

 the named functions into file. For -c, the names must be functions currently de?

 fined in the shell, not those marked for autoloading. Undefined functions that are

 marked for autoloading may be written by using the -a option, in which case the

 fpath is searched and the contents of the definition files for those functions, if

 found, are compiled into file. If both -c and -a are given, names of both defined

 functions and functions marked for autoloading may be given. In either case, the Page 48/57

 functions in files written with the -c or -a option will be autoloaded as if the

 KSH_AUTOLOAD option were unset.

 The reason for handling loaded and not-yet-loaded functions with different options

 is that some definition files for autoloading define multiple functions, including

 the function with the same name as the file, and, at the end, call that function.

 In such cases the output of `zcompile -c' does not include the additional functions

 defined in the file, and any other initialization code in the file is lost. Using

 `zcompile -a' captures all this extra information.

 If the -m option is combined with -c or -a, the names are used as patterns and all

 functions whose names match one of these patterns will be written. If no name is

 given, the definitions of all functions currently defined or marked as autoloaded

 will be written.

 Note the second form cannot be used for compiling functions that include redirec?

 tions as part of the definition rather than within the body of the function; for

 example

 fn1() { { ... } >~/logfile }

 can be compiled but

 fn1() { ... } >~/logfile

 cannot. It is possible to use the first form of zcompile to compile autoloadable

 functions that include the full function definition instead of just the body of the

 function.

 The third form, with the -t option, examines an existing compiled file. Without

 further arguments, the names of the original files compiled into it are listed.

 The first line of output shows the version of the shell which compiled the file and

 how the file will be used (i.e. by reading it directly or by mapping it into mem?

 ory). With arguments, nothing is output and the return status is set to zero if

 definitions for all names were found in the compiled file, and non-zero if the def?

 inition for at least one name was not found.

 Other options:

 -U Aliases are not expanded when compiling the named files.

 -R When the compiled file is read, its contents are copied into the shell's

 memory, rather than memory-mapped (see -M). This happens automatically on

 systems that do not support memory mapping. Page 49/57

 When compiling scripts instead of autoloadable functions, it is often desir?

 able to use this option; otherwise the whole file, including the code to de?

 fine functions which have already been defined, will remain mapped, conse?

 quently wasting memory.

 -M The compiled file is mapped into the shell's memory when read. This is done

 in such a way that multiple instances of the shell running on the same host

 will share this mapped file. If neither -R nor -M is given, the zcompile

 builtin decides what to do based on the size of the compiled file.

 -k

 -z These options are used when the compiled file contains functions which are

 to be autoloaded. If -z is given, the function will be autoloaded as if the

 KSH_AUTOLOAD option is not set, even if it is set at the time the compiled

 file is read, while if the -k is given, the function will be loaded as if

 KSH_AUTOLOAD is set. These options also take precedence over any -k or -z

 options specified to the autoload builtin. If neither of these options is

 given, the function will be loaded as determined by the setting of the

 KSH_AUTOLOAD option at the time the compiled file is read.

 These options may also appear as many times as necessary between the listed

 names to specify the loading style of all following functions, up to the

 next -k or -z.

 The created file always contains two versions of the compiled format, one

 for big-endian machines and one for small-endian machines. The upshot of

 this is that the compiled file is machine independent and if it is read or

 mapped, only one half of the file is actually used (and mapped).

 zformat

 See the section `The zsh/zutil Module' in zshmodules(1).

 zftp See the section `The zsh/zftp Module' in zshmodules(1).

 zle See the section `Zle Builtins' in zshzle(1).

 zmodload [-dL] [-s] [...]

 zmodload -F [-alLme -P param] module [[+-]feature ...]

 zmodload -e [-A] [...]

 zmodload [-a [-bcpf [-I]]] [-iL] ...

 zmodload -u [-abcdpf [-I]] [-iL] ... Page 50/57

 zmodload -A [-L] [modalias[=module] ...]

 zmodload -R modalias ...

 Performs operations relating to zsh's loadable modules. Loading of modules while

 the shell is running (`dynamical loading') is not available on all operating sys?

 tems, or on all installations on a particular operating system, although the zmod?

 load command itself is always available and can be used to manipulate modules built

 into versions of the shell executable without dynamical loading.

 Without arguments the names of all currently loaded binary modules are printed.

 The -L option causes this list to be in the form of a series of zmodload commands.

 Forms with arguments are:

 zmodload [-is] name ...

 zmodload -u [-i] name ...

 In the simplest case, zmodload loads a binary module. The module must be in

 a file with a name consisting of the specified name followed by a standard

 suffix, usually `.so' (`.sl' on HPUX). If the module to be loaded is al?

 ready loaded the duplicate module is ignored. If zmodload detects an incon?

 sistency, such as an invalid module name or circular dependency list, the

 current code block is aborted. If it is available, the module is loaded if

 necessary, while if it is not available, non-zero status is silently re?

 turned. The option -i is accepted for compatibility but has no effect.

 The named module is searched for in the same way a command is, using $mod?

 ule_path instead of $path. However, the path search is performed even when

 the module name contains a `/', which it usually does. There is no way to

 prevent the path search.

 If the module supports features (see below), zmodload tries to enable all

 features when loading a module. If the module was successfully loaded but

 not all features could be enabled, zmodload returns status 2.

 If the option -s is given, no error is printed if the module was not avail?

 able (though other errors indicating a problem with the module are printed).

 The return status indicates if the module was loaded. This is appropriate

 if the caller considers the module optional.

 With -u, zmodload unloads modules. The same name must be given that was

 given when the module was loaded, but it is not necessary for the module to Page 51/57

 exist in the file system. The -i option suppresses the error if the module

 is already unloaded (or was never loaded).

 Each module has a boot and a cleanup function. The module will not be

 loaded if its boot function fails. Similarly a module can only be unloaded

 if its cleanup function runs successfully.

 zmodload -F [-almLe -P param] module [[+-]feature ...]

 zmodload -F allows more selective control over the features provided by mod?

 ules. With no options apart from -F, the module named module is loaded, if

 it was not already loaded, and the list of features is set to the required

 state. If no features are specified, the module is loaded, if it was not

 already loaded, but the state of features is unchanged. Each feature may be

 preceded by a + to turn the feature on, or - to turn it off; the + is as?

 sumed if neither character is present. Any feature not explicitly mentioned

 is left in its current state; if the module was not previously loaded this

 means any such features will remain disabled. The return status is zero if

 all features were set, 1 if the module failed to load, and 2 if some fea?

 tures could not be set (for example, a parameter couldn't be added because

 there was a different parameter of the same name) but the module was loaded.

 The standard features are builtins, conditions, parameters and math func?

 tions; these are indicated by the prefix `b:', `c:' (`C:' for an infix con?

 dition), `p:' and `f:', respectively, followed by the name that the corre?

 sponding feature would have in the shell. For example, `b:strftime' indi?

 cates a builtin named strftime and p:EPOCHSECONDS indicates a parameter

 named EPOCHSECONDS. The module may provide other (`abstract') features of

 its own as indicated by its documentation; these have no prefix.

 With -l or -L, features provided by the module are listed. With -l alone, a

 list of features together with their states is shown, one feature per line.

 With -L alone, a zmodload -F command that would cause enabled features of

 the module to be turned on is shown. With -lL, a zmodload -F command that

 would cause all the features to be set to their current state is shown. If

 one of these combinations is given with the option -P param then the parame?

 ter param is set to an array of features, either features together with

 their state or (if -L alone is given) enabled features. Page 52/57

 With the option -L the module name may be omitted; then a list of all en?

 abled features for all modules providing features is printed in the form of

 zmodload -F commands. If -l is also given, the state of both enabled and

 disabled features is output in that form.

 A set of features may be provided together with -l or -L and a module name;

 in that case only the state of those features is considered. Each feature

 may be preceded by + or - but the character has no effect. If no set of

 features is provided, all features are considered.

 With -e, the command first tests that the module is loaded; if it is not,

 status 1 is returned. If the module is loaded, the list of features given

 as an argument is examined. Any feature given with no prefix is simply

 tested to see if the module provides it; any feature given with a prefix +

 or - is tested to see if is provided and in the given state. If the tests

 on all features in the list succeed, status 0 is returned, else status 1.

 With -m, each entry in the given list of features is taken as a pattern to

 be matched against the list of features provided by the module. An initial

 + or - must be given explicitly. This may not be combined with the -a op?

 tion as autoloads must be specified explicitly.

 With -a, the given list of features is marked for autoload from the speci?

 fied module, which may not yet be loaded. An optional + may appear before

 the feature name. If the feature is prefixed with -, any existing autoload

 is removed. The options -l and -L may be used to list autoloads. Autoload?

 ing is specific to individual features; when the module is loaded only the

 requested feature is enabled. Autoload requests are preserved if the module

 is subsequently unloaded until an explicit `zmodload -Fa module -feature' is

 issued. It is not an error to request an autoload for a feature of a module

 that is already loaded.

 When the module is loaded each autoload is checked against the features ac?

 tually provided by the module; if the feature is not provided the autoload

 request is deleted. A warning message is output; if the module is being

 loaded to provide a different feature, and that autoload is successful,

 there is no effect on the status of the current command. If the module is

 already loaded at the time when zmodload -Fa is run, an error message is Page 53/57

 printed and status 1 returned.

 zmodload -Fa can be used with the -l, -L, -e and -P options for listing and

 testing the existence of autoloadable features. In this case -l is ignored

 if -L is specified. zmodload -FaL with no module name lists autoloads for

 all modules.

 Note that only standard features as described above can be autoloaded; other

 features require the module to be loaded before enabling.

 zmodload -d [-L] [name]

 zmodload -d name dep ...

 zmodload -ud name [dep ...]

 The -d option can be used to specify module dependencies. The modules named

 in the second and subsequent arguments will be loaded before the module

 named in the first argument.

 With -d and one argument, all dependencies for that module are listed. With

 -d and no arguments, all module dependencies are listed. This listing is by

 default in a Makefile-like format. The -L option changes this format to a

 list of zmodload -d commands.

 If -d and -u are both used, dependencies are removed. If only one argument

 is given, all dependencies for that module are removed.

 zmodload -ab [-L]

 zmodload -ab [-i] name [builtin ...]

 zmodload -ub [-i] builtin ...

 The -ab option defines autoloaded builtins. It defines the specified

 builtins. When any of those builtins is called, the module specified in the

 first argument is loaded and all its features are enabled (for selective

 control of features use `zmodload -F -a' as described above). If only the

 name is given, one builtin is defined, with the same name as the module. -i

 suppresses the error if the builtin is already defined or autoloaded, but

 not if another builtin of the same name is already defined.

 With -ab and no arguments, all autoloaded builtins are listed, with the mod?

 ule name (if different) shown in parentheses after the builtin name. The -L

 option changes this format to a list of zmodload -a commands.

 If -b is used together with the -u option, it removes builtins previously Page 54/57

 defined with -ab. This is only possible if the builtin is not yet loaded.

 -i suppresses the error if the builtin is already removed (or never ex?

 isted).

 Autoload requests are retained if the module is subsequently unloaded until

 an explicit `zmodload -ub builtin' is issued.

 zmodload -ac [-IL]

 zmodload -ac [-iI] name [cond ...]

 zmodload -uc [-iI] cond ...

 The -ac option is used to define autoloaded condition codes. The cond

 strings give the names of the conditions defined by the module. The optional

 -I option is used to define infix condition names. Without this option pre?

 fix condition names are defined.

 If given no condition names, all defined names are listed (as a series of

 zmodload commands if the -L option is given).

 The -uc option removes definitions for autoloaded conditions.

 zmodload -ap [-L]

 zmodload -ap [-i] name [parameter ...]

 zmodload -up [-i] parameter ...

 The -p option is like the -b and -c options, but makes zmodload work on au?

 toloaded parameters instead.

 zmodload -af [-L]

 zmodload -af [-i] name [function ...]

 zmodload -uf [-i] function ...

 The -f option is like the -b, -p, and -c options, but makes zmodload work on

 autoloaded math functions instead.

 zmodload -a [-L]

 zmodload -a [-i] name [builtin ...]

 zmodload -ua [-i] builtin ...

 Equivalent to -ab and -ub.

 zmodload -e [-A] [string ...]

 The -e option without arguments lists all loaded modules; if the -A option

 is also given, module aliases corresponding to loaded modules are also

 shown. If arguments are provided, nothing is printed; the return status is Page 55/57

 set to zero if all strings given as arguments are names of loaded modules

 and to one if at least on string is not the name of a loaded module. This

 can be used to test for the availability of things implemented by modules.

 In this case, any aliases are automatically resolved and the -A flag is not

 used.

 zmodload -A [-L] [modalias[=module] ...]

 For each argument, if both modalias and module are given, define modalias to

 be an alias for the module module. If the module modalias is ever subse?

 quently requested, either via a call to zmodload or implicitly, the shell

 will attempt to load module instead. If module is not given, show the defi?

 nition of modalias. If no arguments are given, list all defined module

 aliases. When listing, if the -L flag was also given, list the definition

 as a zmodload command to recreate the alias.

 The existence of aliases for modules is completely independent of whether

 the name resolved is actually loaded as a module: while the alias exists,

 loading and unloading the module under any alias has exactly the same effect

 as using the resolved name, and does not affect the connection between the

 alias and the resolved name which can be removed either by zmodload -R or by

 redefining the alias. Chains of aliases (i.e. where the first resolved name

 is itself an alias) are valid so long as these are not circular. As the

 aliases take the same format as module names, they may include path separa?

 tors: in this case, there is no requirement for any part of the path named

 to exist as the alias will be resolved first. For example, `any/old/alias'

 is always a valid alias.

 Dependencies added to aliased modules are actually added to the resolved

 module; these remain if the alias is removed. It is valid to create an

 alias whose name is one of the standard shell modules and which resolves to

 a different module. However, if a module has dependencies, it will not be

 possible to use the module name as an alias as the module will already be

 marked as a loadable module in its own right.

 Apart from the above, aliases can be used in the zmodload command anywhere

 module names are required. However, aliases will not be shown in lists of

 loaded modules with a bare `zmodload'. Page 56/57

 zmodload -R modalias ...

 For each modalias argument that was previously defined as a module alias via

 zmodload -A, delete the alias. If any was not defined, an error is caused

 and the remainder of the line is ignored.

 Note that zsh makes no distinction between modules that were linked into the shell

 and modules that are loaded dynamically. In both cases this builtin command has to

 be used to make available the builtins and other things defined by modules (unless

 the module is autoloaded on these definitions). This is true even for systems that

 don't support dynamic loading of modules.

 zparseopts

 See the section `The zsh/zutil Module' in zshmodules(1).

 zprof See the section `The zsh/zprof Module' in zshmodules(1).

 zpty See the section `The zsh/zpty Module' in zshmodules(1).

 zregexparse

 See the section `The zsh/zutil Module' in zshmodules(1).

 zsocket

 See the section `The zsh/net/socket Module' in zshmodules(1).

 zstyle See the section `The zsh/zutil Module' in zshmodules(1).

 ztcp See the section `The zsh/net/tcp Module' in zshmodules(1).

zsh 5.8.1 February 12, 2022 ZSHBUILTINS(1)

Page 57/57

