
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshcalsys.1'

$ man zshcalsys.1

ZSHCALSYS(1) General Commands Manual ZSHCALSYS(1)

NAME

 zshcalsys - zsh calendar system

DESCRIPTION

 The shell is supplied with a series of functions to replace and enhance the traditional

 Unix calendar programme, which warns the user of imminent or future events, details of

 which are stored in a text file (typically calendar in the user's home directory). The

 version provided here includes a mechanism for alerting the user when an event is due.

 In addition functions age, before and after are provided that can be used in a glob quali?

 fier; they allow files to be selected based on their modification times.

 The format of the calendar file and the dates used there in and in the age function are

 described first, then the functions that can be called to examine and modify the calendar

 file.

 The functions here depend on the availability of the zsh/datetime module which is usually

 installed with the shell. The library function strptime() must be available; it is

 present on most recent operating systems.

FILE AND DATE FORMATS

 Calendar File Format

 The calendar file is by default ~/calendar. This can be configured by the calendar-file

 style, see the section STYLES below. The basic format consists of a series of separate

 lines, with no indentation, each including a date and time specification followed by a de?

 scription of the event.

 Various enhancements to this format are supported, based on the syntax of Emacs calendar Page 1/18

 mode. An indented line indicates a continuation line that continues the description of

 the event from the preceding line (note the date may not be continued in this way). An

 initial ampersand (&) is ignored for compatibility.

 An indented line on which the first non-whitespace character is # is not displayed with

 the calendar entry, but is still scanned for information. This can be used to hide infor?

 mation useful to the calendar system but not to the user, such as the unique identifier

 used by calendar_add.

 The Emacs extension that a date with no description may refer to a number of succeeding

 events at different times is not supported.

 Unless the done-file style has been altered, any events which have been processed are ap?

 pended to the file with the same name as the calendar file with the suffix .done, hence

 ~/calendar.done by default.

 An example is shown below.

 Date Format

 The format of the date and time is designed to allow flexibility without admitting ambigu?

 ity. (The words `date' and `time' are both used in the documentation below; except where

 specifically noted this implies a string that may include both a date and a time specifi?

 cation.) Note that there is no localization support; month and day names must be in Eng?

 lish and separator characters are fixed. Matching is case insensitive, and only the first

 three letters of the names are significant, although as a special case a form beginning

 "month" does not match "Monday". Furthermore, time zones are not handled; all times are

 assumed to be local.

 It is recommended that, rather than exploring the intricacies of the system, users find a

 date format that is natural to them and stick to it. This will avoid unexpected effects.

 Various key facts should be noted.

 ? In particular, note the confusion between month/day/year and day/month/year when

 the month is numeric; these formats should be avoided if at all possible. Many al?

 ternatives are available.

 ? The year must be given in full to avoid confusion, and only years from 1900 to 2099

 inclusive are matched.

 The following give some obvious examples; users finding here a format they like and not

 subject to vagaries of style may skip the full description. As dates and times are

 matched separately (even though the time may be embedded in the date), any date format may Page 2/18

 be mixed with any format for the time of day provide the separators are clear (whitespace,

 colons, commas).

 2007/04/03 13:13

 2007/04/03:13:13

 2007/04/03 1:13 pm

 3rd April 2007, 13:13

 April 3rd 2007 1:13 p.m.

 Apr 3, 2007 13:13

 Tue Apr 03 13:13:00 2007

 13:13 2007/apr/3

 More detailed rules follow.

 Times are parsed and extracted before dates. They must use colons to separate hours and

 minutes, though a dot is allowed before seconds if they are present. This limits time

 formats to the following:

 ? HH:MM[:SS[.FFFFF]] [am|pm|a.m.|p.m.]

 ? HH:MM.SS[.FFFFF] [am|pm|a.m.|p.m.]

 Here, square brackets indicate optional elements, possibly with alternatives. Fractions

 of a second are recognised but ignored. For absolute times (the normal format require by

 the calendar file and the age, before and after functions) a date is mandatory but a time

 of day is not; the time returned is at the start of the date. One variation is allowed:

 if a.m. or p.m. or one of their variants is present, an hour without a minute is allowed,

 e.g. 3 p.m..

 Time zones are not handled, though if one is matched following a time specification it

 will be removed to allow a surrounding date to be parsed. This only happens if the format

 of the timezone is not too unusual. The following are examples of forms that are under?

 stood:

 +0100

 GMT

 GMT-7

 CET+1CDT

 Any part of the timezone that is not numeric must have exactly three capital letters in

 the name.

 Dates suffer from the ambiguity between DD/MM/YYYY and MM/DD/YYYY. It is recommended this Page 3/18

 form is avoided with purely numeric dates, but use of ordinals, eg. 3rd/04/2007, will re?

 solve the ambiguity as the ordinal is always parsed as the day of the month. Years must

 be four digits (and the first two must be 19 or 20); 03/04/08 is not recognised. Other

 numbers may have leading zeroes, but they are not required. The following are handled:

 ? YYYY/MM/DD

 ? YYYY-MM-DD

 ? YYYY/MNM/DD

 ? YYYY-MNM-DD

 ? DD[th|st|rd] MNM[,] [YYYY]

 ? MNM DD[th|st|rd][,] [YYYY]

 ? DD[th|st|rd]/MM[,] YYYY

 ? DD[th|st|rd]/MM/YYYY

 ? MM/DD[th|st|rd][,] YYYY

 ? MM/DD[th|st|rd]/YYYY

 Here, MNM is at least the first three letters of a month name, matched case-insensitively.

 The remainder of the month name may appear but its contents are irrelevant, so janissary,

 febrile, martial, apricot, maybe, junta, etc. are happily handled.

 Where the year is shown as optional, the current year is assumed. There are only two such

 cases, the form Jun 20 or 14 September (the only two commonly occurring forms, apart from

 a "the" in some forms of English, which isn't currently supported). Such dates will of

 course become ambiguous in the future, so should ideally be avoided.

 Times may follow dates with a colon, e.g. 1965/07/12:09:45; this is in order to provide a

 format with no whitespace. A comma and whitespace are allowed, e.g. 1965/07/12, 09:45.

 Currently the order of these separators is not checked, so illogical formats such as

 1965/07/12, : ,09:45 will also be matched. For simplicity such variations are not shown

 in the list above. Otherwise, a time is only recognised as being associated with a date

 if there is only whitespace in between, or if the time was embedded in the date.

 Days of the week are not normally scanned, but will be ignored if they occur at the start

 of the date pattern only. However, in contexts where it is useful to specify dates rela?

 tive to today, days of the week with no other date specification may be given. The day is

 assumed to be either today or within the past week. Likewise, the words yesterday, today

 and tomorrow are handled. All matches are case-insensitive. Hence if today is Monday,

 then Sunday is equivalent to yesterday, Monday is equivalent to today, but Tuesday gives a Page 4/18

 date six days ago. This is not generally useful within the calendar file. Dates in this

 format may be combined with a time specification; for example Tomorrow, 8 p.m..

 For example, the standard date format:

 Fri Aug 18 17:00:48 BST 2006

 is handled by matching HH:MM:SS and removing it together with the matched (but unused)

 time zone. This leaves the following:

 Fri Aug 18 2006

 Fri is ignored and the rest is matched according to the standard rules.

 Relative Time Format

 In certain places relative times are handled. Here, a date is not allowed; instead a com?

 bination of various supported periods are allowed, together with an optional time. The

 periods must be in order from most to least significant.

 In some cases, a more accurate calculation is possible when there is an anchor date: off?

 sets of months or years pick the correct day, rather than being rounded, and it is possi?

 ble to pick a particular day in a month as `(1st Friday)', etc., as described in more de?

 tail below.

 Anchors are available in the following cases. If one or two times are passed to the func?

 tion calendar, the start time acts an anchor for the end time when the end time is rela?

 tive (even if the start time is implicit). When examining calendar files, the scheduled

 event being examined anchors the warning time when it is given explicitly by means of the

 WARN keyword; likewise, the scheduled event anchors a repetition period when given by the

 RPT keyword, so that specifications such as RPT 2 months, 3rd Thursday are handled prop?

 erly. Finally, the -R argument to calendar_scandate directly provides an anchor for rela?

 tive calculations.

 The periods handled, with possible abbreviations are:

 Years years, yrs, ys, year, yr, y, yearly. A year is 365.25 days unless there is an an?

 chor.

 Months months, mons, mnths, mths, month, mon, mnth, mth, monthly. Note that m, ms, mn,

 mns are ambiguous and are not handled. A month is a period of 30 days rather than

 a calendar month unless there is an anchor.

 Weeks weeks, wks, ws, week, wk, w, weekly

 Days days, dys, ds, day, dy, d, daily

 Hours hours, hrs, hs, hour, hr, h, hourly Page 5/18

 Minutes

 minutes, mins, minute, min, but not m, ms, mn or mns

 Seconds

 seconds, secs, ss, second, sec, s

 Spaces between the numbers are optional, but are required between items, although a comma

 may be used (with or without spaces).

 The forms yearly to hourly allow the number to be omitted; it is assumed to be 1. For ex?

 ample, 1 d and daily are equivalent. Note that using those forms with plurals is confus?

 ing; 2 yearly is the same as 2 years, not twice yearly, so it is recommended they only be

 used without numbers.

 When an anchor time is present, there is an extension to handle regular events in the form

 of the nth someday of the month. Such a specification must occur immediately after any

 year and month specification, but before any time of day, and must be in the form

 n(th|st|rd) day, for example 1st Tuesday or 3rd Monday. As in other places, days are

 matched case insensitively, must be in English, and only the first three letters are sig?

 nificant except that a form beginning `month' does not match `Monday'. No attempt is made

 to sanitize the resulting date; attempts to squeeze too many occurrences into a month will

 push the day into the next month (but in the obvious fashion, retaining the correct day of

 the week).

 Here are some examples:

 30 years 3 months 4 days 3:42:41

 14 days 5 hours

 Monthly, 3rd Thursday

 4d,10hr

 Example

 Here is an example calendar file. It uses a consistent date format, as recommended above.

 Feb 1, 2006 14:30 Pointless bureaucratic meeting

 Mar 27, 2006 11:00 Mutual recrimination and finger pointing

 Bring water pistol and waterproofs

 Mar 31, 2006 14:00 Very serious managerial pontification

 # UID 12C7878A9A50

 Apr 10, 2006 13:30 Even more pointless blame assignment exercise WARN 30 mins

 May 18, 2006 16:00 Regular moaning session RPT monthly, 3rd Thursday Page 6/18

 The second entry has a continuation line. The third entry has a continuation line that

 will not be shown when the entry is displayed, but the unique identifier will be used by

 the calendar_add function when updating the event. The fourth entry will produce a warn?

 ing 30 minutes before the event (to allow you to equip yourself appropriately). The fifth

 entry repeats after a month on the 3rd Thursday, i.e. June 15, 2006, at the same time.

USER FUNCTIONS

 This section describes functions that are designed to be called directly by the user. The

 first part describes those functions associated with the user's calendar; the second part

 describes the use in glob qualifiers.

 Calendar system functions

 calendar [-abdDsv] [-C calfile] [-n num] [-S showprog]

 [[start] end]

 calendar -r [-abdDrsv] [-C calfile] [-n num] [-S showprog]

 [start]

 Show events in the calendar.

 With no arguments, show events from the start of today until the end of the next

 working day after today. In other words, if today is Friday, Saturday, or Sunday,

 show up to the end of the following Monday, otherwise show today and tomorrow.

 If end is given, show events from the start of today up to the time and date given,

 which is in the format described in the previous section. Note that if this is a

 date the time is assumed to be midnight at the start of the date, so that effec?

 tively this shows all events before the given date.

 end may start with a +, in which case the remainder of the specification is a rela?

 tive time format as described in the previous section indicating the range of time

 from the start time that is to be included.

 If start is also given, show events starting from that time and date. The word now

 can be used to indicate the current time.

 To implement an alert when events are due, include calendar -s in your ~/.zshrc

 file.

 Options:

 -a Show all items in the calendar, regardless of the start and end.

 -b Brief: don't display continuation lines (i.e. indented lines following the

 line with the date/time), just the first line. Page 7/18

 -B lines

 Brief: display at most the first lines lines of the calendar entry. `-B 1'

 is equivalent to `-b'.

 -C calfile

 Explicitly specify a calendar file instead of the value of the calendar-file

 style or the default ~/calendar.

 -d Move any events that have passed from the calendar file to the "done" file,

 as given by the done-file style or the default which is the calendar file

 with .done appended. This option is implied by the -s option.

 -D Turns off the option -d, even if the -s option is also present.

 -n num, -num

 Show at least num events, if present in the calendar file, regardless of the

 start and end.

 -r Show all the remaining options in the calendar, ignoring the given end time.

 The start time is respected; any argument given is treated as a start time.

 -s Use the shell's sched command to schedule a timed event that will warn the

 user when an event is due. Note that the sched command only runs if the

 shell is at an interactive prompt; a foreground task blocks the scheduled

 task from running until it is finished.

 The timed event usually runs the programme calendar_show to show the event,

 as described in the section UTILITY FUNCTIONS below.

 By default, a warning of the event is shown five minutes before it is due.

 The warning period can be configured by the style warn-time or for a single

 calendar entry by including WARN reltime in the first line of the entry,

 where reltime is one of the usual relative time formats.

 A repeated event may be indicated by including RPT reldate in the first line

 of the entry. After the scheduled event has been displayed it will be

 re-entered into the calendar file at a time reldate after the existing

 event. Note that this is currently the only use made of the repeat count,

 so that it is not possible to query the schedule for a recurrence of an

 event in the calendar until the previous event has passed.

 If RPT is used, it is also possible to specify that certain recurrences of

 an event are rescheduled or cancelled. This is done with the OCCURRENCE Page 8/18

 keyword, followed by whitespace and the date and time of the occurrence in

 the regular sequence, followed by whitespace and either the date and time of

 the rescheduled event or the exact string CANCELLED. In this case the date

 and time must be in exactly the "date with local time" format used by the

 text/calendar MIME type (RFC 2445), <YYYY><MM><DD>T<hh><mm><ss> (note the

 presence of the literal character T). The first word (the regular recur?

 rence) may be something other than a proper date/time to indicate that the

 event is additional to the normal sequence; a convention that retains the

 formatting appearance is XXXXXXXXTXXXXXX.

 Furthermore, it is useful to record the next regular recurrence (as then the

 displayed date may be for a rescheduled event so cannot be used for calcu?

 lating the regular sequence). This is specified by RECURRENCE and a time or

 date in the same format. calendar_add adds such an indication when it en?

 counters a recurring event that does not include one, based on the headline

 date/time.

 If calendar_add is used to update occurrences the UID keyword described

 there should be present in both the existing entry and the added occurrence

 in order to identify recurring event sequences.

 For example,

 Thu May 6, 2010 11:00 Informal chat RPT 1 week

 # RECURRENCE 20100506T110000

 # OCCURRENCE 20100513T110000 20100513T120000

 # OCCURRENCE 20100520T110000 CANCELLED

 The event that occurs at 11:00 on 13th May 2010 is rescheduled an hour

 later. The event that occurs a week later is cancelled. The occurrences

 are given on a continuation line starting with a # character so will not

 usually be displayed as part of the event. As elsewhere, no account of time

 zones is taken with the times. After the next event occurs the headline

 date/time will be `Thu May 13, 2010 12:00' while the RECURRENCE date/time

 will be `20100513T110000' (note that cancelled and moved events are not

 taken account of in the RECURRENCE, which records what the next regular re?

 currence is, but they are accounted for in the headline date/time).

 It is safe to run calendar -s to reschedule an existing event (if the calen? Page 9/18

 dar file has changed, for example), and also to have it running in multiples

 instances of the shell since the calendar file is locked when in use.

 By default, expired events are moved to the "done" file; see the -d option.

 Use -D to prevent this.

 -S showprog

 Explicitly specify a programme to be used for showing events instead of the

 value of the show-prog style or the default calendar_show.

 -v Verbose: show more information about stages of processing. This is useful

 for confirming that the function has successfully parsed the dates in the

 calendar file.

 calendar_add [-BL] event ...

 Adds a single event to the calendar in the appropriate location. The event can

 contain multiple lines, as described in the section Calendar File Format above.

 Using this function ensures that the calendar file is sorted in date and time or?

 der. It also makes special arrangements for locking the file while it is altered.

 The old calendar is left in a file with the suffix .old.

 The option -B indicates that backing up the calendar file will be handled by the

 caller and should not be performed by calendar_add. The option -L indicates that

 calendar_add does not need to lock the calendar file as it is already locked.

 These options will not usually be needed by users.

 If the style reformat-date is true, the date and time of the new entry will be

 rewritten into the standard date format: see the descriptions of this style and

 the style date-format.

 The function can use a unique identifier stored with each event to ensure that up?

 dates to existing events are treated correctly. The entry should contain the word

 UID, followed by whitespace, followed by a word consisting entirely of hexadecimal

 digits of arbitrary length (all digits are significant, including leading zeroes).

 As the UID is not directly useful to the user, it is convenient to hide it on an

 indented continuation line starting with a #, for example:

 Aug 31, 2007 09:30 Celebrate the end of the holidays

 # UID 045B78A0

 The second line will not be shown by the calendar function.

 It is possible to specify the RPT keyword followed by CANCELLED instead of a rela? Page 10/18

 tive time. This causes any matched event or series of events to be cancelled (the

 original event does not have to be marked as recurring in order to be cancelled by

 this method). A UID is required in order to match an existing event in the calen?

 dar.

 calendar_add will attempt to manage recurrences and occurrences of repeating events

 as described for event scheduling by calendar -s above. To reschedule or cancel a

 single event calendar_add should be called with an entry that includes the correct

 UID but does not include the RPT keyword as this is taken to mean the entry applies

 to a series of repeating events and hence replaces all existing information. Each

 rescheduled or cancelled occurrence must have an OCCURRENCE keyword in the entry

 passed to calendar_add which will be merged into the calendar file. Any existing

 reference to the occurrence is replaced. An occurrence that does not refer to a

 valid existing event is added as a one-off occurrence to the same calendar entry.

 calendar_edit

 This calls the user's editor to edit the calendar file. If there are arguments,

 they are taken as the editor to use (the file name is appended to the commands);

 otherwise, the editor is given by the variable VISUAL, if set, else the variable

 EDITOR.

 If the calendar scheduler was running, then after editing the file calendar -s is

 called to update it.

 This function locks out the calendar system during the edit. Hence it should be

 used to edit the calendar file if there is any possibility of a calendar event oc?

 curring meanwhile. Note this can lead to another shell with calendar functions en?

 abled hanging waiting for a lock, so it is necessary to quit the editor as soon as

 possible.

 calendar_parse calendar-entry

 This is the internal function that analyses the parts of a calendar entry, which is

 passed as the only argument. The function returns status 1 if the argument could

 not be parsed as a calendar entry and status 2 if the wrong number of arguments

 were passed; it also sets the parameter reply to an empty associative array. Oth?

 erwise, it returns status 0 and sets elements of the associative array reply as

 follows:

 time The time as a string of digits in the same units as $EPOCHSECONDS Page 11/18

 schedtime

 The regularly scheduled time. This may differ from the actual event time

 time if this is a recurring event and the next occurrence has been resched?

 uled. Then time gives the actual time and schedtime the time of the regular

 recurrence before modification.

 text1 The text from the line not including the date and time of the event, but in?

 cluding any WARN or RPT keywords and values.

 warntime

 Any warning time given by the WARN keyword as a string of digits containing

 the time at which to warn in the same units as $EPOCHSECONDS. (Note this is

 an absolute time, not the relative time passed down.) Not set no WARN key?

 word and value were matched.

 warnstr

 The raw string matched after the WARN keyword, else unset.

 rpttime

 Any recurrence time given by the RPT keyword as a string of digits contain?

 ing the time of the recurrence in the same units as $EPOCHSECONDS. (Note

 this is an absolute time.) Not set if no RPT keyword and value were

 matched.

 schedrpttime

 The next regularly scheduled occurrence of a recurring event before modifi?

 cation. This may differ from rpttime, which is the actual time of the event

 that may have been rescheduled from the regular time.

 rptstr The raw string matched after the RPT keyword, else unset.

 text2 The text from the line after removal of the date and any keywords and val?

 ues.

 calendar_showdate [-r] [-f fmt] date-spec ...

 The given date-spec is interpreted and the corresponding date and time printed. If

 the initial date-spec begins with a + or - it is treated as relative to the current

 time; date-specs after the first are treated as relative to the date calculated so

 far and a leading + is optional in that case. This allows one to use the system as

 a date calculator. For example, calendar_showdate '+1 month, 1st Friday' shows the

 date of the first Friday of next month. Page 12/18

 With the option -r nothing is printed but the value of the date and time in seconds

 since the epoch is stored in the parameter REPLY.

 With the option -f fmt the given date/time conversion format is passed to strftime;

 see notes on the date-format style below.

 In order to avoid ambiguity with negative relative date specifications, options

 must occur in separate words; in other words, -r and -f should not be combined in

 the same word.

 calendar_sort

 Sorts the calendar file into date and time order. The old calendar is left in a

 file with the suffix .old.

 Glob qualifiers

 age The function age can be autoloaded and use separately from the calendar system, al?

 though it uses the function calendar_scandate for date formatting. It requires the

 zsh/stat builtin, but uses only the builtin zstat.

 age selects files having a given modification time for use as a glob qualifier.

 The format of the date is the same as that understood by the calendar system, de?

 scribed in the section FILE AND DATE FORMATS above.

 The function can take one or two arguments, which can be supplied either directly

 as command or arguments, or separately as shell parameters.

 print *(e:age 2006/10/04 2006/10/09:)

 The example above matches all files modified between the start of those dates. The

 second argument may alternatively be a relative time introduced by a +:

 print *(e:age 2006/10/04 +5d:)

 The example above is equivalent to the previous example.

 In addition to the special use of days of the week, today and yesterday, times with

 no date may be specified; these apply to today. Obviously such uses become prob?

 lematic around midnight.

 print *(e-age 12:00 13:30-)

 The example above shows files modified between 12:00 and 13:00 today.

 print *(e:age 2006/10/04:)

 The example above matches all files modified on that date. If the second argument

 is omitted it is taken to be exactly 24 hours after the first argument (even if the

 first argument contains a time). Page 13/18

 print *(e-age 2006/10/04:10:15 2006/10/04:10:45-)

 The example above supplies times. Note that whitespace within the time and date

 specification must be quoted to ensure age receives the correct arguments, hence

 the use of the additional colon to separate the date and time.

 AGEREF=2006/10/04:10:15

 AGEREF2=2006/10/04:10:45

 print *(+age)

 This shows the same example before using another form of argument passing. The

 dates and times in the parameters AGEREF and AGEREF2 stay in effect until unset,

 but will be overridden if any argument is passed as an explicit argument to age.

 Any explicit argument causes both parameters to be ignored.

 Instead of an explicit date and time, it's possible to use the modification time of

 a file as the date and time for either argument by introducing the file name with a

 colon:

 print *(e-age :file1-)

 matches all files created on the same day (24 hours starting from midnight) as

 file1.

 print *(e-age :file1 :file2-)

 matches all files modified no earlier than file1 and no later than file2; precision

 here is to the nearest second.

 after

 before The functions after and before are simpler versions of age that take just one argu?

 ment. The argument is parsed similarly to an argument of age; if it is not given

 the variable AGEREF is consulted. As the names of the functions suggest, a file

 matches if its modification time is after or before the time and date specified.

 If a time only is given the date is today.

 The two following examples are therefore equivalent:

 print *(e-after 12:00-)

 print *(e-after today:12:00-)

STYLES

 The zsh style mechanism using the zstyle command is describe in zshmodules(1). This is

 the same mechanism used in the completion system.

 The styles below are all examined in the context :datetime:function:, for example :date? Page 14/18

 time:calendar:.

 calendar-file

 The location of the main calendar. The default is ~/calendar.

 date-format

 A strftime format string (see strftime(3)) with the zsh extensions providing vari?

 ous numbers with no leading zero or space if the number is a single digit as de?

 scribed for the %D{string} prompt format in the section EXPANSION OF PROMPT SE?

 QUENCES in zshmisc(1).

 This is used for outputting dates in calendar, both to support the -v option and

 when adding recurring events back to the calendar file, and in calendar_showdate as

 the final output format.

 If the style is not set, the default used is similar the standard system format as

 output by the date command (also known as `ctime format'): `%a %b %d %H:%M:%S %Z

 %Y'.

 done-file

 The location of the file to which events which have passed are appended. The de?

 fault is the calendar file location with the suffix .done. The style may be set to

 an empty string in which case a "done" file will not be maintained.

 reformat-date

 Boolean, used by calendar_add. If it is true, the date and time of new entries

 added to the calendar will be reformatted to the format given by the style

 date-format or its default. Only the date and time of the event itself is refor?

 matted; any subsidiary dates and times such as those associated with repeat and

 warning times are left alone.

 show-prog

 The programme run by calendar for showing events. It will be passed the start time

 and stop time of the events requested in seconds since the epoch followed by the

 event text. Note that calendar -s uses a start time and stop time equal to one an?

 other to indicate alerts for specific events.

 The default is the function calendar_show.

 warn-time

 The time before an event at which a warning will be displayed, if the first line of

 the event does not include the text EVENT reltime. The default is 5 minutes. Page 15/18

UTILITY FUNCTIONS

 calendar_lockfiles

 Attempt to lock the files given in the argument. To prevent problems with network

 file locking this is done in an ad hoc fashion by attempting to create a symbolic

 link to the file with the name file.lockfile. No other system level functions are

 used for locking, i.e. the file can be accessed and modified by any utility that

 does not use this mechanism. In particular, the user is not prevented from editing

 the calendar file at the same time unless calendar_edit is used.

 Three attempts are made to lock the file before giving up. If the module zsh/zse?

 lect is available, the times of the attempts are jittered so that multiple in?

 stances of the calling function are unlikely to retry at the same time.

 The files locked are appended to the array lockfiles, which should be local to the

 caller.

 If all files were successfully locked, status zero is returned, else status one.

 This function may be used as a general file locking function, although this will

 only work if only this mechanism is used to lock files.

 calendar_read

 This is a backend used by various other functions to parse the calendar file, which

 is passed as the only argument. The array calendar_entries is set to the list of

 events in the file; no pruning is done except that ampersands are removed from the

 start of the line. Each entry may contain multiple lines.

 calendar_scandate

 This is a generic function to parse dates and times that may be used separately

 from the calendar system. The argument is a date or time specification as de?

 scribed in the section FILE AND DATE FORMATS above. The parameter REPLY is set to

 the number of seconds since the epoch corresponding to that date or time. By de?

 fault, the date and time may occur anywhere within the given argument.

 Returns status zero if the date and time were successfully parsed, else one.

 Options:

 -a The date and time are anchored to the start of the argument; they will not

 be matched if there is preceding text.

 -A The date and time are anchored to both the start and end of the argument;

 they will not be matched if the is any other text in the argument. Page 16/18

 -d Enable additional debugging output.

 -m Minus. When -R anchor_time is also given the relative time is calculated

 backwards from anchor_time.

 -r The argument passed is to be parsed as a relative time.

 -R anchor_time

 The argument passed is to be parsed as a relative time. The time is rela?

 tive to anchor_time, a time in seconds since the epoch, and the returned

 value is the absolute time corresponding to advancing anchor_time by the

 relative time given. This allows lengths of months to be correctly taken

 into account. If the final day does not exist in the given month, the last

 day of the final month is given. For example, if the anchor time is during

 31st January 2007 and the relative time is 1 month, the final time is the

 same time of day during 28th February 2007.

 -s In addition to setting REPLY, set REPLY2 to the remainder of the argument

 after the date and time have been stripped. This is empty if the option -A

 was given.

 -t Allow a time with no date specification. The date is assumed to be today.

 The behaviour is unspecified if the iron tongue of midnight is tolling

 twelve.

 calendar_show

 The function used by default to display events. It accepts a start time and end

 time for events, both in epoch seconds, and an event description.

 The event is always printed to standard output. If the command line editor is ac?

 tive (which will usually be the case) the command line will be redisplayed after

 the output.

 If the parameter DISPLAY is set and the start and end times are the same (indicat?

 ing a scheduled event), the function uses the command xmessage to display a window

 with the event details.

BUGS

 As the system is based entirely on shell functions (with a little support from the

 zsh/datetime module) the mechanisms used are not as robust as those provided by a dedi?

 cated calendar utility. Consequently the user should not rely on the shell for vital

 alerts. Page 17/18

 There is no calendar_delete function.

 There is no localization support for dates and times, nor any support for the use of time

 zones.

 Relative periods of months and years do not take into account the variable number of days.

 The calendar_show function is currently hardwired to use xmessage for displaying alerts on

 X Window System displays. This should be configurable and ideally integrate better with

 the desktop.

 calendar_lockfiles hangs the shell while waiting for a lock on a file. If called from a

 scheduled task, it should instead reschedule the event that caused it.

zsh 5.8.1 February 12, 2022 ZSHCALSYS(1)

Page 18/18

