
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshcontrib.1'

$ man zshcontrib.1

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

NAME

 zshcontrib - user contributions to zsh

DESCRIPTION

 The Zsh source distribution includes a number of items contributed by the user community.

 These are not inherently a part of the shell, and some may not be available in every zsh

 installation. The most significant of these are documented here. For documentation on

 other contributed items such as shell functions, look for comments in the function source

 files.

UTILITIES

 Accessing On-Line Help

 The key sequence ESC h is normally bound by ZLE to execute the run-help widget (see zsh?

 zle(1)). This invokes the run-help command with the command word from the current input

 line as its argument. By default, run-help is an alias for the man command, so this often

 fails when the command word is a shell builtin or a user-defined function. By redefining

 the run-help alias, one can improve the on-line help provided by the shell.

 The helpfiles utility, found in the Util directory of the distribution, is a Perl program

 that can be used to process the zsh manual to produce a separate help file for each shell

 builtin and for many other shell features as well. The autoloadable run-help function,

 found in Functions/Misc, searches for these helpfiles and performs several other tests to

 produce the most complete help possible for the command.

 Help files are installed by default to a subdirectory of /usr/share/zsh or /usr/lo?

 cal/share/zsh. Page 1/93

 To create your own help files with helpfiles, choose or create a directory where the indi?

 vidual command help files will reside. For example, you might choose ~/zsh_help. If you

 unpacked the zsh distribution in your home directory, you would use the commands:

 mkdir ~/zsh_help

 perl ~/zsh-5.8.1/Util/helpfiles ~/zsh_help

 The HELPDIR parameter tells run-help where to look for the help files. When unset, it uses

 the default installation path. To use your own set of help files, set this to the appro?

 priate path in one of your startup files:

 HELPDIR=~/zsh_help

 To use the run-help function, you need to add lines something like the following to your

 .zshrc or equivalent startup file:

 unalias run-help

 autoload run-help

 Note that in order for `autoload run-help' to work, the run-help file must be in one of

 the directories named in your fpath array (see zshparam(1)). This should already be the

 case if you have a standard zsh installation; if it is not, copy Functions/Misc/run-help

 to an appropriate directory.

 Recompiling Functions

 If you frequently edit your zsh functions, or periodically update your zsh installation to

 track the latest developments, you may find that function digests compiled with the zcom?

 pile builtin are frequently out of date with respect to the function source files. This

 is not usually a problem, because zsh always looks for the newest file when loading a

 function, but it may cause slower shell startup and function loading. Also, if a digest

 file is explicitly used as an element of fpath, zsh won't check whether any of its source

 files has changed.

 The zrecompile autoloadable function, found in Functions/Misc, can be used to keep func?

 tion digests up to date.

 zrecompile [-qt] [name ...]

 zrecompile [-qt] -p arg ... [-- arg ...]

 This tries to find *.zwc files and automatically re-compile them if at least one of

 the original files is newer than the compiled file. This works only if the names

 stored in the compiled files are full paths or are relative to the directory that

 contains the .zwc file. Page 2/93

 In the first form, each name is the name of a compiled file or a directory contain?

 ing *.zwc files that should be checked. If no arguments are given, the directories

 and *.zwc files in fpath are used.

 When -t is given, no compilation is performed, but a return status of zero (true)

 is set if there are files that need to be re-compiled and non-zero (false) other?

 wise. The -q option quiets the chatty output that describes what zrecompile is do?

 ing.

 Without the -t option, the return status is zero if all files that needed re-compi?

 lation could be compiled and non-zero if compilation for at least one of the files

 failed.

 If the -p option is given, the args are interpreted as one or more sets of argu?

 ments for zcompile, separated by `--'. For example:

 zrecompile -p \

 -R ~/.zshrc -- \

 -M ~/.zcompdump -- \

 ~/zsh/comp.zwc ~/zsh/Completion/*/_*

 This compiles ~/.zshrc into ~/.zshrc.zwc if that doesn't exist or if it is older

 than ~/.zshrc. The compiled file will be marked for reading instead of mapping. The

 same is done for ~/.zcompdump and ~/.zcompdump.zwc, but this compiled file is

 marked for mapping. The last line re-creates the file ~/zsh/comp.zwc if any of the

 files matching the given pattern is newer than it.

 Without the -p option, zrecompile does not create function digests that do not al?

 ready exist, nor does it add new functions to the digest.

 The following shell loop is an example of a method for creating function digests for all

 functions in your fpath, assuming that you have write permission to the directories:

 for ((i=1; i <= $#fpath; ++i)); do

 dir=$fpath[i]

 zwc=${dir:t}.zwc

 if [[$dir == (.|..) || $dir == (.|..)/*]]; then

 continue

 fi

 files=($dir/*(N-.))

 if [[-w $dir:h && -n $files]]; then Page 3/93

 files=(${${(M)files%/*/*}#/})

 if (cd $dir:h &&

 zrecompile -p -U -z $zwc $files); then

 fpath[i]=$fpath[i].zwc

 fi

 fi

 done

 The -U and -z options are appropriate for functions in the default zsh installation fpath;

 you may need to use different options for your personal function directories.

 Once the digests have been created and your fpath modified to refer to them, you can keep

 them up to date by running zrecompile with no arguments.

 Keyboard Definition

 The large number of possible combinations of keyboards, workstations, terminals, emula?

 tors, and window systems makes it impossible for zsh to have built-in key bindings for ev?

 ery situation. The zkbd utility, found in Functions/Misc, can help you quickly create key

 bindings for your configuration.

 Run zkbd either as an autoloaded function, or as a shell script:

 zsh -f ~/zsh-5.8.1/Functions/Misc/zkbd

 When you run zkbd, it first asks you to enter your terminal type; if the default it offers

 is correct, just press return. It then asks you to press a number of different keys to

 determine characteristics of your keyboard and terminal; zkbd warns you if it finds any?

 thing out of the ordinary, such as a Delete key that sends neither ^H nor ^?.

 The keystrokes read by zkbd are recorded as a definition for an associative array named

 key, written to a file in the subdirectory .zkbd within either your HOME or ZDOTDIR direc?

 tory. The name of the file is composed from the TERM, VENDOR and OSTYPE parameters,

 joined by hyphens.

 You may read this file into your .zshrc or another startup file with the `source' or `.'

 commands, then reference the key parameter in bindkey commands, like this:

 source ${ZDOTDIR:-$HOME}/.zkbd/$TERM-$VENDOR-$OSTYPE

 [[-n ${key[Left]}]] && bindkey "${key[Left]}" backward-char

 [[-n ${key[Right]}]] && bindkey "${key[Right]}" forward-char

 # etc.

 Note that in order for `autoload zkbd' to work, the zkdb file must be in one of the direc? Page 4/93

 tories named in your fpath array (see zshparam(1)). This should already be the case if

 you have a standard zsh installation; if it is not, copy Functions/Misc/zkbd to an appro?

 priate directory.

 Dumping Shell State

 Occasionally you may encounter what appears to be a bug in the shell, particularly if you

 are using a beta version of zsh or a development release. Usually it is sufficient to

 send a description of the problem to one of the zsh mailing lists (see zsh(1)), but some?

 times one of the zsh developers will need to recreate your environment in order to track

 the problem down.

 The script named reporter, found in the Util directory of the distribution, is provided

 for this purpose. (It is also possible to autoload reporter, but reporter is not in?

 stalled in fpath by default.) This script outputs a detailed dump of the shell state, in

 the form of another script that can be read with `zsh -f' to recreate that state.

 To use reporter, read the script into your shell with the `.' command and redirect the

 output into a file:

 . ~/zsh-5.8.1/Util/reporter > zsh.report

 You should check the zsh.report file for any sensitive information such as passwords and

 delete them by hand before sending the script to the developers. Also, as the output can

 be voluminous, it's best to wait for the developers to ask for this information before

 sending it.

 You can also use reporter to dump only a subset of the shell state. This is sometimes

 useful for creating startup files for the first time. Most of the output from reporter is

 far more detailed than usually is necessary for a startup file, but the aliases, options,

 and zstyles states may be useful because they include only changes from the defaults. The

 bindings state may be useful if you have created any of your own keymaps, because reporter

 arranges to dump the keymap creation commands as well as the bindings for every keymap.

 As is usual with automated tools, if you create a startup file with reporter, you should

 edit the results to remove unnecessary commands. Note that if you're using the new com?

 pletion system, you should not dump the functions state to your startup files with re?

 porter; use the compdump function instead (see zshcompsys(1)).

 reporter [state ...]

 Print to standard output the indicated subset of the current shell state. The

 state arguments may be one or more of: Page 5/93

 all Output everything listed below.

 aliases

 Output alias definitions.

 bindings

 Output ZLE key maps and bindings.

 completion

 Output old-style compctl commands. New completion is covered by functions

 and zstyles.

 functions

 Output autoloads and function definitions.

 limits Output limit commands.

 options

 Output setopt commands.

 styles Same as zstyles.

 variables

 Output shell parameter assignments, plus export commands for any environment

 variables.

 zstyles

 Output zstyle commands.

 If the state is omitted, all is assumed.

 With the exception of `all', every state can be abbreviated by any prefix, even a single

 letter; thus a is the same as aliases, z is the same as zstyles, etc.

 Manipulating Hook Functions

 add-zsh-hook [-L | -dD] [-Uzk] hook function

 Several functions are special to the shell, as described in the section SPECIAL

 FUNCTIONS, see zshmisc(1), in that they are automatically called at specific points

 during shell execution. Each has an associated array consisting of names of func?

 tions to be called at the same point; these are so-called `hook functions'. The

 shell function add-zsh-hook provides a simple way of adding or removing functions

 from the array.

 hook is one of chpwd, periodic, precmd, preexec, zshaddhistory, zshexit, or zsh_di?

 rectory_name, the special functions in question. Note that zsh_directory_name is

 called in a different way from the other functions, but may still be manipulated as Page 6/93

 a hook.

 function is name of an ordinary shell function. If no options are given this will

 be added to the array of functions to be executed in the given context. Functions

 are invoked in the order they were added.

 If the option -L is given, the current values for the hook arrays are listed with

 typeset.

 If the option -d is given, the function is removed from the array of functions to

 be executed.

 If the option -D is given, the function is treated as a pattern and any matching

 names of functions are removed from the array of functions to be executed.

 The options -U, -z and -k are passed as arguments to autoload for function. For

 functions contributed with zsh, the options -Uz are appropriate.

 add-zle-hook-widget [-L | -dD] [-Uzk] hook widgetname

 Several widget names are special to the line editor, as described in the section

 Special Widgets, see zshzle(1), in that they are automatically called at specific

 points during editing. Unlike function hooks, these do not use a predefined array

 of other names to call at the same point; the shell function add-zle-hook-widget

 maintains a similar array and arranges for the special widget to invoke those addi?

 tional widgets.

 hook is one of isearch-exit, isearch-update, line-pre-redraw, line-init, line-fin?

 ish, history-line-set, or keymap-select, corresponding to each of the special wid?

 gets zle-isearch-exit, etc. The special widget names are also accepted as the hook

 argument.

 widgetname is the name of a ZLE widget. If no options are given this is added to

 the array of widgets to be invoked in the given hook context. Widgets are invoked

 in the order they were added, with

 zle widgetname -Nw -- "$@"

 Note that this means that the `WIDGET' special parameter tracks the widgetname when

 the widget function is called, rather than tracking the name of the corresponding

 special hook widget.

 If the option -d is given, the widgetname is removed from the array of widgets to

 be executed.

 If the option -D is given, the widgetname is treated as a pattern and any matching Page 7/93

 names of widgets are removed from the array.

 If widgetname does not name an existing widget when added to the array, it is as?

 sumed that a shell function also named widgetname is meant to provide the implemen?

 tation of the widget. This name is therefore marked for autoloading, and the op?

 tions -U, -z and -k are passed as arguments to autoload as with add-zsh-hook. The

 widget is also created with `zle -N widgetname' to cause the corresponding function

 to be loaded the first time the hook is called.

 The arrays of widgetname are currently maintained in zstyle contexts, one for each

 hook context, with a style of `widgets'. If the -L option is given, this set of

 styles is listed with `zstyle -L'. This implementation may change, and the special

 widgets that refer to the styles are created only if add-zle-hook-widget is called

 to add at least one widget, so if this function is used for any hooks, then all

 hooks should be managed only via this function.

REMEMBERING RECENT DIRECTORIES

 The function cdr allows you to change the working directory to a previous working direc?

 tory from a list maintained automatically. It is similar in concept to the directory

 stack controlled by the pushd, popd and dirs builtins, but is more configurable, and as it

 stores all entries in files it is maintained across sessions and (by default) between ter?

 minal emulators in the current session. Duplicates are automatically removed, so that the

 list reflects the single most recent use of each directory.

 Note that the pushd directory stack is not actually modified or used by cdr unless you

 configure it to do so as described in the configuration section below.

 Installation

 The system works by means of a hook function that is called every time the directory

 changes. To install the system, autoload the required functions and use the add-zsh-hook

 function described above:

 autoload -Uz chpwd_recent_dirs cdr add-zsh-hook

 add-zsh-hook chpwd chpwd_recent_dirs

 Now every time you change directly interactively, no matter which command you use, the di?

 rectory to which you change will be remembered in most-recent-first order.

 Use

 All direct user interaction is via the cdr function.

 The argument to cdr is a number N corresponding to the Nth most recently changed-to direc? Page 8/93

 tory. 1 is the immediately preceding directory; the current directory is remembered but

 is not offered as a destination. Note that if you have multiple windows open 1 may refer

 to a directory changed to in another window; you can avoid this by having per-terminal

 files for storing directory as described for the recent-dirs-file style below.

 If you set the recent-dirs-default style described below cdr will behave the same as cd if

 given a non-numeric argument, or more than one argument. The recent directory list is up?

 dated just the same however you change directory.

 If the argument is omitted, 1 is assumed. This is similar to pushd's behaviour of swap?

 ping the two most recent directories on the stack.

 Completion for the argument to cdr is available if compinit has been run; menu selection

 is recommended, using:

 zstyle ':completion:*:*:cdr:*:*' menu selection

 to allow you to cycle through recent directories; the order is preserved, so the first

 choice is the most recent directory before the current one. The verbose style is also

 recommended to ensure the directory is shown; this style is on by default so no action is

 required unless you have changed it.

 Options

 The behaviour of cdr may be modified by the following options.

 -l lists the numbers and the corresponding directories in abbreviated form (i.e. with

 ~ substitution reapplied), one per line. The directories here are not quoted (this

 would only be an issue if a directory name contained a newline). This is used by

 the completion system.

 -r sets the variable reply to the current set of directories. Nothing is printed and

 the directory is not changed.

 -e allows you to edit the list of directories, one per line. The list can be edited

 to any extent you like; no sanity checking is performed. Completion is available.

 No quoting is necessary (except for newlines, where I have in any case no sympa?

 thy); directories are in unabbreviated from and contain an absolute path, i.e. they

 start with /. Usually the first entry should be left as the current directory.

 -p 'pattern'

 Prunes any items in the directory list that match the given extended glob pattern;

 the pattern needs to be quoted from immediate expansion on the command line. The

 pattern is matched against each completely expanded file name in the list; the full Page 9/93

 string must match, so wildcards at the end (e.g. '*removeme*') are needed to remove

 entries with a given substring.

 If output is to a terminal, then the function will print the new list after pruning

 and prompt for confirmation by the user. This output and confirmation step can be

 skipped by using -P instead of -p.

 Configuration

 Configuration is by means of the styles mechanism that should be familiar from completion;

 if not, see the description of the zstyle command in see zshmodules(1). The context for

 setting styles should be ':chpwd:*' in case the meaning of the context is extended in fu?

 ture, for example:

 zstyle ':chpwd:*' recent-dirs-max 0

 sets the value of the recent-dirs-max style to 0. In practice the style name is specific

 enough that a context of '*' should be fine.

 An exception is recent-dirs-insert, which is used exclusively by the completion system and

 so has the usual completion system context (':completion:*' if nothing more specific is

 needed), though again '*' should be fine in practice.

 recent-dirs-default

 If true, and the command is expecting a recent directory index, and either there is

 more than one argument or the argument is not an integer, then fall through to

 "cd". This allows the lazy to use only one command for directory changing. Com?

 pletion recognises this, too; see recent-dirs-insert for how to control completion

 when this option is in use.

 recent-dirs-file

 The file where the list of directories is saved. The default is ${ZDOT?

 DIR:-$HOME}/.chpwd-recent-dirs, i.e. this is in your home directory unless you have

 set the variable ZDOTDIR to point somewhere else. Directory names are saved in

 $'...' quoted form, so each line in the file can be supplied directly to the shell

 as an argument.

 The value of this style may be an array. In this case, the first file in the list

 will always be used for saving directories while any other files are left un?

 touched. When reading the recent directory list, if there are fewer than the maxi?

 mum number of entries in the first file, the contents of later files in the array

 will be appended with duplicates removed from the list shown. The contents of the Page 10/93

 two files are not sorted together, i.e. all the entries in the first file are shown

 first. The special value + can appear in the list to indicate the default file

 should be read at that point. This allows effects like the following:

 zstyle ':chpwd:*' recent-dirs-file \

 ~/.chpwd-recent-dirs-${TTY##*/} +

 Recent directories are read from a file numbered according to the terminal. If

 there are insufficient entries the list is supplemented from the default file.

 It is possible to use zstyle -e to make the directory configurable at run time:

 zstyle -e ':chpwd:*' recent-dirs-file pick-recent-dirs-file

 pick-recent-dirs-file() {

 if [[$PWD = ~/text/writing(|/*)]]; then

 reply=(~/.chpwd-recent-dirs-writing)

 else

 reply=(+)

 fi

 }

 In this example, if the current directory is ~/text/writing or a directory under

 it, then use a special file for saving recent directories, else use the default.

 recent-dirs-insert

 Used by completion. If recent-dirs-default is true, then setting this to true

 causes the actual directory, rather than its index, to be inserted on the command

 line; this has the same effect as using the corresponding index, but makes the his?

 tory clearer and the line easier to edit. With this setting, if part of an argu?

 ment was already typed, normal directory completion rather than recent directory

 completion is done; this is because recent directory completion is expected to be

 done by cycling through entries menu fashion.

 If the value of the style is always, then only recent directories will be com?

 pleted; in that case, use the cd command when you want to complete other directo?

 ries.

 If the value is fallback, recent directories will be tried first, then normal di?

 rectory completion is performed if recent directory completion failed to find a

 match.

 Finally, if the value is both then both sets of completions are presented; the Page 11/93

 usual tag mechanism can be used to distinguish results, with recent directories

 tagged as recent-dirs. Note that the recent directories inserted are abbreviated

 with directory names where appropriate.

 recent-dirs-max

 The maximum number of directories to save to the file. If this is zero or negative

 there is no maximum. The default is 20. Note this includes the current directory,

 which isn't offered, so the highest number of directories you will be offered is

 one less than the maximum.

 recent-dirs-prune

 This style is an array determining what directories should (or should not) be added

 to the recent list. Elements of the array can include:

 parent Prune parents (more accurately, ancestors) from the recent list. If

 present, changing directly down by any number of directories causes the cur?

 rent directory to be overwritten. For example, changing from ~pws to

 ~pws/some/other/dir causes ~pws not to be left on the recent directory

 stack. This only applies to direct changes to descendant directories; ear?

 lier directories on the list are not pruned. For example, changing from

 ~pws/yet/another to ~pws/some/other/dir does not cause ~pws to be pruned.

 pattern:pattern

 Gives a zsh pattern for directories that should not be added to the recent

 list (if not already there). This element can be repeated to add different

 patterns. For example, 'pattern:/tmp(|/*)' stops /tmp or its descendants

 from being added. The EXTENDED_GLOB option is always turned on for these

 patterns.

 recent-dirs-pushd

 If set to true, cdr will use pushd instead of cd to change the directory, so the

 directory is saved on the directory stack. As the directory stack is completely

 separate from the list of files saved by the mechanism used in this file there is

 no obvious reason to do this.

 Use with dynamic directory naming

 It is possible to refer to recent directories using the dynamic directory name syntax by

 using the supplied function zsh_directory_name_cdr a hook:

 autoload -Uz add-zsh-hook Page 12/93

 add-zsh-hook -Uz zsh_directory_name zsh_directory_name_cdr

 When this is done, ~[1] will refer to the most recent directory other than $PWD, and so

 on. Completion after ~[... also works.

 Details of directory handling

 This section is for the curious or confused; most users will not need to know this infor?

 mation.

 Recent directories are saved to a file immediately and hence are preserved across ses?

 sions. Note currently no file locking is applied: the list is updated immediately on in?

 teractive commands and nowhere else (unlike history), and it is assumed you are only going

 to change directory in one window at once. This is not safe on shared accounts, but in

 any case the system has limited utility when someone else is changing to a different set

 of directories behind your back.

 To make this a little safer, only directory changes instituted from the command line, ei?

 ther directly or indirectly through shell function calls (but not through subshells,

 evals, traps, completion functions and the like) are saved. Shell functions should use cd

 -q or pushd -q to avoid side effects if the change to the directory is to be invisible at

 the command line. See the contents of the function chpwd_recent_dirs for more details.

ABBREVIATED DYNAMIC REFERENCES TO DIRECTORIES

 The dynamic directory naming system is described in the subsection Dynamic named directo?

 ries of the section Filename Expansion in expn(1). In this, a reference to ~[...] is ex?

 panded by a function found by the hooks mechanism.

 The contributed function zsh_directory_name_generic provides a system allowing the user to

 refer to directories with only a limited amount of new code. It supports all three of the

 standard interfaces for directory naming: converting from a name to a directory, convert?

 ing in the reverse direction to find a short name, and completion of names.

 The main feature of this function is a path-like syntax, combining abbreviations at multi?

 ple levels separated by ":". As an example, ~[g:p:s] might specify:

 g The top level directory for your git area. This first component has to match, or

 the function will return indicating another directory name hook function should be

 tried.

 p The name of a project within your git area.

 s The source area within that project. This allows you to collapse references to

 long hierarchies to a very compact form, particularly if the hierarchies are simi? Page 13/93

 lar across different areas of the disk.

 Name components may be completed: if a description is shown at the top of the list of com?

 pletions, it includes the path to which previous components expand, while the description

 for an individual completion shows the path segment it would add. No additional configu?

 ration is needed for this as the completion system is aware of the dynamic directory name

 mechanism.

 Usage

 To use the function, first define a wrapper function for your specific case. We'll assume

 it's to be autoloaded. This can have any name but we'll refer to it as zdn_mywrapper.

 This wrapper function will define various variables and then call this function with the

 same arguments that the wrapper function gets. This configuration is described below.

 Then arrange for the wrapper to be run as a zsh_directory_name hook:

 autoload -Uz add-zsh-hook zsh_diretory_name_generic zdn_mywrapper

 add-zsh-hook -U zsh_directory_name zdn_mywrapper

 Configuration

 The wrapper function should define a local associative array zdn_top. Alternatively, this

 can be set with a style called mapping. The context for the style is :zdn:wrapper-name

 where wrapper-name is the function calling zsh_directory_name_generic; for example:

 zstyle :zdn:zdn_mywrapper: mapping zdn_mywrapper_top

 The keys in this associative array correspond to the first component of the name. The

 values are matching directories. They may have an optional suffix with a slash followed

 by a colon and the name of a variable in the same format to give the next component. (The

 slash before the colon is to disambiguate the case where a colon is needed in the path for

 a drive. There is otherwise no syntax for escaping this, so path components whose names

 start with a colon are not supported.) A special component :default: specifies a variable

 in the form /:var (the path section is ignored and so is usually empty) that will be used

 for the next component if no variable is given for the path. Variables referred to within

 zdn_top have the same format as zdn_top itself, but contain relative paths.

 For example,

 local -A zdn_top=(

 g ~/git

 ga ~/alternate/git

 gs /scratch/$USER/git/:second2 Page 14/93

 :default: /:second1

)

 This specifies the behaviour of a directory referred to as ~[g:...] or ~[ga:...] or

 ~[gs:...]. Later path components are optional; in that case ~[g] expands to ~/git, and so

 on. gs expands to /scratch/$USER/git and uses the associative array second2 to match the

 second component; g and ga use the associative array second1 to match the second compo?

 nent.

 When expanding a name to a directory, if the first component is not g or ga or gs, it is

 not an error; the function simply returns 1 so that a later hook function can be tried.

 However, matching the first component commits the function, so if a later component does

 not match, an error is printed (though this still does not stop later hooks from being ex?

 ecuted).

 For components after the first, a relative path is expected, but note that multiple levels

 may still appear. Here is an example of second1:

 local -A second1=(

 p myproject

 s somproject

 os otherproject/subproject/:third

)

 The path as found from zdn_top is extended with the matching directory, so ~[g:p] becomes

 ~/git/myproject. The slash between is added automatically (it's not possible to have a

 later component modify the name of a directory already matched). Only os specifies a

 variable for a third component, and there's no :default:, so it's an error to use a name

 like ~[g:p:x] or ~[ga:s:y] because there's nowhere to look up the x or y.

 The associative arrays need to be visible within this function; the generic function

 therefore uses internal variable names beginning _zdn_ in order to avoid clashes. Note

 that the variable reply needs to be passed back to the shell, so should not be local in

 the calling function.

 The function does not test whether directories assembled by component actually exist; this

 allows the system to work across automounted file systems. The error from the command

 trying to use a non-existent directory should be sufficient to indicate the problem.

 Complete example

 Here is a full fictitious but usable autoloadable definition of the example function de? Page 15/93

 fined by the code above. So ~[gs:p:s] expands to /scratch/$USER/git/myscratchpro?

 ject/top/srcdir (with $USER also expanded).

 local -A zdn_top=(

 g ~/git

 ga ~/alternate/git

 gs /scratch/$USER/git/:second2

 :default: /:second1

)

 local -A second1=(

 p myproject

 s somproject

 os otherproject/subproject/:third

)

 local -A second2=(

 p myscratchproject

 s somescratchproject

)

 local -A third=(

 s top/srcdir

 d top/documentation

)

 # autoload not needed if you did this at initialisation...

 autoload -Uz zsh_directory_name_generic

 zsh_directory_name_generic "$@

 It is also possible to use global associative arrays, suitably named, and set the style

 for the context of your wrapper function to refer to this. Then your set up code would

 contain the following:

 typeset -A zdn_mywrapper_top=(...)

 # ... and so on for other associative arrays ...

 zstyle ':zdn:zdn_mywrapper:' mapping zdn_mywrapper_top

 autoload -Uz add-zsh-hook zsh_directory_name_generic zdn_mywrapper

 add-zsh-hook -U zsh_directory_name zdn_mywrapper

 and the function zdn_mywrapper would contain only the following: Page 16/93

 zsh_directory_name_generic "$@"

GATHERING INFORMATION FROM VERSION CONTROL SYSTEMS

 In a lot of cases, it is nice to automatically retrieve information from version control

 systems (VCSs), such as subversion, CVS or git, to be able to provide it to the user; pos?

 sibly in the user's prompt. So that you can instantly tell which branch you are currently

 on, for example.

 In order to do that, you may use the vcs_info function.

 The following VCSs are supported, showing the abbreviated name by which they are referred

 to within the system:

 Bazaar (bzr)

 https://bazaar.canonical.com/

 Codeville (cdv)

 http://freecode.com/projects/codeville/

 Concurrent Versioning System (cvs)

 https://www.nongnu.org/cvs/

 Darcs (darcs)

 http://darcs.net/

 Fossil (fossil)

 https://fossil-scm.org/

 Git (git)

 https://git-scm.com/

 GNU arch (tla)

 https://www.gnu.org/software/gnu-arch/

 Mercurial (hg)

 https://www.mercurial-scm.org/

 Monotone (mtn)

 https://monotone.ca/

 Perforce (p4)

 https://www.perforce.com/

 Subversion (svn)

 https://subversion.apache.org/

 SVK (svk)

 https://svk.bestpractical.com/ Page 17/93

 There is also support for the patch management system quilt (https://savan?

 nah.nongnu.org/projects/quilt). See Quilt Support below for details.

 To load vcs_info:

 autoload -Uz vcs_info

 It can be used in any existing prompt, because it does not require any specific $psvar en?

 tries to be available.

 Quickstart

 To get this feature working quickly (including colors), you can do the following (assum?

 ing, you loaded vcs_info properly - see above):

 zstyle ':vcs_info:*' actionformats \

 '%F{5}(%f%s%F{5})%F{3}-%F{5}[%F{2}%b%F{3}|%F{1}%a%F{5}]%f '

 zstyle ':vcs_info:*' formats \

 '%F{5}(%f%s%F{5})%F{3}-%F{5}[%F{2}%b%F{5}]%f '

 zstyle ':vcs_info:(sv[nk]|bzr):*' branchformat '%b%F{1}:%F{3}%r'

 precmd () { vcs_info }

 PS1='%F{5}[%F{2}%n%F{5}] %F{3}%3~ ${vcs_info_msg_0_}%f%# '

 Obviously, the last two lines are there for demonstration. You need to call vcs_info from

 your precmd function. Once that is done you need a single quoted '${vcs_info_msg_0_}' in

 your prompt.

 To be able to use '${vcs_info_msg_0_}' directly in your prompt like this, you will need to

 have the PROMPT_SUBST option enabled.

 Now call the vcs_info_printsys utility from the command line:

 % vcs_info_printsys

 ## list of supported version control backends:

 ## disabled systems are prefixed by a hash sign (#)

 bzr

 cdv

 cvs

 darcs

 fossil

 git

 hg

 mtn Page 18/93

 p4

 svk

 svn

 tla

 ## flavours (cannot be used in the enable or disable styles; they

 ## are enabled and disabled with their master [git-svn -> git])

 ## they *can* be used in contexts: ':vcs_info:git-svn:*'.

 git-p4

 git-svn

 hg-git

 hg-hgsubversion

 hg-hgsvn

 You may not want all of these because there is no point in running the code to detect sys?

 tems you do not use. So there is a way to disable some backends altogether:

 zstyle ':vcs_info:*' disable bzr cdv darcs mtn svk tla

 You may also pick a few from that list and enable only those:

 zstyle ':vcs_info:*' enable git cvs svn

 If you rerun vcs_info_printsys after one of these commands, you will see the backends

 listed in the disable style (or backends not in the enable style - if you used that)

 marked as disabled by a hash sign. That means the detection of these systems is skipped

 completely. No wasted time there.

 Configuration

 The vcs_info feature can be configured via zstyle.

 First, the context in which we are working:

 :vcs_info:vcs-string:user-context:repo-root-name

 vcs-string

 is one of: git, git-svn, git-p4, hg, hg-git, hg-hgsubversion, hg-hgsvn, darcs, bzr,

 cdv, mtn, svn, cvs, svk, tla, p4 or fossil. This is followed by

 `.quilt-quilt-mode' in Quilt mode (see Quilt Support for details) and by

 `+hook-name' while hooks are active (see Hooks in vcs_info for details).

 Currently, hooks in quilt mode don't add the `.quilt-quilt-mode' information. This

 may change in the future.

 user-context Page 19/93

 is a freely configurable string, assignable by the user as the first argument to

 vcs_info (see its description below).

 repo-root-name

 is the name of a repository in which you want a style to match. So, if you want a

 setting specific to /usr/src/zsh, with that being a CVS checkout, you can set

 repo-root-name to zsh to make it so.

 There are three special values for vcs-string: The first is named -init-, that is in ef?

 fect as long as there was no decision what VCS backend to use. The second is -preinit-; it

 is used before vcs_info is run, when initializing the data exporting variables. The third

 special value is formats and is used by the vcs_info_lastmsg for looking up its styles.

 The initial value of repo-root-name is -all- and it is replaced with the actual name, as

 soon as it is known. Only use this part of the context for defining the formats, action?

 formats or branchformat styles, as it is guaranteed that repo-root-name is set up cor?

 rectly for these only. For all other styles, just use '*' instead.

 There are two pre-defined values for user-context:

 default

 the one used if none is specified

 command

 used by vcs_info_lastmsg to lookup its styles

 You can of course use ':vcs_info:*' to match all VCSs in all user-contexts at once.

 This is a description of all styles that are looked up.

 formats

 A list of formats, used when actionformats is not used (which is most of the time).

 actionformats

 A list of formats, used if there is a special action going on in your current

 repository; like an interactive rebase or a merge conflict.

 branchformat

 Some backends replace %b in the formats and actionformats styles above, not only by

 a branch name but also by a revision number. This style lets you modify how that

 string should look.

 nvcsformats

 These "formats" are set when we didn't detect a version control system for the cur?

 rent directory or vcs_info was disabled. This is useful if you want vcs_info to Page 20/93

 completely take over the generation of your prompt. You would do something like

 PS1='${vcs_info_msg_0_}' to accomplish that.

 hgrevformat

 hg uses both a hash and a revision number to reference a specific changeset in a

 repository. With this style you can format the revision string (see branchformat)

 to include either or both. It's only useful when get-revision is true. Note, the

 full 40-character revision id is not available (except when using the use-simple

 option) because executing hg more than once per prompt is too slow; you may custom?

 ize this behavior using hooks.

 max-exports

 Defines the maximum number of vcs_info_msg_*_ variables vcs_info will set.

 enable A list of backends you want to use. Checked in the -init- context. If this list

 contains an item called NONE no backend is used at all and vcs_info will do noth?

 ing. If this list contains ALL, vcs_info will use all known backends. Only with ALL

 in enable will the disable style have any effect. ALL and NONE are case insensi?

 tive.

 disable

 A list of VCSs you don't want vcs_info to test for repositories (checked in the

 -init- context, too). Only used if enable contains ALL.

 disable-patterns

 A list of patterns that are checked against $PWD. If a pattern matches, vcs_info

 will be disabled. This style is checked in the :vcs_info:-init-:*:-all- context.

 Say, ~/.zsh is a directory under version control, in which you do not want vcs_info

 to be active, do:

 zstyle ':vcs_info:*' disable-patterns "${(b)HOME}/.zsh(|/*)"

 use-quilt

 If enabled, the quilt support code is active in `addon' mode. See Quilt Support

 for details.

 quilt-standalone

 If enabled, `standalone' mode detection is attempted if no VCS is active in a given

 directory. See Quilt Support for details.

 quilt-patch-dir

 Overwrite the value of the $QUILT_PATCHES environment variable. See Quilt Support Page 21/93

 for details.

 quiltcommand

 When quilt itself is called in quilt support, the value of this style is used as

 the command name.

 check-for-changes

 If enabled, this style causes the %c and %u format escapes to show when the working

 directory has uncommitted changes. The strings displayed by these escapes can be

 controlled via the stagedstr and unstagedstr styles. The only backends that cur?

 rently support this option are git, hg, and bzr (the latter two only support un?

 staged).

 For this style to be evaluated with the hg backend, the get-revision style needs to

 be set and the use-simple style needs to be unset. The latter is the default; the

 former is not.

 With the bzr backend, lightweight checkouts only honor this style if the use-server

 style is set.

 Note, the actions taken if this style is enabled are potentially expensive (read:

 they may be slow, depending on how big the current repository is). Therefore, it

 is disabled by default.

 check-for-staged-changes

 This style is like check-for-changes, but it never checks the worktree files, only

 the metadata in the .${vcs} dir. Therefore, this style initializes only the %c es?

 cape (with stagedstr) but not the %u escape. This style is faster than

 check-for-changes.

 In the git backend, this style checks for changes in the index. Other backends do

 not currently implement this style.

 This style is disabled by default.

 stagedstr

 This string will be used in the %c escape if there are staged changes in the repos?

 itory.

 unstagedstr

 This string will be used in the %u escape if there are unstaged changes in the

 repository.

 command Page 22/93

 This style causes vcs_info to use the supplied string as the command to use as the

 VCS's binary. Note, that setting this in ':vcs_info:*' is not a good idea.

 If the value of this style is empty (which is the default), the used binary name is

 the name of the backend in use (e.g. svn is used in an svn repository).

 The repo-root-name part in the context is always the default -all- when this style

 is looked up.

 For example, this style can be used to use binaries from non-default installation

 directories. Assume, git is installed in /usr/bin but your sysadmin installed a

 newer version in /usr/local/bin. Instead of changing the order of your $PATH param?

 eter, you can do this:

 zstyle ':vcs_info:git:*:-all-' command /usr/local/bin/git

 use-server

 This is used by the Perforce backend (p4) to decide if it should contact the Per?

 force server to find out if a directory is managed by Perforce. This is the only

 reliable way of doing this, but runs the risk of a delay if the server name cannot

 be found. If the server (more specifically, the host:port pair describing the

 server) cannot be contacted, its name is put into the associative array

 vcs_info_p4_dead_servers and is not contacted again during the session until it is

 removed by hand. If you do not set this style, the p4 backend is only usable if

 you have set the environment variable P4CONFIG to a file name and have correspond?

 ing files in the root directories of each Perforce client. See comments in the

 function VCS_INFO_detect_p4 for more detail.

 The Bazaar backend (bzr) uses this to permit contacting the server about light?

 weight checkouts, see the check-for-changes style.

 use-simple

 If there are two different ways of gathering information, you can select the sim?

 pler one by setting this style to true; the default is to use the not-that-simple

 code, which is potentially a lot slower but might be more accurate in all possible

 cases. This style is used by the bzr and hg backends. In the case of hg it will in?

 voke the external hexdump program to parse the binary dirstate cache file; this

 method will not return the local revision number.

 get-revision

 If set to true, vcs_info goes the extra mile to figure out the revision of a repos? Page 23/93

 itory's work tree (currently for the git and hg backends, where this kind of infor?

 mation is not always vital). For git, the hash value of the currently checked out

 commit is available via the %i expansion. With hg, the local revision number and

 the corresponding global hash are available via %i.

 get-mq If set to true, the hg backend will look for a Mercurial Queue (mq) patch direc?

 tory. Information will be available via the `%m' replacement.

 get-bookmarks

 If set to true, the hg backend will try to get a list of current bookmarks. They

 will be available via the `%m' replacement.

 The default is to generate a comma-separated list of all bookmark names that refer

 to the currently checked out revision. If a bookmark is active, its name is suf?

 fixed an asterisk and placed first in the list.

 use-prompt-escapes

 Determines if we assume that the assembled string from vcs_info includes prompt es?

 capes. (Used by vcs_info_lastmsg.)

 debug Enable debugging output to track possible problems. Currently this style is only

 used by vcs_info's hooks system.

 hooks A list style that defines hook-function names. See Hooks in vcs_info below for de?

 tails.

 patch-format

 nopatch-format

 This pair of styles format the patch information used by the %m expando in formats

 and actionformats for the git and hg backends. The value is subject to certain

 %-expansions described below. The expanded value is made available in the global

 backend_misc array as ${backend_misc[patches]} (also if a set-patch-format hook is

 used).

 get-unapplied

 This boolean style controls whether a backend should attempt to gather a list of

 unapplied patches (for example with Mercurial Queue patches).

 Used by the quilt and hg backends.

 The default values for these styles in all contexts are:

 formats

 " (%s)-[%b]%u%c-" Page 24/93

 actionformats

 " (%s)-[%b|%a]%u%c-"

 branchformat

 "%b:%r" (for bzr, svn, svk and hg)

 nvcsformats

 ""

 hgrevformat

 "%r:%h"

 max-exports

 2

 enable ALL

 disable

 (empty list)

 disable-patterns

 (empty list)

 check-for-changes

 false

 check-for-staged-changes

 false

 stagedstr

 (string: "S")

 unstagedstr

 (string: "U")

 command

 (empty string)

 use-server

 false

 use-simple

 false

 get-revision

 false

 get-mq true

 get-bookmarks Page 25/93

 false

 use-prompt-escapes

 true

 debug false

 hooks (empty list)

 use-quilt

 false

 quilt-standalone

 false

 quilt-patch-dir

 empty - use $QUILT_PATCHES

 quiltcommand

 quilt

 patch-format

 backend dependent

 nopatch-format

 backend dependent

 get-unapplied

 false

 In normal formats and actionformats the following replacements are done:

 %s The VCS in use (git, hg, svn, etc.).

 %b Information about the current branch.

 %a An identifier that describes the action. Only makes sense in actionformats.

 %i The current revision number or identifier. For hg the hgrevformat style may be used

 to customize the output.

 %c The string from the stagedstr style if there are staged changes in the repository.

 %u The string from the unstagedstr style if there are unstaged changes in the reposi?

 tory.

 %R The base directory of the repository.

 %r The repository name. If %R is /foo/bar/repoXY, %r is repoXY.

 %S A subdirectory within a repository. If $PWD is /foo/bar/repoXY/beer/tasty, %S is

 beer/tasty.

 %m A "misc" replacement. It is at the discretion of the backend to decide what this Page 26/93

 replacement expands to.

 The hg and git backends use this expando to display patch information. hg sources

 patch information from the mq extensions; git from in-progress rebase and

 cherry-pick operations and from the stgit extension. The patch-format and

 nopatch-format styles control the generated string. The former is used when at

 least one patch from the patch queue has been applied, and the latter otherwise.

 The hg backend displays bookmark information in this expando (in addition to mq in?

 formation). See the get-mq and get-bookmarks styles. Both of these styles may be

 enabled at the same time. If both are enabled, both resulting strings will be

 shown separated by a semicolon (that cannot currently be customized).

 The quilt `standalone' backend sets this expando to the same value as the %Q ex?

 pando.

 %Q Quilt series information. When quilt is used (either in `addon' mode or as a

 `standalone' backend), this expando is set to quilt series' patch-format string.

 The set-patch-format hook and nopatch-format style are honoured.

 See Quilt Support below for details.

 In branchformat these replacements are done:

 %b The branch name.

 %r The current revision number or the hgrevformat style for hg.

 In hgrevformat these replacements are done:

 %r The current local revision number.

 %h The current global revision identifier.

 In patch-format and nopatch-format these replacements are done:

 %p The name of the top-most applied patch; may be overridden by the applied-string

 hook.

 %u The number of unapplied patches; may be overridden by the unapplied-string hook.

 %n The number of applied patches.

 %c The number of unapplied patches.

 %a The number of all patches (%a = %n + %c).

 %g The names of active mq guards (hg backend).

 %G The number of active mq guards (hg backend).

 Not all VCS backends have to support all replacements. For nvcsformats no replacements are

 performed at all, it is just a string. Page 27/93

 Oddities

 If you want to use the %b (bold off) prompt expansion in formats, which expands %b itself,

 use %%b. That will cause the vcs_info expansion to replace %%b with %b, so that zsh's

 prompt expansion mechanism can handle it. Similarly, to hand down %b from branchformat,

 use %%%%b. Sorry for this inconvenience, but it cannot be easily avoided. Luckily we do

 not clash with a lot of prompt expansions and this only needs to be done for those.

 When one of the gen-applied-string, gen-unapplied-string, and set-patch-format hooks is

 defined, applying %-escaping (`foo=${foo//'%'/%%}') to the interpolated values for use in

 the prompt is the responsibility of those hooks (jointly); when neither of those hooks is

 defined, vcs_info handles escaping by itself. We regret this coupling, but it was re?

 quired for backwards compatibility.

 Quilt Support

 Quilt is not a version control system, therefore this is not implemented as a backend. It

 can help keeping track of a series of patches. People use it to keep a set of changes they

 want to use on top of software packages (which is tightly integrated into the package

 build process - the Debian project does this for a large number of packages). Quilt can

 also help individual developers keep track of their own patches on top of real version

 control systems.

 The vcs_info integration tries to support both ways of using quilt by having two slightly

 different modes of operation: `addon' mode and `standalone' mode).

 Quilt integration is off by default; to enable it, set the use-quilt style, and add %Q to

 your formats or actionformats style:

 zstyle ':vcs_info:*' use-quilt true

 Styles looked up from the Quilt support code include `.quilt-quilt-mode' in the vcs-string

 part of the context, where quilt-mode is either addon or standalone. Example:

 :vcs_info:git.quilt-addon:default:repo-root-name.

 For `addon' mode to become active vcs_info must have already detected a real version con?

 trol system controlling the directory. If that is the case, a directory that holds quilt's

 patches needs to be found. That directory is configurable via the `QUILT_PATCHES' environ?

 ment variable. If that variable exists its value is used, otherwise the value `patches' is

 assumed. The value from $QUILT_PATCHES can be overwritten using the `quilt-patches' style.

 (Note: you can use vcs_info to keep the value of $QUILT_PATCHES correct all the time via

 the post-quilt hook). Page 28/93

 When the directory in question is found, quilt is assumed to be active. To gather more in?

 formation, vcs_info looks for a directory called `.pc'; Quilt uses that directory to track

 its current state. If this directory does not exist we know that quilt has not done any?

 thing to the working directory (read: no patches have been applied yet).

 If patches are applied, vcs_info will try to find out which. If you want to know which

 patches of a series are not yet applied, you need to activate the get-unapplied style in

 the appropriate context.

 vcs_info allows for very detailed control over how the gathered information is presented

 (see the Configuration and Hooks in vcs_info sections), all of which are documented below.

 Note there are a number of other patch tracking systems that work on top of a certain ver?

 sion control system (like stgit for git, or mq for hg); the configuration for systems like

 that are generally configured the same way as the quilt support.

 If the quilt support is working in `addon' mode, the produced string is available as a

 simple format replacement (%Q to be precise), which can be used in formats and actionfor?

 mats; see below for details).

 If, on the other hand, the support code is working in `standalone' mode, vcs_info will

 pretend as if quilt were an actual version control system. That means that the version

 control system identifier (which otherwise would be something like `svn' or `cvs') will be

 set to `-quilt-'. This has implications on the used style context where this identifier is

 the second element. vcs_info will have filled in a proper value for the "repository's"

 root directory and the string containing the information about quilt's state will be

 available as the `misc' replacement (and %Q for compatibility with `addon' mode).

 What is left to discuss is how `standalone' mode is detected. The detection itself is a

 series of searches for directories. You can have this detection enabled all the time in

 every directory that is not otherwise under version control. If you know there is only a

 limited set of trees where you would like vcs_info to try and look for Quilt in `stand?

 alone' mode to minimise the amount of searching on every call to vcs_info, there are a

 number of ways to do that:

 Essentially, `standalone' mode detection is controlled by a style called `quilt-stand?

 alone'. It is a string style and its value can have different effects. The simplest values

 are: `always' to run detection every time vcs_info is run, and `never' to turn the detec?

 tion off entirely.

 If the value of quilt-standalone is something else, it is interpreted differently. If the Page 29/93

 value is the name of a scalar variable the value of that variable is checked and that

 value is used in the same `always'/`never' way as described above.

 If the value of quilt-standalone is an array, the elements of that array are used as di?

 rectory names under which you want the detection to be active.

 If quilt-standalone is an associative array, the keys are taken as directory names under

 which you want the detection to be active, but only if the corresponding value is the

 string `true'.

 Last, but not least, if the value of quilt-standalone is the name of a function, the func?

 tion is called without arguments and the return value decides whether detection should be

 active. A `0' return value is true; a non-zero return value is interpreted as false.

 Note, if there is both a function and a variable by the name of quilt-standalone, the

 function will take precedence.

 Function Descriptions (Public API)

 vcs_info [user-context]

 The main function, that runs all backends and assembles all data into

 ${vcs_info_msg_*_}. This is the function you want to call from precmd if you want

 to include up-to-date information in your prompt (see Variable Description below).

 If an argument is given, that string will be used instead of default in the

 user-context field of the style context.

 vcs_info_hookadd

 Statically registers a number of functions to a given hook. The hook needs to be

 given as the first argument; what follows is a list of hook-function names to reg?

 ister to the hook. The `+vi-' prefix needs to be left out here. See Hooks in

 vcs_info below for details.

 vcs_info_hookdel

 Remove hook-functions from a given hook. The hook needs to be given as the first

 non-option argument; what follows is a list of hook-function names to un-register

 from the hook. If `-a' is used as the first argument, all occurrences of the func?

 tions are unregistered. Otherwise only the last occurrence is removed (if a func?

 tion was registered to a hook more than once). The `+vi-' prefix needs to be left

 out here. See Hooks in vcs_info below for details.

 vcs_info_lastmsg

 Outputs the last ${vcs_info_msg_*_} value. Takes into account the value of the Page 30/93

 use-prompt-escapes style in ':vcs_info:formats:command:-all-'. It also only prints

 max-exports values.

 vcs_info_printsys [user-context]

 Prints a list of all supported version control systems. Useful to find out possible

 contexts (and which of them are enabled) or values for the disable style.

 vcs_info_setsys

 Initializes vcs_info's internal list of available backends. With this function, you

 can add support for new VCSs without restarting the shell.

 All functions named VCS_INFO_* are for internal use only.

 Variable Description

 ${vcs_info_msg_N_} (Note the trailing underscore)

 Where N is an integer, e.g., vcs_info_msg_0_. These variables are the storage for

 the informational message the last vcs_info call has assembled. These are strongly

 connected to the formats, actionformats and nvcsformats styles described above.

 Those styles are lists. The first member of that list gets expanded into

 ${vcs_info_msg_0_}, the second into ${vcs_info_msg_1_} and the Nth into

 ${vcs_info_msg_N-1_}. (See the max-exports style above.)

 All variables named VCS_INFO_* are for internal use only.

 Hooks in vcs_info

 Hooks are places in vcs_info where you can run your own code. That code can communicate

 with the code that called it and through that, change the system's behaviour.

 For configuration, hooks change the style context:

 :vcs_info:vcs-string+hook-name:user-context:repo-root-name

 To register functions to a hook, you need to list them in the hooks style in the appropri?

 ate context.

 Example:

 zstyle ':vcs_info:*+foo:*' hooks bar baz

 This registers functions to the hook `foo' for all backends. In order to avoid namespace

 problems, all registered function names are prepended by a `+vi-', so the actual functions

 called for the `foo' hook are `+vi-bar' and `+vi-baz'.

 If you would like to register a function to a hook regardless of the current context, you

 may use the vcs_info_hookadd function. To remove a function that was added like that, the

 vcs_info_hookdel function can be used. Page 31/93

 If something seems weird, you can enable the `debug' boolean style in the proper context

 and the hook-calling code will print what it tried to execute and whether the function in

 question existed.

 When you register more than one function to a hook, all functions are executed one after

 another until one function returns non-zero or until all functions have been called. Con?

 text-sensitive hook functions are executed before statically registered ones (the ones

 added by vcs_info_hookadd).

 You may pass data between functions via an associative array, user_data. For example:

 +vi-git-myfirsthook(){

 user_data[myval]=$myval

 }

 +vi-git-mysecondhook(){

 # do something with ${user_data[myval]}

 }

 There are a number of variables that are special in hook contexts:

 ret The return value that the hooks system will return to the caller. The default is an

 integer `zero'. If and how a changed ret value changes the execution of the caller

 depends on the specific hook. See the hook documentation below for details.

 hook_com

 An associated array which is used for bidirectional communication from the caller

 to hook functions. The used keys depend on the specific hook.

 context

 The active context of the hook. Functions that wish to change this variable should

 make it local scope first.

 vcs The current VCS after it was detected. The same values as in the enable/disable

 style are used. Available in all hooks except start-up.

 Finally, the full list of currently available hooks:

 start-up

 Called after starting vcs_info but before the VCS in this directory is determined.

 It can be used to deactivate vcs_info temporarily if necessary. When ret is set to

 1, vcs_info aborts and does nothing; when set to 2, vcs_info sets up everything as

 if no version control were active and exits.

 pre-get-data Page 32/93

 Same as start-up but after the VCS was detected.

 gen-hg-bookmark-string

 Called in the Mercurial backend when a bookmark string is generated; the get-revi?

 sion and get-bookmarks styles must be true.

 This hook gets the names of the Mercurial bookmarks that vcs_info collected from

 `hg'.

 If a bookmark is active, the key ${hook_com[hg-active-bookmark]} is set to its

 name. The key is otherwise unset.

 When setting ret to non-zero, the string in ${hook_com[hg-bookmark-string]} will be

 used in the %m escape in formats and actionformats and will be available in the

 global backend_misc array as ${backend_misc[bookmarks]}.

 gen-applied-string

 Called in the git (with stgit or during rebase or merge), and hg (with mq) backends

 and in quilt support when the applied-string is generated; the use-quilt zstyle

 must be true for quilt (the mq and stgit backends are active by default).

 This hook gets the names of all applied patches which vcs_info collected so far in

 the opposite order, which means that the first argument is the top-most patch and

 so forth.

 When setting ret to non-zero, the string in ${hook_com[applied-string]} will be

 available as %p in the patch-format and nopatch-format styles. This hook is, in

 concert with set-patch-format, responsible for %-escaping that value for use in the

 prompt. (See the Oddities section.)

 gen-unapplied-string

 Called in the git (with stgit or during rebase), and hg (with mq) backend and in

 quilt support when the unapplied-string is generated; the get-unapplied style must

 be true.

 This hook gets the names of all unapplied patches which vcs_info collected so far

 in order, which means that the first argument is the patch next-in-line to be ap?

 plied and so forth.

 When setting ret to non-zero, the string in ${hook_com[unapplied-string]} will be

 available as %u in the patch-format and nopatch-format styles. This hook is, in

 concert with set-patch-format, responsible for %-escaping that value for use in the

 prompt. (See the Oddities section.) Page 33/93

 gen-mqguards-string

 Called in the hg backend when guards-string is generated; the get-mq style must be

 true (default).

 This hook gets the names of any active mq guards.

 When setting ret to non-zero, the string in ${hook_com[guards-string]} will be used

 in the %g escape in the patch-format and nopatch-format styles.

 no-vcs This hooks is called when no version control system was detected.

 The `hook_com' parameter is not used.

 post-backend

 Called as soon as the backend has finished collecting information.

 The `hook_com' keys available are as for the set-message hook.

 post-quilt

 Called after the quilt support is done. The following information is passed as ar?

 guments to the hook: 1. the quilt-support mode (`addon' or `standalone'); 2. the

 directory that contains the patch series; 3. the directory that holds quilt's sta?

 tus information (the `.pc' directory) or the string "-nopc-" if that directory

 wasn't found.

 The `hook_com' parameter is not used.

 set-branch-format

 Called before `branchformat' is set. The only argument to the hook is the format

 that is configured at this point.

 The `hook_com' keys considered are `branch' and `revision'. They are set to the

 values figured out so far by vcs_info and any change will be used directly when the

 actual replacement is done.

 If ret is set to non-zero, the string in ${hook_com[branch-replace]} will be used

 unchanged as the `%b' replacement in the variables set by vcs_info.

 set-hgrev-format

 Called before a `hgrevformat' is set. The only argument to the hook is the format

 that is configured at this point.

 The `hook_com' keys considered are `hash' and `localrev'. They are set to the val?

 ues figured out so far by vcs_info and any change will be used directly when the

 actual replacement is done.

 If ret is set to non-zero, the string in ${hook_com[rev-replace]} will be used un? Page 34/93

 changed as the `%i' replacement in the variables set by vcs_info.

 pre-addon-quilt

 This hook is used when vcs_info's quilt functionality is active in "addon" mode

 (quilt used on top of a real version control system). It is activated right before

 any quilt specific action is taken.

 Setting the `ret' variable in this hook to a non-zero value avoids any quilt spe?

 cific actions from being run at all.

 set-patch-format

 This hook is used to control some of the possible expansions in patch-format and

 nopatch-format styles with patch queue systems such as quilt, mqueue and the like.

 This hook is used in the git, hg and quilt backends.

 The hook allows the control of the %p (${hook_com[applied]}) and %u (${hook_com[un?

 applied]}) expansion in all backends that use the hook. With the mercurial backend,

 the %g (${hook_com[guards]}) expansion is controllable in addition to that.

 If ret is set to non-zero, the string in ${hook_com[patch-replace]} will be used

 unchanged instead of an expanded format from patch-format or nopatch-format.

 This hook is, in concert with the gen-applied-string or gen-unapplied-string hooks

 if they are defined, responsible for %-escaping the final patch-format value for

 use in the prompt. (See the Oddities section.)

 set-message

 Called each time before a `vcs_info_msg_N_' message is set. It takes two argu?

 ments; the first being the `N' in the message variable name, the second is the cur?

 rently configured formats or actionformats.

 There are a number of `hook_com' keys, that are used here: `action', `branch',

 `base', `base-name', `subdir', `staged', `unstaged', `revision', `misc', `vcs' and

 one `miscN' entry for each backend-specific data field (N starting at zero). They

 are set to the values figured out so far by vcs_info and any change will be used

 directly when the actual replacement is done.

 Since this hook is triggered multiple times (once for each configured formats or

 actionformats), each of the `hook_com' keys mentioned above (except for the miscN

 entries) has an `_orig' counterpart, so even if you changed a value to your liking

 you can still get the original value in the next run. Changing the `_orig' values

 is probably not a good idea. Page 35/93

 If ret is set to non-zero, the string in ${hook_com[message]} will be used un?

 changed as the message by vcs_info.

 If all of this sounds rather confusing, take a look at the Examples section below and also

 in the Misc/vcs_info-examples file in the Zsh source. They contain some explanatory code.

 Examples

 Don't use vcs_info at all (even though it's in your prompt):

 zstyle ':vcs_info:*' enable NONE

 Disable the backends for bzr and svk:

 zstyle ':vcs_info:*' disable bzr svk

 Disable everything but bzr and svk:

 zstyle ':vcs_info:*' enable bzr svk

 Provide a special formats for git:

 zstyle ':vcs_info:git:*' formats ' GIT, BABY! [%b]'

 zstyle ':vcs_info:git:*' actionformats ' GIT ACTION! [%b|%a]'

 All %x expansion in all sorts of formats (formats, actionformats, branchformat, you name

 it) are done using the `zformat' builtin from the `zsh/zutil' module. That means you can

 do everything with these %x items what zformat supports. In particular, if you want some?

 thing that is really long to have a fixed width, like a hash in a mercurial branchformat,

 you can do this: %12.12i. That'll shrink the 40 character hash to its 12 leading charac?

 ters. The form is actually `%min.maxx'. More is possible. See the section `The zsh/zutil

 Module' in zshmodules(1) for details.

 Use the quicker bzr backend

 zstyle ':vcs_info:bzr:*' use-simple true

 If you do use use-simple, please report if it does `the-right-thing[tm]'.

 Display the revision number in yellow for bzr and svn:

 zstyle ':vcs_info:(svn|bzr):*' \

 branchformat '%b%{'${fg[yellow]}'%}:%r'

 If you want colors, make sure you enclose the color codes in %{...%} if you want to use

 the string provided by vcs_info in prompts.

 Here is how to print the VCS information as a command (not in a prompt):

 alias vcsi='vcs_info command; vcs_info_lastmsg'

 This way, you can even define different formats for output via vcs_info_lastmsg in the

 ':vcs_info:*:command:*' namespace. Page 36/93

 Now as promised, some code that uses hooks: say, you'd like to replace the string `svn' by

 `subversion' in vcs_info's %s formats replacement.

 First, we will tell vcs_info to call a function when populating the message variables with

 the gathered information:

 zstyle ':vcs_info:*+set-message:*' hooks svn2subversion

 Nothing happens. Which is reasonable, since we didn't define the actual function yet. To

 see what the hooks subsystem is trying to do, enable the `debug' style:

 zstyle ':vcs_info:*+*:*' debug true

 That should give you an idea what is going on. Specifically, the function that we are

 looking for is `+vi-svn2subversion'. Note, the `+vi-' prefix. So, everything is in order,

 just as documented. When you are done checking out the debugging output, disable it again:

 zstyle ':vcs_info:*+*:*' debug false

 Now, let's define the function:

 function +vi-svn2subversion() {

 [[${hook_com[vcs_orig]} == svn]] && hook_com[vcs]=subversion

 }

 Simple enough. And it could have even been simpler, if only we had registered our function

 in a less generic context. If we do it only in the `svn' backend's context, we don't need

 to test which the active backend is:

 zstyle ':vcs_info:svn+set-message:*' hooks svn2subversion

 function +vi-svn2subversion() {

 hook_com[vcs]=subversion

 }

 And finally a little more elaborate example, that uses a hook to create a customised book?

 mark string for the hg backend.

 Again, we start off by registering a function:

 zstyle ':vcs_info:hg+gen-hg-bookmark-string:*' hooks hgbookmarks

 And then we define the `+vi-hgbookmarks' function:

 function +vi-hgbookmarks() {

 # The default is to connect all bookmark names by

 # commas. This mixes things up a little.

 # Imagine, there's one type of bookmarks that is

 # special to you. Say, because it's *your* work. Page 37/93

 # Those bookmarks look always like this: "sh/*"

 # (because your initials are sh, for example).

 # This makes the bookmarks string use only those

 # bookmarks. If there's more than one, it

 # concatenates them using commas.

 # The bookmarks returned by `hg' are available in

 # the function's positional parameters.

 local s="${(Mj:,:)@:#sh/*}"

 # Now, the communication with the code that calls

 # the hook functions is done via the hook_com[]

 # hash. The key at which the `gen-hg-bookmark-string'

 # hook looks is `hg-bookmark-string'. So:

 hook_com[hg-bookmark-string]=$s

 # And to signal that we want to use the string we

 # just generated, set the special variable `ret' to

 # something other than the default zero:

 ret=1

 return 0

 }

 Some longer examples and code snippets which might be useful are available in the examples

 file located at Misc/vcs_info-examples in the Zsh source directory.

 This concludes our guided tour through zsh's vcs_info.

PROMPT THEMES

 Installation

 You should make sure all the functions from the Functions/Prompts directory of the source

 distribution are available; they all begin with the string `prompt_' except for the spe?

 cial function`promptinit'. You also need the `colors' and `add-zsh-hook' functions from

 Functions/Misc. All these functions may already be installed on your system; if not, you

 will need to find them and copy them. The directory should appear as one of the elements

 of the fpath array (this should already be the case if they were installed), and at least

 the function promptinit should be autoloaded; it will autoload the rest. Finally, to ini?

 tialize the use of the system you need to call the promptinit function. The following

 code in your .zshrc will arrange for this; assume the functions are stored in the direc? Page 38/93

 tory ~/myfns:

 fpath=(~/myfns $fpath)

 autoload -U promptinit

 promptinit

 Theme Selection

 Use the prompt command to select your preferred theme. This command may be added to your

 .zshrc following the call to promptinit in order to start zsh with a theme already se?

 lected.

 prompt [-c | -l]

 prompt [-p | -h] [theme ...]

 prompt [-s] theme [arg ...]

 Set or examine the prompt theme. With no options and a theme argument, the theme

 with that name is set as the current theme. The available themes are determined at

 run time; use the -l option to see a list. The special theme `random' selects at

 random one of the available themes and sets your prompt to that.

 In some cases the theme may be modified by one or more arguments, which should be

 given after the theme name. See the help for each theme for descriptions of these

 arguments.

 Options are:

 -c Show the currently selected theme and its parameters, if any.

 -l List all available prompt themes.

 -p Preview the theme named by theme, or all themes if no theme is given.

 -h Show help for the theme named by theme, or for the prompt function if no

 theme is given.

 -s Set theme as the current theme and save state.

 prompt_theme_setup

 Each available theme has a setup function which is called by the prompt function to

 install that theme. This function may define other functions as necessary to main?

 tain the prompt, including functions used to preview the prompt or provide help for

 its use. You should not normally call a theme's setup function directly.

 Utility Themes

 prompt off

 The theme `off' sets all the prompt variables to minimal values with no special ef? Page 39/93

 fects.

 prompt default

 The theme `default' sets all prompt variables to the same state as if an interac?

 tive zsh was started with no initialization files.

 prompt restore

 The special theme `restore' erases all theme settings and sets prompt variables to

 their state before the first time the `prompt' function was run, provided each

 theme has properly defined its cleanup (see below).

 Note that you can undo `prompt off' and `prompt default' with `prompt restore', but

 a second restore does not undo the first.

 Writing Themes

 The first step for adding your own theme is to choose a name for it, and create a file

 `prompt_name_setup' in a directory in your fpath, such as ~/myfns in the example above.

 The file should at minimum contain assignments for the prompt variables that your theme

 wishes to modify. By convention, themes use PS1, PS2, RPS1, etc., rather than the longer

 PROMPT and RPROMPT.

 The file is autoloaded as a function in the current shell context, so it may contain any

 necessary commands to customize your theme, including defining additional functions. To

 make some complex tasks easier, your setup function may also do any of the following:

 Assign prompt_opts

 The array prompt_opts may be assigned any of "bang", "cr", "percent", "sp", and/or

 "subst" as values. The corresponding setopts (promptbang, etc.) are turned on, all

 other prompt-related options are turned off. The prompt_opts array preserves se?

 topts even beyond the scope of localoptions, should your function need that.

 Modify precmd and preexec

 Use of add-zsh-hook is recommended. The precmd and preexec hooks are automatically

 adjusted if the prompt theme changes or is disabled.

 Declare cleanup

 If your function makes any other changes that should be undone when the theme is

 disabled, your setup function may call

 prompt_cleanup command

 where command should be suitably quoted. If your theme is ever disabled or replaced by

 another, command is executed with eval. You may declare more than one such cleanup hook. Page 40/93

 Define preview

 Define or autoload a function prompt_name_preview to display a simulated version of

 your prompt. A simple default previewer is defined by promptinit for themes that

 do not define their own. This preview function is called by `prompt -p'.

 Provide help

 Define or autoload a function prompt_name_help to display documentation or help

 text for your theme. This help function is called by `prompt -h'.

ZLE FUNCTIONS

 Widgets

 These functions all implement user-defined ZLE widgets (see zshzle(1)) which can be bound

 to keystrokes in interactive shells. To use them, your .zshrc should contain lines of the

 form

 autoload function

 zle -N function

 followed by an appropriate bindkey command to associate the function with a key sequence.

 Suggested bindings are described below.

 bash-style word functions

 If you are looking for functions to implement moving over and editing words in the

 manner of bash, where only alphanumeric characters are considered word characters,

 you can use the functions described in the next section. The following is suffi?

 cient:

 autoload -U select-word-style

 select-word-style bash

 forward-word-match, backward-word-match

 kill-word-match, backward-kill-word-match

 transpose-words-match, capitalize-word-match

 up-case-word-match, down-case-word-match

 delete-whole-word-match, select-word-match

 select-word-style, match-word-context, match-words-by-style

 The first eight `-match' functions are drop-in replacements for the builtin widgets

 without the suffix. By default they behave in a similar way. However, by the use

 of styles and the function select-word-style, the way words are matched can be al?

 tered. select-word-match is intended to be used as a text object in vi mode but Page 41/93

 with custom word styles. For comparison, the widgets described in zshzle(1) under

 Text Objects use fixed definitions of words, compatible with the vim editor.

 The simplest way of configuring the functions is to use select-word-style, which

 can either be called as a normal function with the appropriate argument, or invoked

 as a user-defined widget that will prompt for the first character of the word style

 to be used. The first time it is invoked, the first eight -match functions will

 automatically replace the builtin versions, so they do not need to be loaded ex?

 plicitly.

 The word styles available are as follows. Only the first character is examined.

 bash Word characters are alphanumeric characters only.

 normal As in normal shell operation: word characters are alphanumeric characters

 plus any characters present in the string given by the parameter $WORDCHARS.

 shell Words are complete shell command arguments, possibly including complete

 quoted strings, or any tokens special to the shell.

 whitespace

 Words are any set of characters delimited by whitespace.

 default

 Restore the default settings; this is usually the same as `normal'.

 All but `default' can be input as an upper case character, which has the same ef?

 fect but with subword matching turned on. In this case, words with upper case

 characters are treated specially: each separate run of upper case characters, or an

 upper case character followed by any number of other characters, is considered a

 word. The style subword-range can supply an alternative character range to the de?

 fault `[:upper:]'; the value of the style is treated as the contents of a `[...]'

 pattern (note that the outer brackets should not be supplied, only those surround?

 ing named ranges).

 More control can be obtained using the zstyle command, as described in zshmod?

 ules(1). Each style is looked up in the context :zle:widget where widget is the

 name of the user-defined widget, not the name of the function implementing it, so

 in the case of the definitions supplied by select-word-style the appropriate con?

 texts are :zle:forward-word, and so on. The function select-word-style itself al?

 ways defines styles for the context `:zle:*' which can be overridden by more spe?

 cific (longer) patterns as well as explicit contexts. Page 42/93

 The style word-style specifies the rules to use. This may have the following val?

 ues.

 normal Use the standard shell rules, i.e. alphanumerics and $WORDCHARS, unless

 overridden by the styles word-chars or word-class.

 specified

 Similar to normal, but only the specified characters, and not also alphanu?

 merics, are considered word characters.

 unspecified

 The negation of specified. The given characters are those which will not be

 considered part of a word.

 shell Words are obtained by using the syntactic rules for generating shell command

 arguments. In addition, special tokens which are never command arguments

 such as `()' are also treated as words.

 whitespace

 Words are whitespace-delimited strings of characters.

 The first three of those rules usually use $WORDCHARS, but the value in the parame?

 ter can be overridden by the style word-chars, which works in exactly the same way

 as $WORDCHARS. In addition, the style word-class uses character class syntax to

 group characters and takes precedence over word-chars if both are set. The

 word-class style does not include the surrounding brackets of the character class;

 for example, `-:[:alnum:]' is a valid word-class to include all alphanumerics plus

 the characters `-' and `:'. Be careful including `]', `^' and `-' as these are

 special inside character classes.

 word-style may also have `-subword' appended to its value to turn on subword match?

 ing, as described above.

 The style skip-chars is mostly useful for transpose-words and similar functions.

 If set, it gives a count of characters starting at the cursor position which will

 not be considered part of the word and are treated as space, regardless of what

 they actually are. For example, if

 zstyle ':zle:transpose-words' skip-chars 1

 has been set, and transpose-words-match is called with the cursor on the X of

 fooXbar, where X can be any character, then the resulting expression is barXfoo.

 Finer grained control can be obtained by setting the style word-context to an array Page 43/93

 of pairs of entries. Each pair of entries consists of a pattern and a subcontext.

 The shell argument the cursor is on is matched against each pattern in turn until

 one matches; if it does, the context is extended by a colon and the corresponding

 subcontext. Note that the test is made against the original word on the line, with

 no stripping of quotes. Special handling is done between words: the current con?

 text is examined and if it contains the string between the word is set to a single

 space; else if it is contains the string back, the word before the cursor is con?

 sidered, else the word after cursor is considered. Some examples are given below.

 The style skip-whitespace-first is only used with the forward-word widget. If it

 is set to true, then forward-word skips any non-word-characters, followed by any

 non-word-characters: this is similar to the behaviour of other word-orientated wid?

 gets, and also that used by other editors, however it differs from the standard zsh

 behaviour. When using select-word-style the widget is set in the context :zle:* to

 true if the word style is bash and false otherwise. It may be overridden by set?

 ting it in the more specific context :zle:forward-word*.

 It is possible to create widgets with specific behaviour by defining a new widget

 implemented by the appropriate generic function, then setting a style for the con?

 text of the specific widget. For example, the following defines a widget back?

 ward-kill-space-word using backward-kill-word-match, the generic widget implement?

 ing backward-kill-word behaviour, and ensures that the new widget always implements

 space-delimited behaviour.

 zle -N backward-kill-space-word backward-kill-word-match

 zstyle :zle:backward-kill-space-word word-style space

 The widget backward-kill-space-word can now be bound to a key.

 Here are some further examples of use of the styles, actually taken from the sim?

 plified interface in select-word-style:

 zstyle ':zle:*' word-style standard

 zstyle ':zle:*' word-chars ''

 Implements bash-style word handling for all widgets, i.e. only alphanumerics are

 word characters; equivalent to setting the parameter WORDCHARS empty for the given

 context.

 style ':zle:*kill*' word-style space

 Uses space-delimited words for widgets with the word `kill' in the name. Neither Page 44/93

 of the styles word-chars nor word-class is used in this case.

 Here are some examples of use of the word-context style to extend the context.

 zstyle ':zle:*' word-context \

 "*/*" filename "[[:space:]]" whitespace

 zstyle ':zle:transpose-words:whitespace' word-style shell

 zstyle ':zle:transpose-words:filename' word-style normal

 zstyle ':zle:transpose-words:filename' word-chars ''

 This provides two different ways of using transpose-words depending on whether the

 cursor is on whitespace between words or on a filename, here any word containing a

 /. On whitespace, complete arguments as defined by standard shell rules will be

 transposed. In a filename, only alphanumerics will be transposed. Elsewhere,

 words will be transposed using the default style for :zle:transpose-words.

 The word matching and all the handling of zstyle settings is actually implemented

 by the function match-words-by-style. This can be used to create new user-defined

 widgets. The calling function should set the local parameter curcontext to

 :zle:widget, create the local parameter matched_words and call match-words-by-style

 with no arguments. On return, matched_words will be set to an array with the ele?

 ments: (1) the start of the line (2) the word before the cursor (3) any non-word

 characters between that word and the cursor (4) any non-word character at the cur?

 sor position plus any remaining non-word characters before the next word, including

 all characters specified by the skip-chars style, (5) the word at or following the

 cursor (6) any non-word characters following that word (7) the remainder of the

 line. Any of the elements may be an empty string; the calling function should test

 for this to decide whether it can perform its function.

 If the variable matched_words is defined by the caller to match-words-by-style as

 an associative array (local -A matched_words), then the seven values given above

 should be retrieved from it as elements named start, word-before-cursor, ws-be?

 fore-cursor, ws-after-cursor, word-after-cursor, ws-after-word, and end. In addi?

 tion the element is-word-start is 1 if the cursor is on the start of a word or sub?

 word, or on white space before it (the cases can be distinguished by testing the

 ws-after-cursor element) and 0 otherwise. This form is recommended for future com?

 patibility.

 It is possible to pass options with arguments to match-words-by-style to override Page 45/93

 the use of styles. The options are:

 -w word-style

 -s skip-chars

 -c word-class

 -C word-chars

 -r subword-range

 For example, match-words-by-style -w shell -c 0 may be used to extract the command

 argument around the cursor.

 The word-context style is implemented by the function match-word-context. This

 should not usually need to be called directly.

 bracketed-paste-magic

 The bracketed-paste widget (see subsection Miscellaneous in zshzle(1)) inserts

 pasted text literally into the editor buffer rather than interpret it as key?

 strokes. This disables some common usages where the self-insert widget is replaced

 in order to accomplish some extra processing. An example is the contributed

 url-quote-magic widget described below.

 The bracketed-paste-magic widget is meant to replace bracketed-paste with a wrapper

 that re-enables these self-insert actions, and other actions as selected by

 zstyles. Therefore this widget is installed with

 autoload -Uz bracketed-paste-magic

 zle -N bracketed-paste bracketed-paste-magic

 Other than enabling some widget processing, bracketed-paste-magic attempts to

 replicate bracketed-paste as faithfully as possible.

 The following zstyles may be set to control processing of pasted text. All are

 looked up in the context `:bracketed-paste-magic'.

 active-widgets

 A list of patterns matching widget names that should be activated during the

 paste. All other key sequences are processed as self-insert-unmeta. The

 default is `self-*' so any user-defined widgets named with that prefix are

 active along with the builtin self-insert.

 If this style is not set (explicitly deleted) or set to an empty value, no

 widgets are active and the pasted text is inserted literally. If the value

 includes `undefined-key', any unknown sequences are discarded from the Page 46/93

 pasted text.

 inactive-keys

 The inverse of active-widgets, a list of key sequences that always use

 self-insert-unmeta even when bound to an active widget. Note that this is a

 list of literal key sequences, not patterns.

 paste-init

 A list of function names, called in widget context (but not as widgets).

 The functions are called in order until one of them returns a non-zero sta?

 tus. The parameter `PASTED' contains the initial state of the pasted text.

 All other ZLE parameters such as `BUFFER' have their normal values and

 side-effects, and full history is available, so for example paste-init func?

 tions may move words from BUFFER into PASTED to make those words visible to

 the active-widgets.

 A non-zero return from a paste-init function does not prevent the paste it?

 self from proceeding.

 Loading bracketed-paste-magic defines backward-extend-paste, a helper func?

 tion for use in paste-init.

 zstyle :bracketed-paste-magic paste-init \

 backward-extend-paste

 When a paste would insert into the middle of a word or append text to a word

 already on the line, backward-extend-paste moves the prefix from LBUFFER

 into PASTED so that the active-widgets see the full word so far. This may

 be useful with url-quote-magic.

 paste-finish

 Another list of function names called in order until one returns non-zero.

 These functions are called after the pasted text has been processed by the

 active-widgets, but before it is inserted into `BUFFER'. ZLE parameters

 have their normal values and side-effects.

 A non-zero return from a paste-finish function does not prevent the paste

 itself from proceeding.

 Loading bracketed-paste-magic also defines quote-paste, a helper function

 for use in paste-finish.

 zstyle :bracketed-paste-magic paste-finish \ Page 47/93

 quote-paste

 zstyle :bracketed-paste-magic:finish quote-style \

 qqq

 When the pasted text is inserted into BUFFER, it is quoted per the

 quote-style value. To forcibly turn off the built-in numeric prefix quoting

 of bracketed-paste, use:

 zstyle :bracketed-paste-magic:finish quote-style \

 none

 Important: During active-widgets processing of the paste (after paste-init and be?

 fore paste-finish), BUFFER starts empty and history is restricted, so cursor mo?

 tions, etc., may not pass outside of the pasted content. Text assigned to BUFFER

 by the active widgets is copied back into PASTED before paste-finish.

 copy-earlier-word

 This widget works like a combination of insert-last-word and copy-prev-shell-word.

 Repeated invocations of the widget retrieve earlier words on the relevant history

 line. With a numeric argument N, insert the Nth word from the history line; N may

 be negative to count from the end of the line.

 If insert-last-word has been used to retrieve the last word on a previous history

 line, repeated invocations will replace that word with earlier words from the same

 line.

 Otherwise, the widget applies to words on the line currently being edited. The

 widget style can be set to the name of another widget that should be called to re?

 trieve words. This widget must accept the same three arguments as in?

 sert-last-word.

 cycle-completion-positions

 After inserting an unambiguous string into the command line, the new function based

 completion system may know about multiple places in this string where characters

 are missing or differ from at least one of the possible matches. It will then

 place the cursor on the position it considers to be the most interesting one, i.e.

 the one where one can disambiguate between as many matches as possible with as lit?

 tle typing as possible.

 This widget allows the cursor to be easily moved to the other interesting spots.

 It can be invoked repeatedly to cycle between all positions reported by the comple? Page 48/93

 tion system.

 delete-whole-word-match

 This is another function which works like the -match functions described immedi?

 ately above, i.e. using styles to decide the word boundaries. However, it is not a

 replacement for any existing function.

 The basic behaviour is to delete the word around the cursor. There is no numeric

 argument handling; only the single word around the cursor is considered. If the

 widget contains the string kill, the removed text will be placed in the cutbuffer

 for future yanking. This can be obtained by defining kill-whole-word-match as fol?

 lows:

 zle -N kill-whole-word-match delete-whole-word-match

 and then binding the widget kill-whole-word-match.

 up-line-or-beginning-search, down-line-or-beginning-search

 These widgets are similar to the builtin functions up-line-or-search and

 down-line-or-search: if in a multiline buffer they move up or down within the buf?

 fer, otherwise they search for a history line matching the start of the current

 line. In this case, however, they search for a line which matches the current line

 up to the current cursor position, in the manner of history-beginning-search-back?

 ward and -forward, rather than the first word on the line.

 edit-command-line

 Edit the command line using your visual editor, as in ksh.

 bindkey -M vicmd v edit-command-line

 expand-absolute-path

 Expand the file name under the cursor to an absolute path, resolving symbolic

 links. Where possible, the initial path segment is turned into a named directory

 or reference to a user's home directory.

 history-search-end

 This function implements the widgets history-beginning-search-backward-end and his?

 tory-beginning-search-forward-end. These commands work by first calling the corre?

 sponding builtin widget (see `History Control' in zshzle(1)) and then moving the

 cursor to the end of the line. The original cursor position is remembered and re?

 stored before calling the builtin widget a second time, so that the same search is

 repeated to look farther through the history. Page 49/93

 Although you autoload only one function, the commands to use it are slightly dif?

 ferent because it implements two widgets.

 zle -N history-beginning-search-backward-end \

 history-search-end

 zle -N history-beginning-search-forward-end \

 history-search-end

 bindkey '\e^P' history-beginning-search-backward-end

 bindkey '\e^N' history-beginning-search-forward-end

 history-beginning-search-menu

 This function implements yet another form of history searching. The text before

 the cursor is used to select lines from the history, as for history-begin?

 ning-search-backward except that all matches are shown in a numbered menu. Typing

 the appropriate digits inserts the full history line. Note that leading zeroes

 must be typed (they are only shown when necessary for removing ambiguity). The en?

 tire history is searched; there is no distinction between forwards and backwards.

 With a numeric argument, the search is not anchored to the start of the line; the

 string typed by the use may appear anywhere in the line in the history.

 If the widget name contains `-end' the cursor is moved to the end of the line in?

 serted. If the widget name contains `-space' any space in the text typed is

 treated as a wildcard and can match anything (hence a leading space is equivalent

 to giving a numeric argument). Both forms can be combined, for example:

 zle -N history-beginning-search-menu-space-end \

 history-beginning-search-menu

 history-pattern-search

 The function history-pattern-search implements widgets which prompt for a pattern

 with which to search the history backwards or forwards. The pattern is in the

 usual zsh format, however the first character may be ^ to anchor the search to the

 start of the line, and the last character may be $ to anchor the search to the end

 of the line. If the search was not anchored to the end of the line the cursor is

 positioned just after the pattern found.

 The commands to create bindable widgets are similar to those in the example immedi?

 ately above:

 autoload -U history-pattern-search Page 50/93

 zle -N history-pattern-search-backward history-pattern-search

 zle -N history-pattern-search-forward history-pattern-search

 incarg Typing the keystrokes for this widget with the cursor placed on or to the left of

 an integer causes that integer to be incremented by one. With a numeric argument,

 the number is incremented by the amount of the argument (decremented if the numeric

 argument is negative). The shell parameter incarg may be set to change the default

 increment to something other than one.

 bindkey '^X+' incarg

 incremental-complete-word

 This allows incremental completion of a word. After starting this command, a list

 of completion choices can be shown after every character you type, which you can

 delete with ^H or DEL. Pressing return accepts the completion so far and returns

 you to normal editing (that is, the command line is not immediately executed). You

 can hit TAB to do normal completion, ^G to abort back to the state when you

 started, and ^D to list the matches.

 This works only with the new function based completion system.

 bindkey '^Xi' incremental-complete-word

 insert-composed-char

 This function allows you to compose characters that don't appear on the keyboard to

 be inserted into the command line. The command is followed by two keys correspond?

 ing to ASCII characters (there is no prompt). For accented characters, the two

 keys are a base character followed by a code for the accent, while for other spe?

 cial characters the two characters together form a mnemonic for the character to be

 inserted. The two-character codes are a subset of those given by RFC 1345 (see for

 example http://www.faqs.org/rfcs/rfc1345.html).

 The function may optionally be followed by up to two characters which replace one

 or both of the characters read from the keyboard; if both characters are supplied,

 no input is read. For example, insert-composed-char a: can be used within a widget

 to insert an a with umlaut into the command line. This has the advantages over use

 of a literal character that it is more portable.

 For best results zsh should have been built with support for multibyte characters

 (configured with --enable-multibyte); however, the function works for the limited

 range of characters available in single-byte character sets such as ISO-8859-1. Page 51/93

 The character is converted into the local representation and inserted into the com?

 mand line at the cursor position. (The conversion is done within the shell, using

 whatever facilities the C library provides.) With a numeric argument, the charac?

 ter and its code are previewed in the status line

 The function may be run outside zle in which case it prints the character (together

 with a newline) to standard output. Input is still read from keystrokes.

 See insert-unicode-char for an alternative way of inserting Unicode characters us?

 ing their hexadecimal character number.

 The set of accented characters is reasonably complete up to Unicode character

 U+0180, the set of special characters less so. However, it is very sporadic from

 that point. Adding new characters is easy, however; see the function define-com?

 posed-chars. Please send any additions to zsh-workers@zsh.org.

 The codes for the second character when used to accent the first are as follows.

 Note that not every character can take every accent.

 ! Grave.

 ' Acute.

 > Circumflex.

 ? Tilde. (This is not ~ as RFC 1345 does not assume that character is present

 on the keyboard.)

 - Macron. (A horizontal bar over the base character.)

 (Breve. (A shallow dish shape over the base character.)

 . Dot above the base character, or in the case of i no dot, or in the case of

 L and l a centered dot.

 : Diaeresis (Umlaut).

 c Cedilla.

 _ Underline, however there are currently no underlined characters.

 / Stroke through the base character.

 " Double acute (only supported on a few letters).

 ; Ogonek. (A little forward facing hook at the bottom right of the charac?

 ter.)

 < Caron. (A little v over the letter.)

 0 Circle over the base character.

 2 Hook over the base character. Page 52/93

 9 Horn over the base character.

 The most common characters from the Arabic, Cyrillic, Greek and Hebrew alphabets

 are available; consult RFC 1345 for the appropriate sequences. In addition, a set

 of two letter codes not in RFC 1345 are available for the double-width characters

 corresponding to ASCII characters from ! to ~ (0x21 to 0x7e) by preceding the

 character with ^, for example ^A for a double-width A.

 The following other two-character sequences are understood.

 ASCII characters

 These are already present on most keyboards:

 <(Left square bracket

 // Backslash (solidus)

)> Right square bracket

 (! Left brace (curly bracket)

 !! Vertical bar (pipe symbol)

 !) Right brace (curly bracket)

 '? Tilde

 Special letters

 Characters found in various variants of the Latin alphabet:

 ss Eszett (scharfes S)

 D-, d- Eth

 TH, th Thorn

 kk Kra

 'n 'n

 NG, ng Ng

 OI, oi Oi

 yr yr

 ED ezh

 Currency symbols

 Ct Cent

 Pd Pound sterling (also lira and others)

 Cu Currency

 Ye Yen

 Eu Euro (N.B. not in RFC 1345) Page 53/93

 Punctuation characters

 References to "right" quotes indicate the shape (like a 9 rather than 6)

 rather than their grammatical use. (For example, a "right" low double quote

 is used to open quotations in German.)

 !I Inverted exclamation mark

 BB Broken vertical bar

 SE Section

 Co Copyright

 -a Spanish feminine ordinal indicator

 << Left guillemet

 -- Soft hyphen

 Rg Registered trade mark

 PI Pilcrow (paragraph)

 -o Spanish masculine ordinal indicator

 >> Right guillemet

 ?I Inverted question mark

 -1 Hyphen

 -N En dash

 -M Em dash

 -3 Horizontal bar

 :3 Vertical ellipsis

 .3 Horizontal midline ellipsis

 !2 Double vertical line

 =2 Double low line

 '6 Left single quote

 '9 Right single quote

 .9 "Right" low quote

 9' Reversed "right" quote

 "6 Left double quote

 "9 Right double quote

 :9 "Right" low double quote

 9" Reversed "right" double quote

 /- Dagger Page 54/93

 /= Double dagger

 Mathematical symbols

 DG Degree

 -2, +-, -+

 - sign, +/- sign, -/+ sign

 2S Superscript 2

 3S Superscript 3

 1S Superscript 1

 My Micro

 .M Middle dot

 14 Quarter

 12 Half

 34 Three quarters

 *X Multiplication

 -: Division

 %0 Per mille

 FA, TE, /0

 For all, there exists, empty set

 dP, DE, NB

 Partial derivative, delta (increment), del (nabla)

 (-, -) Element of, contains

 *P, +Z Product, sum

 *-, Ob, Sb

 Asterisk, ring, bullet

 RT, 0(, 00

 Root sign, proportional to, infinity

 Other symbols

 cS, cH, cD, cC

 Card suits: spades, hearts, diamonds, clubs

 Md, M8, M2, Mb, Mx, MX

 Musical notation: crotchet (quarter note), quaver (eighth note), semiquavers

 (sixteenth notes), flag sign, natural sign, sharp sign

 Fm, Ml Female, male Page 55/93

 Accents on their own

 '> Circumflex (same as caret, ^)

 '! Grave (same as backtick, `)

 ', Cedilla

 ': Diaeresis (Umlaut)

 'm Macron

 '' Acute

 insert-files

 This function allows you type a file pattern, and see the results of the expansion

 at each step. When you hit return, all expansions are inserted into the command

 line.

 bindkey '^Xf' insert-files

 insert-unicode-char

 When first executed, the user inputs a set of hexadecimal digits. This is termi?

 nated with another call to insert-unicode-char. The digits are then turned into

 the corresponding Unicode character. For example, if the widget is bound to ^XU,

 the character sequence `^XU 4 c ^XU' inserts L (Unicode U+004c).

 See insert-composed-char for a way of inserting characters using a two-character

 mnemonic.

 narrow-to-region [-p pre] [-P post]

 [-S statepm | -R statepm | [-l lbufvar] [-r rbufvar]]

 [-n] [start end]

 narrow-to-region-invisible

 Narrow the editable portion of the buffer to the region between the cursor and the

 mark, which may be in either order. The region may not be empty.

 narrow-to-region may be used as a widget or called as a function from a user-de?

 fined widget; by default, the text outside the editable area remains visible. A

 recursive-edit is performed and the original widening status is then restored.

 Various options and arguments are available when it is called as a function.

 The options -p pretext and -P posttext may be used to replace the text before and

 after the display for the duration of the function; either or both may be an empty

 string.

 If the option -n is also given, pretext or posttext will only be inserted if there Page 56/93

 is text before or after the region respectively which will be made invisible.

 Two numeric arguments may be given which will be used instead of the cursor and

 mark positions.

 The option -S statepm is used to narrow according to the other options while saving

 the original state in the parameter with name statepm, while the option -R statepm

 is used to restore the state from the parameter; note in both cases the name of the

 parameter is required. In the second case, other options and arguments are irrele?

 vant. When this method is used, no recursive-edit is performed; the calling widget

 should call this function with the option -S, perform its own editing on the com?

 mand line or pass control to the user via `zle recursive-edit', then call this

 function with the option -R. The argument statepm must be a suitable name for an

 ordinary parameter, except that parameters beginning with the prefix _ntr_ are re?

 served for use within narrow-to-region. Typically the parameter will be local to

 the calling function.

 The options -l lbufvar and -r rbufvar may be used to specify parameters where the

 widget will store the resulting text from the operation. The parameter lbufvar

 will contain LBUFFER and rbufvar will contain RBUFFER. Neither of these two op?

 tions may be used with -S or -R.

 narrow-to-region-invisible is a simple widget which calls narrow-to-region with ar?

 guments which replace any text outside the region with `...'. It does not take any

 arguments.

 The display is restored (and the widget returns) upon any zle command which would

 usually cause the line to be accepted or aborted. Hence an additional such command

 is required to accept or abort the current line.

 The return status of both widgets is zero if the line was accepted, else non-zero.

 Here is a trivial example of a widget using this feature.

 local state

 narrow-to-region -p $'Editing restricted region\n' \

 -P '' -S state

 zle recursive-edit

 narrow-to-region -R state

 predict-on

 This set of functions implements predictive typing using history search. After Page 57/93

 predict-on, typing characters causes the editor to look backward in the history for

 the first line beginning with what you have typed so far. After predict-off, edit?

 ing returns to normal for the line found. In fact, you often don't even need to

 use predict-off, because if the line doesn't match something in the history, adding

 a key performs standard completion, and then inserts itself if no completions were

 found. However, editing in the middle of a line is liable to confuse prediction;

 see the toggle style below.

 With the function based completion system (which is needed for this), you should be

 able to type TAB at almost any point to advance the cursor to the next ``interest?

 ing'' character position (usually the end of the current word, but sometimes some?

 where in the middle of the word). And of course as soon as the entire line is what

 you want, you can accept with return, without needing to move the cursor to the end

 first.

 The first time predict-on is used, it creates several additional widget functions:

 delete-backward-and-predict

 Replaces the backward-delete-char widget. You do not need to bind this

 yourself.

 insert-and-predict

 Implements predictive typing by replacing the self-insert widget. You do

 not need to bind this yourself.

 predict-off

 Turns off predictive typing.

 Although you autoload only the predict-on function, it is necessary to create a

 keybinding for predict-off as well.

 zle -N predict-on

 zle -N predict-off

 bindkey '^X^Z' predict-on

 bindkey '^Z' predict-off

 read-from-minibuffer

 This is most useful when called as a function from inside a widget, but will work

 correctly as a widget in its own right. It prompts for a value below the current

 command line; a value may be input using all of the standard zle operations (and

 not merely the restricted set available when executing, for example, exe? Page 58/93

 cute-named-cmd). The value is then returned to the calling function in the parame?

 ter $REPLY and the editing buffer restored to its previous state. If the read was

 aborted by a keyboard break (typically ^G), the function returns status 1 and $RE?

 PLY is not set.

 If one argument is supplied to the function it is taken as a prompt, otherwise `? '

 is used. If two arguments are supplied, they are the prompt and the initial value

 of $LBUFFER, and if a third argument is given it is the initial value of $RBUFFER.

 This provides a default value and starting cursor placement. Upon return the en?

 tire buffer is the value of $REPLY.

 One option is available: `-k num' specifies that num characters are to be read in?

 stead of a whole line. The line editor is not invoked recursively in this case, so

 depending on the terminal settings the input may not be visible, and only the input

 keys are placed in $REPLY, not the entire buffer. Note that unlike the read

 builtin num must be given; there is no default.

 The name is a slight misnomer, as in fact the shell's own minibuffer is not used.

 Hence it is still possible to call executed-named-cmd and similar functions while

 reading a value.

 replace-argument, replace-argument-edit

 The function replace-argument can be used to replace a command line argument in the

 current command line or, if the current command line is empty, in the last command

 line executed (the new command line is not executed). Arguments are as delimited

 by standard shell syntax,

 If a numeric argument is given, that specifies the argument to be replaced. 0

 means the command name, as in history expansion. A negative numeric argument

 counts backward from the last word.

 If no numeric argument is given, the current argument is replaced; this is the last

 argument if the previous history line is being used.

 The function prompts for a replacement argument.

 If the widget contains the string edit, for example is defined as

 zle -N replace-argument-edit replace-argument

 then the function presents the current value of the argument for editing, otherwise

 the editing buffer for the replacement is initially empty.

 replace-string, replace-pattern Page 59/93

 replace-string-again, replace-pattern-again

 The function replace-string implements three widgets. If defined under the same

 name as the function, it prompts for two strings; the first (source) string will be

 replaced by the second everywhere it occurs in the line editing buffer.

 If the widget name contains the word `pattern', for example by defining the widget

 using the command `zle -N replace-pattern replace-string', then the matching is

 performed using zsh patterns. All zsh extended globbing patterns can be used in

 the source string; note that unlike filename generation the pattern does not need

 to match an entire word, nor do glob qualifiers have any effect. In addition, the

 replacement string can contain parameter or command substitutions. Furthermore, a

 `&' in the replacement string will be replaced with the matched source string, and

 a backquoted digit `\N' will be replaced by the Nth parenthesised expression

 matched. The form `\{N}' may be used to protect the digit from following digits.

 If the widget instead contains the word `regex' (or `regexp'), then the matching is

 performed using regular expressions, respecting the setting of the option

 RE_MATCH_PCRE (see the description of the function regexp-replace below). The spe?

 cial replacement facilities described above for pattern matching are available.

 By default the previous source or replacement string will not be offered for edit?

 ing. However, this feature can be activated by setting the style edit-previous in

 the context :zle:widget (for example, :zle:replace-string) to true. In addition, a

 positive numeric argument forces the previous values to be offered, a negative or

 zero argument forces them not to be.

 The function replace-string-again can be used to repeat the previous replacement;

 no prompting is done. As with replace-string, if the name of the widget contains

 the word `pattern' or `regex', pattern or regular expression matching is performed,

 else a literal string replacement. Note that the previous source and replacement

 text are the same whether pattern, regular expression or string matching is used.

 In addition, replace-string shows the previous replacement above the prompt, so

 long as there was one during the current session; if the source string is empty,

 that replacement will be repeated without the widget prompting for a replacement

 string.

 For example, starting from the line:

 print This line contains fan and fond Page 60/93

 and invoking replace-pattern with the source string `f(?)n' and the replacement

 string `c\1r' produces the not very useful line:

 print This line contains car and cord

 The range of the replacement string can be limited by using the narrow-to-re?

 gion-invisible widget. One limitation of the current version is that undo will cy?

 cle through changes to the replacement and source strings before undoing the re?

 placement itself.

 send-invisible

 This is similar to read-from-minibuffer in that it may be called as a function from

 a widget or as a widget of its own, and interactively reads input from the key?

 board. However, the input being typed is concealed and a string of asterisks (`*')

 is shown instead. The value is saved in the parameter $INVISIBLE to which a refer?

 ence is inserted into the editing buffer at the restored cursor position. If the

 read was aborted by a keyboard break (typically ^G) or another escape from editing

 such as push-line, $INVISIBLE is set to empty and the original buffer is restored

 unchanged.

 If one argument is supplied to the function it is taken as a prompt, otherwise

 `Non-echoed text: ' is used (as in emacs). If a second and third argument are sup?

 plied they are used to begin and end the reference to $INVISIBLE that is inserted

 into the buffer. The default is to open with ${, then INVISIBLE, and close with },

 but many other effects are possible.

 smart-insert-last-word

 This function may replace the insert-last-word widget, like so:

 zle -N insert-last-word smart-insert-last-word

 With a numeric argument, or when passed command line arguments in a call from an?

 other widget, it behaves like insert-last-word, except that words in comments are

 ignored when INTERACTIVE_COMMENTS is set.

 Otherwise, the rightmost ``interesting'' word from the previous command is found

 and inserted. The default definition of ``interesting'' is that the word contains

 at least one alphabetic character, slash, or backslash. This definition may be

 overridden by use of the match style. The context used to look up the style is the

 widget name, so usually the context is :insert-last-word. However, you can bind

 this function to different widgets to use different patterns: Page 61/93

 zle -N insert-last-assignment smart-insert-last-word

 zstyle :insert-last-assignment match '[[:alpha:]][][[:alnum:]]#=*'

 bindkey '\e=' insert-last-assignment

 If no interesting word is found and the auto-previous style is set to a true value,

 the search continues upward through the history. When auto-previous is unset or

 false (the default), the widget must be invoked repeatedly in order to search ear?

 lier history lines.

 transpose-lines

 Only useful with a multi-line editing buffer; the lines here are lines within the

 current on-screen buffer, not history lines. The effect is similar to the function

 of the same name in Emacs.

 Transpose the current line with the previous line and move the cursor to the start

 of the next line. Repeating this (which can be done by providing a positive nu?

 meric argument) has the effect of moving the line above the cursor down by a number

 of lines.

 With a negative numeric argument, requires two lines above the cursor. These two

 lines are transposed and the cursor moved to the start of the previous line. Using

 a numeric argument less than -1 has the effect of moving the line above the cursor

 up by minus that number of lines.

 url-quote-magic

 This widget replaces the built-in self-insert to make it easier to type URLs as

 command line arguments. As you type, the input character is analyzed and, if it

 may need quoting, the current word is checked for a URI scheme. If one is found

 and the current word is not already in quotes, a backslash is inserted before the

 input character.

 Styles to control quoting behavior:

 url-metas

 This style is looked up in the context `:url-quote-magic:scheme' (where

 scheme is that of the current URL, e.g. "ftp"). The value is a string list?

 ing the characters to be treated as globbing metacharacters when appearing

 in a URL using that scheme. The default is to quote all zsh extended glob?

 bing characters, excluding '<' and '>' but including braces (as in brace ex?

 pansion). See also url-seps. Page 62/93

 url-seps

 Like url-metas, but lists characters that should be considered command sepa?

 rators, redirections, history references, etc. The default is to quote the

 standard set of shell separators, excluding those that overlap with the ex?

 tended globbing characters, but including '<' and '>' and the first charac?

 ter of $histchars.

 url-globbers

 This style is looked up in the context `:url-quote-magic'. The values form

 a list of command names that are expected to do their own globbing on the

 URL string. This implies that they are aliased to use the `noglob' modi?

 fier. When the first word on the line matches one of the values and the URL

 refers to a local file (see url-local-schema), only the url-seps characters

 are quoted; the url-metas are left alone, allowing them to affect com?

 mand-line parsing, completion, etc. The default values are a literal

 `noglob' plus (when the zsh/parameter module is available) any commands

 aliased to the helper function `urlglobber' or its alias `globurl'.

 url-local-schema

 This style is always looked up in the context `:urlglobber', even though it

 is used by both url-quote-magic and urlglobber. The values form a list of

 URI schema that should be treated as referring to local files by their real

 local path names, as opposed to files which are specified relative to a

 web-server-defined document root. The defaults are "ftp" and "file".

 url-other-schema

 Like url-local-schema, but lists all other URI schema upon which urlglobber

 and url-quote-magic should act. If the URI on the command line does not

 have a scheme appearing either in this list or in url-local-schema, it is

 not magically quoted. The default values are "http", "https", and "ftp".

 When a scheme appears both here and in url-local-schema, it is quoted dif?

 ferently depending on whether the command name appears in url-globbers.

 Loading url-quote-magic also defines a helper function `urlglobber' and aliases

 `globurl' to `noglob urlglobber'. This function takes a local URL apart, attempts

 to pattern-match the local file portion of the URL path, and then puts the results

 back into URL format again. Page 63/93

 vi-pipe

 This function reads a movement command from the keyboard and then prompts for an

 external command. The part of the buffer covered by the movement is piped to the

 external command and then replaced by the command's output. If the movement command

 is bound to vi-pipe, the current line is used.

 The function serves as an example for reading a vi movement command from within a

 user-defined widget.

 which-command

 This function is a drop-in replacement for the builtin widget which-command. It

 has enhanced behaviour, in that it correctly detects whether or not the command

 word needs to be expanded as an alias; if so, it continues tracing the command word

 from the expanded alias until it reaches the command that will be executed.

 The style whence is available in the context :zle:$WIDGET; this may be set to an

 array to give the command and options that will be used to investigate the command

 word found. The default is whence -c.

 zcalc-auto-insert

 This function is useful together with the zcalc function described in the section

 Mathematical Functions. It should be bound to a key representing a binary operator

 such as `+', `-', `*' or `/'. When running in zcalc, if the key occurs at the

 start of the line or immediately following an open parenthesis, the text "ans " is

 inserted before the representation of the key itself. This allows easy use of the

 answer from the previous calculation in the current line. The text to be inserted

 before the symbol typed can be modified by setting the variable ZCALC_AUTO_IN?

 SERT_PREFIX.

 Hence, for example, typing `+12' followed by return adds 12 to the previous result.

 If zcalc is in RPN mode (-r option) the effect of this binding is automatically

 suppressed as operators alone on a line are meaningful.

 When not in zcalc, the key simply inserts the symbol itself.

 Utility Functions

 These functions are useful in constructing widgets. They should be loaded with `autoload

 -U function' and called as indicated from user-defined widgets.

 split-shell-arguments

 This function splits the line currently being edited into shell arguments and Page 64/93

 whitespace. The result is stored in the array reply. The array contains all the

 parts of the line in order, starting with any whitespace before the first argument,

 and finishing with any whitespace after the last argument. Hence (so long as the

 option KSH_ARRAYS is not set) whitespace is given by odd indices in the array and

 arguments by even indices. Note that no stripping of quotes is done; joining to?

 gether all the elements of reply in order is guaranteed to produce the original

 line.

 The parameter REPLY is set to the index of the word in reply which contains the

 character after the cursor, where the first element has index 1. The parameter RE?

 PLY2 is set to the index of the character under the cursor in that word, where the

 first character has index 1.

 Hence reply, REPLY and REPLY2 should all be made local to the enclosing function.

 See the function modify-current-argument, described below, for an example of how to

 call this function.

 modify-current-argument [expr-using-$ARG | func]

 This function provides a simple method of allowing user-defined widgets to modify

 the command line argument under the cursor (or immediately to the left of the cur?

 sor if the cursor is between arguments).

 The argument can be an expression which when evaluated operates on the shell param?

 eter ARG, which will have been set to the command line argument under the cursor.

 The expression should be suitably quoted to prevent it being evaluated too early.

 Alternatively, if the argument does not contain the string ARG, it is assumed to be

 a shell function, to which the current command line argument is passed as the only

 argument. The function should set the variable REPLY to the new value for the com?

 mand line argument. If the function returns non-zero status, so does the calling

 function.

 For example, a user-defined widget containing the following code converts the char?

 acters in the argument under the cursor into all upper case:

 modify-current-argument '${(U)ARG}'

 The following strips any quoting from the current word (whether backslashes or one

 of the styles of quotes), and replaces it with single quoting throughout:

 modify-current-argument '${(qq)${(Q)ARG}}'

 The following performs directory expansion on the command line argument and re? Page 65/93

 places it by the absolute path:

 expand-dir() {

 REPLY=${~1}

 REPLY=${REPLY:a}

 }

 modify-current-argument expand-dir

 In practice the function expand-dir would probably not be defined within the widget

 where modify-current-argument is called.

 Styles

 The behavior of several of the above widgets can be controlled by the use of the zstyle

 mechanism. In particular, widgets that interact with the completion system pass along

 their context to any completions that they invoke.

 break-keys

 This style is used by the incremental-complete-word widget. Its value should be a

 pattern, and all keys matching this pattern will cause the widget to stop incremen?

 tal completion without the key having any further effect. Like all styles used di?

 rectly by incremental-complete-word, this style is looked up using the context

 `:incremental'.

 completer

 The incremental-complete-word and insert-and-predict widgets set up their top-level

 context name before calling completion. This allows one to define different sets

 of completer functions for normal completion and for these widgets. For example,

 to use completion, approximation and correction for normal completion, completion

 and correction for incremental completion and only completion for prediction one

 could use:

 zstyle ':completion:*' completer \

 _complete _correct _approximate

 zstyle ':completion:incremental:*' completer \

 _complete _correct

 zstyle ':completion:predict:*' completer \

 _complete

 It is a good idea to restrict the completers used in prediction, because they may

 be automatically invoked as you type. The _list and _menu completers should never Page 66/93

 be used with prediction. The _approximate, _correct, _expand, and _match com?

 pleters may be used, but be aware that they may change characters anywhere in the

 word behind the cursor, so you need to watch carefully that the result is what you

 intended.

 cursor The insert-and-predict widget uses this style, in the context `:predict', to decide

 where to place the cursor after completion has been tried. Values are:

 complete

 The cursor is left where it was when completion finished, but only if it is

 after a character equal to the one just inserted by the user. If it is af?

 ter another character, this value is the same as `key'.

 key The cursor is left after the nth occurrence of the character just inserted,

 where n is the number of times that character appeared in the word before

 completion was attempted. In short, this has the effect of leaving the cur?

 sor after the character just typed even if the completion code found out

 that no other characters need to be inserted at that position.

 Any other value for this style unconditionally leaves the cursor at the position

 where the completion code left it.

 list When using the incremental-complete-word widget, this style says if the matches

 should be listed on every key press (if they fit on the screen). Use the context

 prefix `:completion:incremental'.

 The insert-and-predict widget uses this style to decide if the completion should be

 shown even if there is only one possible completion. This is done if the value of

 this style is the string always. In this case the context is `:predict' (not

 `:completion:predict').

 match This style is used by smart-insert-last-word to provide a pattern (using full EX?

 TENDED_GLOB syntax) that matches an interesting word. The context is the name of

 the widget to which smart-insert-last-word is bound (see above). The default be?

 havior of smart-insert-last-word is equivalent to:

 zstyle :insert-last-word match '*[[:alpha:]/\\]*'

 However, you might want to include words that contain spaces:

 zstyle :insert-last-word match '*[[:alpha:][:space:]/\\]*'

 Or include numbers as long as the word is at least two characters long:

 zstyle :insert-last-word match '*([[:digit:]]?|[[:alpha:]/\\])*' Page 67/93

 The above example causes redirections like "2>" to be included.

 prompt The incremental-complete-word widget shows the value of this style in the status

 line during incremental completion. The string value may contain any of the fol?

 lowing substrings in the manner of the PS1 and other prompt parameters:

 %c Replaced by the name of the completer function that generated the matches

 (without the leading underscore).

 %l When the list style is set, replaced by `...' if the list of matches is too

 long to fit on the screen and with an empty string otherwise. If the list

 style is `false' or not set, `%l' is always removed.

 %n Replaced by the number of matches generated.

 %s Replaced by `-no match-', `-no prefix-', or an empty string if there is no

 completion matching the word on the line, if the matches have no common pre?

 fix different from the word on the line, or if there is such a common pre?

 fix, respectively.

 %u Replaced by the unambiguous part of all matches, if there is any, and if it

 is different from the word on the line.

 Like `break-keys', this uses the `:incremental' context.

 stop-keys

 This style is used by the incremental-complete-word widget. Its value is treated

 similarly to the one for the break-keys style (and uses the same context: `:incre?

 mental'). However, in this case all keys matching the pattern given as its value

 will stop incremental completion and will then execute their usual function.

 toggle This boolean style is used by predict-on and its related widgets in the context

 `:predict'. If set to one of the standard `true' values, predictive typing is au?

 tomatically toggled off in situations where it is unlikely to be useful, such as

 when editing a multi-line buffer or after moving into the middle of a line and then

 deleting a character. The default is to leave prediction turned on until an ex?

 plicit call to predict-off.

 verbose

 This boolean style is used by predict-on and its related widgets in the context

 `:predict'. If set to one of the standard `true' values, these widgets display a

 message below the prompt when the predictive state is toggled. This is most useful

 in combination with the toggle style. The default does not display these messages. Page 68/93

 widget This style is similar to the command style: For widget functions that use zle to

 call other widgets, this style can sometimes be used to override the widget which

 is called. The context for this style is the name of the calling widget (not the

 name of the calling function, because one function may be bound to multiple widget

 names).

 zstyle :copy-earlier-word widget smart-insert-last-word

 Check the documentation for the calling widget or function to determine whether the

 widget style is used.

EXCEPTION HANDLING

 Two functions are provided to enable zsh to provide exception handling in a form that

 should be familiar from other languages.

 throw exception

 The function throw throws the named exception. The name is an arbitrary string and

 is only used by the throw and catch functions. An exception is for the most part

 treated the same as a shell error, i.e. an unhandled exception will cause the shell

 to abort all processing in a function or script and to return to the top level in

 an interactive shell.

 catch exception-pattern

 The function catch returns status zero if an exception was thrown and the pattern

 exception-pattern matches its name. Otherwise it returns status 1. exception-pat?

 tern is a standard shell pattern, respecting the current setting of the EX?

 TENDED_GLOB option. An alias catch is also defined to prevent the argument to the

 function from matching filenames, so patterns may be used unquoted. Note that as

 exceptions are not fundamentally different from other shell errors it is possible

 to catch shell errors by using an empty string as the exception name. The shell

 variable CAUGHT is set by catch to the name of the exception caught. It is possi?

 ble to rethrow an exception by calling the throw function again once an exception

 has been caught.

 The functions are designed to be used together with the always construct described in zsh?

 misc(1). This is important as only this construct provides the required support for ex?

 ceptions. A typical example is as follows.

 {

 # "try" block Page 69/93

 # ... nested code here calls "throw MyExcept"

 } always {

 # "always" block

 if catch MyExcept; then

 print "Caught exception MyExcept"

 elif catch ''; then

 print "Caught a shell error. Propagating..."

 throw ''

 fi

 # Other exceptions are not handled but may be caught further

 # up the call stack.

 }

 If all exceptions should be caught, the following idiom might be preferable.

 {

 # ... nested code here throws an exception

 } always {

 if catch *; then

 case $CAUGHT in

 (MyExcept)

 print "Caught my own exception"

 ;;

 (*)

 print "Caught some other exception"

 ;;

 esac

 fi

 }

 In common with exception handling in other languages, the exception may be thrown by code

 deeply nested inside the `try' block. However, note that it must be thrown inside the

 current shell, not in a subshell forked for a pipeline, parenthesised current-shell con?

 struct, or some form of command or process substitution.

 The system internally uses the shell variable EXCEPTION to record the name of the excep?

 tion between throwing and catching. One drawback of this scheme is that if the exception Page 70/93

 is not handled the variable EXCEPTION remains set and may be incorrectly recognised as the

 name of an exception if a shell error subsequently occurs. Adding unset EXCEPTION at the

 start of the outermost layer of any code that uses exception handling will eliminate this

 problem.

MIME FUNCTIONS

 Three functions are available to provide handling of files recognised by extension, for

 example to dispatch a file text.ps when executed as a command to an appropriate viewer.

 zsh-mime-setup [-fv] [-l [suffix ...]]

 zsh-mime-handler [-l] command argument ...

 These two functions use the files ~/.mime.types and /etc/mime.types, which asso?

 ciate types and extensions, as well as ~/.mailcap and /etc/mailcap files, which as?

 sociate types and the programs that handle them. These are provided on many sys?

 tems with the Multimedia Internet Mail Extensions.

 To enable the system, the function zsh-mime-setup should be autoloaded and run.

 This allows files with extensions to be treated as executable; such files be com?

 pleted by the function completion system. The function zsh-mime-handler should not

 need to be called by the user.

 The system works by setting up suffix aliases with `alias -s'. Suffix aliases al?

 ready installed by the user will not be overwritten.

 For suffixes defined in lower case, upper case variants will also automatically be

 handled (e.g. PDF is automatically handled if handling for the suffix pdf is de?

 fined), but not vice versa.

 Repeated calls to zsh-mime-setup do not override the existing mapping between suf?

 fixes and executable files unless the option -f is given. Note, however, that this

 does not override existing suffix aliases assigned to handlers other than

 zsh-mime-handler.

 Calling zsh-mime-setup with the option -l lists the existing mappings without al?

 tering them. Suffixes to list (which may contain pattern characters that should be

 quoted from immediate interpretation on the command line) may be given as addi?

 tional arguments, otherwise all suffixes are listed.

 Calling zsh-mime-setup with the option -v causes verbose output to be shown during

 the setup operation.

 The system respects the mailcap flags needsterminal and copiousoutput, see mail? Page 71/93

 cap(4).

 The functions use the following styles, which are defined with the zstyle builtin

 command (see zshmodules(1)). They should be defined before zsh-mime-setup is run.

 The contexts used all start with :mime:, with additional components in some cases.

 It is recommended that a trailing * (suitably quoted) be appended to style patterns

 in case the system is extended in future. Some examples are given below.

 For files that have multiple suffixes, e.g. .pdf.gz, where the context includes the

 suffix it will be looked up starting with the longest possible suffix until a match

 for the style is found. For example, if .pdf.gz produces a match for the handler,

 that will be used; otherwise the handler for .gz will be used. Note that, owing to

 the way suffix aliases work, it is always required that there be a handler for the

 shortest possible suffix, so in this example .pdf.gz can only be handled if .gz is

 also handled (though not necessarily in the same way). Alternatively, if no han?

 dling for .gz on its own is needed, simply adding the command

 alias -s gz=zsh-mime-handler

 to the initialisation code is sufficient; .gz will not be handled on its own, but

 may be in combination with other suffixes.

 current-shell

 If this boolean style is true, the mailcap handler for the context in ques?

 tion is run using the eval builtin instead of by starting a new sh process.

 This is more efficient, but may not work in the occasional cases where the

 mailcap handler uses strict POSIX syntax.

 disown If this boolean style is true, mailcap handlers started in the background

 will be disowned, i.e. not subject to job control within the parent shell.

 Such handlers nearly always produce their own windows, so the only likely

 harmful side effect of setting the style is that it becomes harder to kill

 jobs from within the shell.

 execute-as-is

 This style gives a list of patterns to be matched against files passed for

 execution with a handler program. If the file matches the pattern, the en?

 tire command line is executed in its current form, with no handler. This is

 useful for files which might have suffixes but nonetheless be executable in

 their own right. If the style is not set, the pattern *(*) *(/) is used; Page 72/93

 hence executable files are executed directly and not passed to a handler,

 and the option AUTO_CD may be used to change to directories that happen to

 have MIME suffixes.

 execute-never

 This style is useful in combination with execute-as-is. It is set to an ar?

 ray of patterns corresponding to full paths to files that should never be

 treated as executable, even if the file passed to the MIME handler matches

 execute-as-is. This is useful for file systems that don't handle execute

 permission or that contain executables from another operating system. For

 example, if /mnt/windows is a Windows mount, then

 zstyle ':mime:*' execute-never '/mnt/windows/*'

 will ensure that any files found in that area will be executed as MIME types

 even if they are executable. As this example shows, the complete file name

 is matched against the pattern, regardless of how the file was passed to the

 handler. The file is resolved to a full path using the :P modifier de?

 scribed in the subsection Modifiers in zshexpn(1); this means that symbolic

 links are resolved where possible, so that links into other file systems be?

 have in the correct fashion.

 file-path

 Used if the style find-file-in-path is true for the same context. Set to an

 array of directories that are used for searching for the file to be handled;

 the default is the command path given by the special parameter path. The

 shell option PATH_DIRS is respected; if that is set, the appropriate path

 will be searched even if the name of the file to be handled as it appears on

 the command line contains a `/'. The full context is :mime:.suffix:, as de?

 scribed for the style handler.

 find-file-in-path

 If set, allows files whose names do not contain absolute paths to be

 searched for in the command path or the path specified by the file-path

 style. If the file is not found in the path, it is looked for locally

 (whether or not the current directory is in the path); if it is not found

 locally, the handler will abort unless the handle-nonexistent style is set.

 Files found in the path are tested as described for the style execute-as-is. Page 73/93

 The full context is :mime:.suffix:, as described for the style handler.

 flags Defines flags to go with a handler; the context is as for the handler style,

 and the format is as for the flags in mailcap.

 handle-nonexistent

 By default, arguments that don't correspond to files are not passed to the

 MIME handler in order to prevent it from intercepting commands found in the

 path that happen to have suffixes. This style may be set to an array of ex?

 tended glob patterns for arguments that will be passed to the handler even

 if they don't exist. If it is not explicitly set it defaults to [[:al?

 pha:]]#:/* which allows URLs to be passed to the MIME handler even though

 they don't exist in that format in the file system. The full context is

 :mime:.suffix:, as described for the style handler.

 handler

 Specifies a handler for a suffix; the suffix is given by the context as

 :mime:.suffix:, and the format of the handler is exactly that in mailcap.

 Note in particular the `.' and trailing colon to distinguish this use of the

 context. This overrides any handler specified by the mailcap files. If the

 handler requires a terminal, the flags style should be set to include the

 word needsterminal, or if the output is to be displayed through a pager (but

 not if the handler is itself a pager), it should include copiousoutput.

 mailcap

 A list of files in the format of ~/.mailcap and /etc/mailcap to be read dur?

 ing setup, replacing the default list which consists of those two files.

 The context is :mime:. A + in the list will be replaced by the default

 files.

 mailcap-priorities

 This style is used to resolve multiple mailcap entries for the same MIME

 type. It consists of an array of the following elements, in descending or?

 der of priority; later entries will be used if earlier entries are unable to

 resolve the entries being compared. If none of the tests resolve the en?

 tries, the first entry encountered is retained.

 files The order of files (entries in the mailcap style) read. Earlier

 files are preferred. (Note this does not resolve entries in the same Page 74/93

 file.)

 priority

 The priority flag from the mailcap entry. The priority is an integer

 from 0 to 9 with the default value being 5.

 flags The test given by the mailcap-prio-flags option is used to resolve

 entries.

 place Later entries are preferred; as the entries are strictly ordered,

 this test always succeeds.

 Note that as this style is handled during initialisation, the context is al?

 ways :mime:, with no discrimination by suffix.

 mailcap-prio-flags

 This style is used when the keyword flags is encountered in the list of

 tests specified by the mailcap-priorities style. It should be set to a list

 of patterns, each of which is tested against the flags specified in the

 mailcap entry (in other words, the sets of assignments found with some en?

 tries in the mailcap file). Earlier patterns in the list are preferred to

 later ones, and matched patterns are preferred to unmatched ones.

 mime-types

 A list of files in the format of ~/.mime.types and /etc/mime.types to be

 read during setup, replacing the default list which consists of those two

 files. The context is :mime:. A + in the list will be replaced by the de?

 fault files.

 never-background

 If this boolean style is set, the handler for the given context is always

 run in the foreground, even if the flags provided in the mailcap entry sug?

 gest it need not be (for example, it doesn't require a terminal).

 pager If set, will be used instead of $PAGER or more to handle suffixes where the

 copiousoutput flag is set. The context is as for handler, i.e. :mime:.suf?

 fix: for handling a file with the given suffix.

 Examples:

 zstyle ':mime:*' mailcap ~/.mailcap /usr/local/etc/mailcap

 zstyle ':mime:.txt:' handler less %s

 zstyle ':mime:.txt:' flags needsterminal Page 75/93

 When zsh-mime-setup is subsequently run, it will look for mailcap entries in the

 two files given. Files of suffix .txt will be handled by running `less file.txt'.

 The flag needsterminal is set to show that this program must run attached to a ter?

 minal.

 As there are several steps to dispatching a command, the following should be

 checked if attempting to execute a file by extension .ext does not have the ex?

 pected effect.

 The command `alias -s ext' should show `ps=zsh-mime-handler'. If it shows some?

 thing else, another suffix alias was already installed and was not overwritten. If

 it shows nothing, no handler was installed: this is most likely because no handler

 was found in the .mime.types and mailcap combination for .ext files. In that case,

 appropriate handling should be added to ~/.mime.types and mailcap.

 If the extension is handled by zsh-mime-handler but the file is not opened cor?

 rectly, either the handler defined for the type is incorrect, or the flags associ?

 ated with it are in appropriate. Running zsh-mime-setup -l will show the handler

 and, if there are any, the flags. A %s in the handler is replaced by the file

 (suitably quoted if necessary). Check that the handler program listed lists and

 can be run in the way shown. Also check that the flags needsterminal or copi?

 ousoutput are set if the handler needs to be run under a terminal; the second flag

 is used if the output should be sent to a pager. An example of a suitable mailcap

 entry for such a program is:

 text/html; /usr/bin/lynx '%s'; needsterminal

 Running `zsh-mime-handler -l command line' prints the command line that would be

 executed, simplified to remove the effect of any flags, and quoted so that the out?

 put can be run as a complete zsh command line. This is used by the completion sys?

 tem to decide how to complete after a file handled by zsh-mime-setup.

 pick-web-browser

 This function is separate from the two MIME functions described above and can be

 assigned directly to a suffix:

 autoload -U pick-web-browser

 alias -s html=pick-web-browser

 It is provided as an intelligent front end to dispatch a web browser. It may be

 run as either a function or a shell script. The status 255 is returned if no Page 76/93

 browser could be started.

 Various styles are available to customize the choice of browsers:

 browser-style

 The value of the style is an array giving preferences in decreasing order

 for the type of browser to use. The values of elements may be

 running

 Use a GUI browser that is already running when an X Window display is

 available. The browsers listed in the x-browsers style are tried in

 order until one is found; if it is, the file will be displayed in

 that browser, so the user may need to check whether it has appeared.

 If no running browser is found, one is not started. Browsers other

 than Firefox, Opera and Konqueror are assumed to understand the

 Mozilla syntax for opening a URL remotely.

 x Start a new GUI browser when an X Window display is available.

 Search for the availability of one of the browsers listed in the

 x-browsers style and start the first one that is found. No check is

 made for an already running browser.

 tty Start a terminal-based browser. Search for the availability of one

 of the browsers listed in the tty-browsers style and start the first

 one that is found.

 If the style is not set the default running x tty is used.

 x-browsers

 An array in decreasing order of preference of browsers to use when running

 under the X Window System. The array consists of the command name under

 which to start the browser. They are looked up in the context :mime: (which

 may be extended in future, so appending `*' is recommended). For example,

 zstyle ':mime:*' x-browsers opera konqueror firefox

 specifies that pick-web-browser should first look for a running instance of

 Opera, Konqueror or Firefox, in that order, and if it fails to find any

 should attempt to start Opera. The default is firefox mozilla netscape

 opera konqueror.

 tty-browsers

 An array similar to x-browsers, except that it gives browsers to use when no Page 77/93

 X Window display is available. The default is elinks links lynx.

 command

 If it is set this style is used to pick the command used to open a page for

 a browser. The context is :mime:browser:new:$browser: to start a new

 browser or :mime:browser:running:$browser: to open a URL in a browser al?

 ready running on the current X display, where $browser is the value matched

 in the x-browsers or tty-browsers style. The escape sequence %b in the

 style's value will be replaced by the browser, while %u will be replaced by

 the URL. If the style is not set, the default for all new instances is

 equivalent to %b %u and the defaults for using running browsers are equiva?

 lent to the values kfmclient openURL %u for Konqueror, firefox -new-tab %u

 for Firefox, opera -newpage %u for Opera, and %b -remote "openUrl(%u)" for

 all others.

MATHEMATICAL FUNCTIONS

 zcalc [-erf] [expression ...]

 A reasonably powerful calculator based on zsh's arithmetic evaluation facility.

 The syntax is similar to that of formulae in most programming languages; see the

 section `Arithmetic Evaluation' in zshmisc(1) for details.

 Non-programmers should note that, as in many other programming languages, expres?

 sions involving only integers (whether constants without a `.', variables contain?

 ing such constants as strings, or variables declared to be integers) are by default

 evaluated using integer arithmetic, which is not how an ordinary desk calculator

 operates. To force floating point operation, pass the option -f; see further notes

 below.

 If the file ~/.zcalcrc exists it will be sourced inside the function once it is set

 up and about to process the command line. This can be used, for example, to set

 shell options; emulate -L zsh and setopt extendedglob are in effect at this point.

 Any failure to source the file if it exists is treated as fatal. As with other

 initialisation files, the directory $ZDOTDIR is used instead of $HOME if it is set.

 The mathematical library zsh/mathfunc will be loaded if it is available; see the

 section `The zsh/mathfunc Module' in zshmodules(1). The mathematical functions

 correspond to the raw system libraries, so trigonometric functions are evaluated

 using radians, and so on. Page 78/93

 Each line typed is evaluated as an expression. The prompt shows a number, which

 corresponds to a positional parameter where the result of that calculation is

 stored. For example, the result of the calculation on the line preceded by `4> '

 is available as $4. The last value calculated is available as ans. Full command

 line editing, including the history of previous calculations, is available; the

 history is saved in the file ~/.zcalc_history. To exit, enter a blank line or type

 `:q' on its own (`q' is allowed for historical compatibility).

 A line ending with a single backslash is treated in the same fashion as it is in

 command line editing: the backslash is removed, the function prompts for more in?

 put (the prompt is preceded by `...' to indicate this), and the lines are combined

 into one to get the final result. In addition, if the input so far contains more

 open than close parentheses zcalc will prompt for more input.

 If arguments are given to zcalc on start up, they are used to prime the first few

 positional parameters. A visual indication of this is given when the calculator

 starts.

 The constants PI (3.14159...) and E (2.71828...) are provided. Parameter assign?

 ment is possible, but note that all parameters will be put into the global name?

 space unless the :local special command is used. The function creates local vari?

 ables whose names start with _, so users should avoid doing so. The variables ans

 (the last answer) and stack (the stack in RPN mode) may be referred to directly;

 stack is an array but elements of it are numeric. Various other special variables

 are used locally with their standard meaning, for example compcontext, match, mbe?

 gin, mend, psvar.

 The output base can be initialised by passing the option `-#base', for example

 `zcalc -#16' (the `#' may have to be quoted, depending on the globbing options

 set).

 If the option `-e' is set, the function runs non-interactively: the arguments are

 treated as expressions to be evaluated as if entered interactively line by line.

 If the option `-f' is set, all numbers are treated as floating point, hence for ex?

 ample the expression `3/4' evaluates to 0.75 rather than 0. Options must appear in

 separate words.

 If the option `-r' is set, RPN (Reverse Polish Notation) mode is entered. This has

 various additional properties: Page 79/93

 Stack Evaluated values are maintained in a stack; this is contained in an array

 named stack with the most recent value in ${stack[1]}.

 Operators and functions

 If the line entered matches an operator (+, -, *, /, **, ^, | or &) or a

 function supplied by the zsh/mathfunc library, the bottom element or ele?

 ments of the stack are popped to use as the argument or arguments. The

 higher elements of stack (least recent) are used as earlier arguments. The

 result is then pushed into ${stack[1]}.

 Expressions

 Other expressions are evaluated normally, printed, and added to the stack as

 numeric values. The syntax within expressions on a single line is normal

 shell arithmetic (not RPN).

 Stack listing

 If an integer follows the option -r with no space, then on every evaluation

 that many elements of the stack, where available, are printed instead of

 just the most recent result. Hence, for example, zcalc -r4 shows $stack[4]

 to $stack[1] each time results are printed.

 Duplication: =

 The pseudo-operator = causes the most recent element of the stack to be du?

 plicated onto the stack.

 pop The pseudo-function pop causes the most recent element of the stack to be

 popped. A `>' on its own has the same effect.

 >ident The expression > followed (with no space) by a shell identifier causes the

 most recent element of the stack to be popped and assigned to the variable

 with that name. The variable is local to the zcalc function.

 <ident The expression < followed (with no space) by a shell identifier causes the

 value of the variable with that name to be pushed onto the stack. ident may

 be an integer, in which case the previous result with that number (as shown

 before the > in the standard zcalc prompt) is put on the stack.

 Exchange: xy

 The pseudo-function xy causes the most recent two elements of the stack to

 be exchanged. `<>' has the same effect.

 The prompt is configurable via the parameter ZCALCPROMPT, which undergoes standard Page 80/93

 prompt expansion. The index of the current entry is stored locally in the first

 element of the array psvar, which can be referred to in ZCALCPROMPT as `%1v'. The

 default prompt is `%1v> '.

 The variable ZCALC_ACTIVE is set within the function and can be tested by nested

 functions; it has the value rpn if RPN mode is active, else 1.

 A few special commands are available; these are introduced by a colon. For back?

 ward compatibility, the colon may be omitted for certain commands. Completion is

 available if compinit has been run.

 The output precision may be specified within zcalc by special commands familiar

 from many calculators.

 :norm The default output format. It corresponds to the printf %g specification.

 Typically this shows six decimal digits.

 :sci digits

 Scientific notation, corresponding to the printf %g output format with the

 precision given by digits. This produces either fixed point or exponential

 notation depending on the value output.

 :fix digits

 Fixed point notation, corresponding to the printf %f output format with the

 precision given by digits.

 :eng digits

 Exponential notation, corresponding to the printf %E output format with the

 precision given by digits.

 :raw Raw output: this is the default form of the output from a math evaluation.

 This may show more precision than the number actually possesses.

 Other special commands:

 :!line...

 Execute line... as a normal shell command line. Note that it is executed in

 the context of the function, i.e. with local variables. Space is optional

 after :!.

 :local arg ...

 Declare variables local to the function. Other variables may be used, too,

 but they will be taken from or put into the global scope.

 :function name [body] Page 81/93

 Define a mathematical function or (with no body) delete it. :function may

 be abbreviated to :func or simply :f. The name may contain the same charac?

 ters as a shell function name. The function is defined using zmathfuncdef,

 see below.

 Note that zcalc takes care of all quoting. Hence for example:

 :f cube $1 * $1 * $1

 defines a function to cube the sole argument. Functions so defined, or in?

 deed any functions defined directly or indirectly using functions -M, are

 available to execute by typing only the name on the line in RPN mode; this

 pops the appropriate number of arguments off the stack to pass to the func?

 tion, i.e. 1 in the case of the example cube function. If there are op?

 tional arguments only the mandatory arguments are supplied by this means.

 [#base]

 This is not a special command, rather part of normal arithmetic syntax; how?

 ever, when this form appears on a line by itself the default output radix is

 set to base. Use, for example, `[#16]' to display hexadecimal output pre?

 ceded by an indication of the base, or `[##16]' just to display the raw num?

 ber in the given base. Bases themselves are always specified in decimal.

 `[#]' restores the normal output format. Note that setting an output base

 suppresses floating point output; use `[#]' to return to normal operation.

 $var Print out the value of var literally; does not affect the calculation. To

 use the value of var, omit the leading `$'.

 See the comments in the function for a few extra tips.

 min(arg, ...)

 max(arg, ...)

 sum(arg, ...)

 zmathfunc

 The function zmathfunc defines the three mathematical functions min, max, and sum.

 The functions min and max take one or more arguments. The function sum takes zero

 or more arguments. Arguments can be of different types (ints and floats).

 Not to be confused with the zsh/mathfunc module, described in the section `The

 zsh/mathfunc Module' in zshmodules(1).

 zmathfuncdef [mathfunc [body]] Page 82/93

 A convenient front end to functions -M.

 With two arguments, define a mathematical function named mathfunc which can be used

 in any form of arithmetic evaluation. body is a mathematical expression to imple?

 ment the function. It may contain references to position parameters $1, $2, ...

 to refer to mandatory parameters and ${1:-defvalue} ... to refer to optional pa?

 rameters. Note that the forms must be strictly adhered to for the function to cal?

 culate the correct number of arguments. The implementation is held in a shell

 function named zsh_math_func_mathfunc; usually the user will not need to refer to

 the shell function directly. Any existing function of the same name is silently

 replaced.

 With one argument, remove the mathematical function mathfunc as well as the shell

 function implementation.

 With no arguments, list all mathfunc functions in a form suitable for restoring the

 definition. The functions have not necessarily been defined by zmathfuncdef.

USER CONFIGURATION FUNCTIONS

 The zsh/newuser module comes with a function to aid in configuring shell options for new

 users. If the module is installed, this function can also be run by hand. It is avail?

 able even if the module's default behaviour, namely running the function for a new user

 logging in without startup files, is inhibited.

 zsh-newuser-install [-f]

 The function presents the user with various options for customizing their initial?

 ization scripts. Currently only ~/.zshrc is handled. $ZDOTDIR/.zshrc is used in?

 stead if the parameter ZDOTDIR is set; this provides a way for the user to config?

 ure a file without altering an existing .zshrc.

 By default the function exits immediately if it finds any of the files .zshenv,

 .zprofile, .zshrc, or .zlogin in the appropriate directory. The option -f is re?

 quired in order to force the function to continue. Note this may happen even if

 .zshrc itself does not exist.

 As currently configured, the function will exit immediately if the user has root

 privileges; this behaviour cannot be overridden.

 Once activated, the function's behaviour is supposed to be self-explanatory. Menus

 are present allowing the user to alter the value of options and parameters. Sug?

 gestions for improvements are always welcome. Page 83/93

 When the script exits, the user is given the opportunity to save the new file or

 not; changes are not irreversible until this point. However, the script is careful

 to restrict changes to the file only to a group marked by the lines `# Lines con?

 figured by zsh-newuser-install' and `# End of lines configured by zsh-newuser-in?

 stall'. In addition, the old version of .zshrc is saved to a file with the suffix

 .zni appended.

 If the function edits an existing .zshrc, it is up to the user to ensure that the

 changes made will take effect. For example, if control usually returns early from

 the existing .zshrc the lines will not be executed; or a later initialization file

 may override options or parameters, and so on. The function itself does not at?

 tempt to detect any such conflicts.

OTHER FUNCTIONS

 There are a large number of helpful functions in the Functions/Misc directory of the zsh

 distribution. Most are very simple and do not require documentation here, but a few are

 worthy of special mention.

 Descriptions

 colors This function initializes several associative arrays to map color names to (and

 from) the ANSI standard eight-color terminal codes. These are used by the prompt

 theme system (see above). You seldom should need to run colors more than once.

 The eight base colors are: black, red, green, yellow, blue, magenta, cyan, and

 white. Each of these has codes for foreground and background. In addition there

 are seven intensity attributes: bold, faint, standout, underline, blink, reverse,

 and conceal. Finally, there are seven codes used to negate attributes: none (reset

 all attributes to the defaults), normal (neither bold nor faint), no-standout,

 no-underline, no-blink, no-reverse, and no-conceal.

 Some terminals do not support all combinations of colors and intensities.

 The associative arrays are:

 color

 colour Map all the color names to their integer codes, and integer codes to the

 color names. The eight base names map to the foreground color codes, as do

 names prefixed with `fg-', such as `fg-red'. Names prefixed with `bg-',

 such as `bg-blue', refer to the background codes. The reverse mapping from

 code to color yields base name for foreground codes and the bg- form for Page 84/93

 backgrounds.

 Although it is a misnomer to call them `colors', these arrays also map the

 other fourteen attributes from names to codes and codes to names.

 fg

 fg_bold

 fg_no_bold

 Map the eight basic color names to ANSI terminal escape sequences that set

 the corresponding foreground text properties. The fg sequences change the

 color without changing the eight intensity attributes.

 bg

 bg_bold

 bg_no_bold

 Map the eight basic color names to ANSI terminal escape sequences that set

 the corresponding background properties. The bg sequences change the color

 without changing the eight intensity attributes.

 In addition, the scalar parameters reset_color and bold_color are set to the ANSI

 terminal escapes that turn off all attributes and turn on bold intensity, respec?

 tively.

 fned [-x num] name

 Same as zed -f. This function does not appear in the zsh distribution, but can be

 created by linking zed to the name fned in some directory in your fpath.

 is-at-least needed [present]

 Perform a greater-than-or-equal-to comparison of two strings having the format of a

 zsh version number; that is, a string of numbers and text with segments separated

 by dots or dashes. If the present string is not provided, $ZSH_VERSION is used.

 Segments are paired left-to-right in the two strings with leading non-number parts

 ignored. If one string has fewer segments than the other, the missing segments are

 considered zero.

 This is useful in startup files to set options and other state that are not avail?

 able in all versions of zsh.

 is-at-least 3.1.6-15 && setopt NO_GLOBAL_RCS

 is-at-least 3.1.0 && setopt HIST_REDUCE_BLANKS

 is-at-least 2.6-17 || print "You can't use is-at-least here." Page 85/93

 nslookup [arg ...]

 This wrapper function for the nslookup command requires the zsh/zpty module (see

 zshmodules(1)). It behaves exactly like the standard nslookup except that it pro?

 vides customizable prompts (including a right-side prompt) and completion of

 nslookup commands, host names, etc. (if you use the function-based completion sys?

 tem). Completion styles may be set with the context prefix `:completion:nslookup'.

 See also the pager, prompt and rprompt styles below.

 regexp-replace var regexp replace

 Use regular expressions to perform a global search and replace operation on a vari?

 able. POSIX extended regular expressions are used, unless the option RE_MATCH_PCRE

 has been set, in which case Perl-compatible regular expressions are used (this re?

 quires the shell to be linked against the pcre library).

 var is the name of the variable containing the string to be matched. The variable

 will be modified directly by the function. The variables MATCH, MBEGIN, MEND,

 match, mbegin, mend should be avoided as these are used by the regular expression

 code.

 regexp is the regular expression to match against the string.

 replace is the replacement text. This can contain parameter, command and arith?

 metic expressions which will be replaced: in particular, a reference to $MATCH

 will be replaced by the text matched by the pattern.

 The return status is 0 if at least one match was performed, else 1.

 run-help cmd

 This function is designed to be invoked by the run-help ZLE widget, in place of the

 default alias. See `Accessing On-Line Help' above for setup instructions.

 In the discussion which follows, if cmd is a file system path, it is first reduced

 to its rightmost component (the file name).

 Help is first sought by looking for a file named cmd in the directory named by the

 HELPDIR parameter. If no file is found, an assistant function, alias, or command

 named run-help-cmd is sought. If found, the assistant is executed with the rest of

 the current command line (everything after the command name cmd) as its arguments.

 When neither file nor assistant is found, the external command `man cmd' is run.

 An example assistant for the "ssh" command:

 run-help-ssh() { Page 86/93

 emulate -LR zsh

 local -a args

 # Delete the "-l username" option

 zparseopts -D -E -a args l:

 # Delete other options, leaving: host command

 args=(${@:#-*})

 if [[${#args} -lt 2]]; then

 man ssh

 else

 run-help $args[2]

 fi

 }

 Several of these assistants are provided in the Functions/Misc directory. These

 must be autoloaded, or placed as executable scripts in your search path, in order

 to be found and used by run-help.

 run-help-git

 run-help-ip

 run-help-openssl

 run-help-p4

 run-help-sudo

 run-help-svk

 run-help-svn

 Assistant functions for the git, ip, openssl, p4, sudo, svk, and svn, com?

 mands.

 tetris Zsh was once accused of not being as complete as Emacs, because it lacked a Tetris

 game. This function was written to refute this vicious slander.

 This function must be used as a ZLE widget:

 autoload -U tetris

 zle -N tetris

 bindkey keys tetris

 To start a game, execute the widget by typing the keys. Whatever command line you

 were editing disappears temporarily, and your keymap is also temporarily replaced

 by the Tetris control keys. The previous editor state is restored when you quit Page 87/93

 the game (by pressing `q') or when you lose.

 If you quit in the middle of a game, the next invocation of the tetris widget will

 continue where you left off. If you lost, it will start a new game.

 tetriscurses

 This is a port of the above to zcurses. The input handling is improved a bit so

 that moving a block sideways doesn't automatically advance a timestep, and the

 graphics use unicode block graphics.

 This version does not save the game state between invocations, and is not invoked

 as a widget, but rather as:

 autoload -U tetriscurses

 tetriscurses

 zargs [option ... --] [input ...] [-- command [arg ...]]

 This function has a similar purpose to GNU xargs. Instead of reading lines of ar?

 guments from the standard input, it takes them from the command line. This is use?

 ful because zsh, especially with recursive glob operators, often can construct a

 command line for a shell function that is longer than can be accepted by an exter?

 nal command.

 The option list represents options of the zargs command itself, which are the same

 as those of xargs. The input list is the collection of strings (often file names)

 that become the arguments of the command, analogous to the standard input of xargs.

 Finally, the arg list consists of those arguments (usually options) that are passed

 to the command each time it runs. The arg list precedes the elements from the in?

 put list in each run. If no command is provided, then no arg list may be provided,

 and in that event the default command is `print' with arguments `-r --'.

 For example, to get a long ls listing of all non-hidden plain files in the current

 directory or its subdirectories:

 autoload -U zargs

 zargs -- **/*(.) -- ls -ld --

 The first and third occurrences of `--' are used to mark the end of options for

 zargs and ls respectively to guard against filenames starting with `-', while the

 second is used to separate the list of files from the command to run (`ls -ld --').

 The first `--' would also be needed if there was a chance the list might be empty

 as in: Page 88/93

 zargs -r -- ./*.back(#qN) -- rm -f

 In the event that the string `--' is or may be an input, the -e option may be used

 to change the end-of-inputs marker. Note that this does not change the end-of-op?

 tions marker. For example, to use `..' as the marker:

 zargs -e.. -- **/*(.) .. ls -ld --

 This is a good choice in that example because no plain file can be named `..', but

 the best end-marker depends on the circumstances.

 The options -i, -I, -l, -L, and -n differ slightly from their usage in xargs.

 There are no input lines for zargs to count, so -l and -L count through the input

 list, and -n counts the number of arguments passed to each execution of command,

 including any arg list. Also, any time -i or -I is used, each input is processed

 separately as if by `-L 1'.

 For details of the other zargs options, see xargs(1) (but note the difference in

 function between zargs and xargs) or run zargs with the --help option.

 zed [-f [-x num]] name

 zed -b This function uses the ZLE editor to edit a file or function.

 Only one name argument is allowed. If the -f option is given, the name is taken to

 be that of a function; if the function is marked for autoloading, zed searches for

 it in the fpath and loads it. Note that functions edited this way are installed

 into the current shell, but not written back to the autoload file. In this case

 the -x option specifies that leading tabs indenting the function according to syn?

 tax should be converted into the given number of spaces; `-x 2' is consistent with

 the layout of functions distributed with the shell.

 Without -f, name is the path name of the file to edit, which need not exist; it is

 created on write, if necessary.

 While editing, the function sets the main keymap to zed and the vi command keymap

 to zed-vicmd. These will be copied from the existing main and vicmd keymaps if

 they do not exist the first time zed is run. They can be used to provide special

 key bindings used only in zed.

 If it creates the keymap, zed rebinds the return key to insert a line break and

 `^X^W' to accept the edit in the zed keymap, and binds `ZZ' to accept the edit in

 the zed-vicmd keymap.

 The bindings alone can be installed by running `zed -b'. This is suitable for Page 89/93

 putting into a startup file. Note that, if rerun, this will overwrite the existing

 zed and zed-vicmd keymaps.

 Completion is available, and styles may be set with the context prefix `:comple?

 tion:zed'.

 A zle widget zed-set-file-name is available. This can be called by name from

 within zed using `\ex zed-set-file-name' (note, however, that because of zed's re?

 bindings you will have to type ^j at the end instead of the return key), or can be

 bound to a key in either of the zed or zed-vicmd keymaps after `zed -b' has been

 run. When the widget is called, it prompts for a new name for the file being

 edited. When zed exits the file will be written under that name and the original

 file will be left alone. The widget has no effect with `zed -f'.

 While zed-set-file-name is running, zed uses the keymap zed-normal-keymap, which is

 linked from the main keymap in effect at the time zed initialised its bindings.

 (This is to make the return key operate normally.) The result is that if the main

 keymap has been changed, the widget won't notice. This is not a concern for most

 users.

 zcp [-finqQvwW] srcpat dest

 zln [-finqQsvwW] srcpat dest

 Same as zmv -C and zmv -L, respectively. These functions do not appear in the zsh

 distribution, but can be created by linking zmv to the names zcp and zln in some

 directory in your fpath.

 zkbd See `Keyboard Definition' above.

 zmv [-finqQsvwW] [-C | -L | -M | -{p|P} program] [-o optstring]

 srcpat dest

 Move (usually, rename) files matching the pattern srcpat to corresponding files

 having names of the form given by dest, where srcpat contains parentheses surround?

 ing patterns which will be replaced in turn by $1, $2, ... in dest. For example,

 zmv '(*).lis' '$1.txt'

 renames `foo.lis' to `foo.txt', `my.old.stuff.lis' to `my.old.stuff.txt', and so

 on.

 The pattern is always treated as an EXTENDED_GLOB pattern. Any file whose name is

 not changed by the substitution is simply ignored. Any error (a substitution re?

 sulted in an empty string, two substitutions gave the same result, the destination Page 90/93

 was an existing regular file and -f was not given) causes the entire function to

 abort without doing anything.

 In addition to pattern replacement, the variable $f can be referrred to in the sec?

 ond (replacement) argument. This makes it possible to use variable substitution to

 alter the argument; see examples below.

 Options:

 -f Force overwriting of destination files. Not currently passed down to the

 mv/cp/ln command due to vagaries of implementations (but you can use -o-f to

 do that).

 -i Interactive: show each line to be executed and ask the user whether to exe?

 cute it. `Y' or `y' will execute it, anything else will skip it. Note that

 you just need to type one character.

 -n No execution: print what would happen, but don't do it.

 -q Turn bare glob qualifiers off: now assumed by default, so this has no ef?

 fect.

 -Q Force bare glob qualifiers on. Don't turn this on unless you are actually

 using glob qualifiers in a pattern.

 -s Symbolic, passed down to ln; only works with -L.

 -v Verbose: print each command as it's being executed.

 -w Pick out wildcard parts of the pattern, as described above, and implicitly

 add parentheses for referring to them.

 -W Just like -w, with the addition of turning wildcards in the replacement pat?

 tern into sequential ${1} .. ${N} references.

 -C

 -L

 -M Force cp, ln or mv, respectively, regardless of the name of the function.

 -p program

 Call program instead of cp, ln or mv. Whatever it does, it should at least

 understand the form `program -- oldname newname' where oldname and newname

 are filenames generated by zmv. program will be split into words, so might

 be e.g. the name of an archive tool plus a copy or rename subcommand.

 -P program

 As -p program, except that program does not accept a following -- to indi? Page 91/93

 cate the end of options. In this case filenames must already be in a sane

 form for the program in question.

 -o optstring

 The optstring is split into words and passed down verbatim to the cp, ln or

 mv command called to perform the work. It should probably begin with a `-'.

 Further examples:

 zmv -v '(* *)' '${1// /_}'

 For any file in the current directory with at least one space in the name, replace

 every space by an underscore and display the commands executed.

 zmv -v '* *' '${f// /_}'

 This does exactly the same by referring to the file name stored in $f.

 For more complete examples and other implementation details, see the zmv source

 file, usually located in one of the directories named in your fpath, or in Func?

 tions/Misc/zmv in the zsh distribution.

 zrecompile

 See `Recompiling Functions' above.

 zstyle+ context style value [+ subcontext style value ...]

 This makes defining styles a bit simpler by using a single `+' as a special token

 that allows you to append a context name to the previously used context name. Like

 this:

 zstyle+ ':foo:bar' style1 value1 \

 +':baz' style2 value2 \

 +':frob' style3 value3

 This defines style1 with value1 for the context :foo:bar as usual, but it also de?

 fines style2 with value2 for the context :foo:bar:baz and style3 with value3 for

 :foo:bar:frob. Any subcontext may be the empty string to re-use the first context

 unchanged.

 Styles

 insert-tab

 The zed function sets this style in context `:completion:zed:*' to turn off comple?

 tion when TAB is typed at the beginning of a line. You may override this by set?

 ting your own value for this context and style.

 pager The nslookup function looks up this style in the context `:nslookup' to determine Page 92/93

 the program used to display output that does not fit on a single screen.

 prompt

 rprompt

 The nslookup function looks up this style in the context `:nslookup' to set the

 prompt and the right-side prompt, respectively. The usual expansions for the PS1

 and RPS1 parameters may be used (see EXPANSION OF PROMPT SEQUENCES in zshmisc(1)).

zsh 5.8.1 February 12, 2022 ZSHCONTRIB(1)

Page 93/93

