
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshoptions.1'

$ man zshoptions.1

ZSHOPTIONS(1) General Commands Manual ZSHOPTIONS(1)

NAME

 zshoptions - zsh options

SPECIFYING OPTIONS

 Options are primarily referred to by name. These names are case insensitive and under?

 scores are ignored. For example, `allexport' is equivalent to `A__lleXP_ort'.

 The sense of an option name may be inverted by preceding it with `no', so `setopt No_Beep'

 is equivalent to `unsetopt beep'. This inversion can only be done once, so `nonobeep' is

 not a synonym for `beep'. Similarly, `tify' is not a synonym for `nonotify' (the inver?

 sion of `notify').

 Some options also have one or more single letter names. There are two sets of single let?

 ter options: one used by default, and another used to emulate sh/ksh (used when the SH_OP?

 TION_LETTERS option is set). The single letter options can be used on the shell command

 line, or with the set, setopt and unsetopt builtins, as normal Unix options preceded by

 `-'.

 The sense of the single letter options may be inverted by using `+' instead of `-'. Some

 of the single letter option names refer to an option being off, in which case the inver?

 sion of that name refers to the option being on. For example, `+n' is the short name of

 `exec', and `-n' is the short name of its inversion, `noexec'.

 In strings of single letter options supplied to the shell at startup, trailing whitespace

 will be ignored; for example the string `-f ' will be treated just as `-f', but the

 string `-f i' is an error. This is because many systems which implement the `#!' mecha?

 nism for calling scripts do not strip trailing whitespace. Page 1/36

DESCRIPTION OF OPTIONS

 In the following list, options set by default in all emulations are marked <D>; those set

 by default only in csh, ksh, sh, or zsh emulations are marked <C>, <K>, <S>, <Z> as appro?

 priate. When listing options (by `setopt', `unsetopt', `set -o' or `set +o'), those

 turned on by default appear in the list prefixed with `no'. Hence (unless KSH_OP?

 TION_PRINT is set), `setopt' shows all options whose settings are changed from the de?

 fault.

 Changing Directories

 AUTO_CD (-J)

 If a command is issued that can't be executed as a normal command, and the command

 is the name of a directory, perform the cd command to that directory. This option

 is only applicable if the option SHIN_STDIN is set, i.e. if commands are being read

 from standard input. The option is designed for interactive use; it is recommended

 that cd be used explicitly in scripts to avoid ambiguity.

 AUTO_PUSHD (-N)

 Make cd push the old directory onto the directory stack.

 CDABLE_VARS (-T)

 If the argument to a cd command (or an implied cd with the AUTO_CD option set) is

 not a directory, and does not begin with a slash, try to expand the expression as

 if it were preceded by a `~' (see the section `Filename Expansion').

 CD_SILENT

 Never print the working directory after a cd (whether explicit or implied with the

 AUTO_CD option set). cd normally prints the working directory when the argument

 given to it was -, a stack entry, or the name of a directory found under CDPATH.

 Note that this is distinct from pushd's stack-printing behaviour, which is con?

 trolled by PUSHD_SILENT. This option overrides the printing-related effects of

 POSIX_CD.

 CHASE_DOTS

 When changing to a directory containing a path segment `..' which would otherwise

 be treated as canceling the previous segment in the path (in other words, `foo/..'

 would be removed from the path, or if `..' is the first part of the path, the last

 part of the current working directory would be removed), instead resolve the path

 to the physical directory. This option is overridden by CHASE_LINKS. Page 2/36

 For example, suppose /foo/bar is a link to the directory /alt/rod. Without this

 option set, `cd /foo/bar/..' changes to /foo; with it set, it changes to /alt. The

 same applies if the current directory is /foo/bar and `cd ..' is used. Note that

 all other symbolic links in the path will also be resolved.

 CHASE_LINKS (-w)

 Resolve symbolic links to their true values when changing directory. This also has

 the effect of CHASE_DOTS, i.e. a `..' path segment will be treated as referring to

 the physical parent, even if the preceding path segment is a symbolic link.

 POSIX_CD <K> <S>

 Modifies the behaviour of cd, chdir and pushd commands to make them more compatible

 with the POSIX standard. The behaviour with the option unset is described in the

 documentation for the cd builtin in zshbuiltins(1). If the option is set, the

 shell does not test for directories beneath the local directory (`.') until after

 all directories in cdpath have been tested, and the cd and chdir commands do not

 recognise arguments of the form `{+|-}n' as directory stack entries.

 Also, if the option is set, the conditions under which the shell prints the new di?

 rectory after changing to it are modified. It is no longer restricted to interac?

 tive shells (although printing of the directory stack with pushd is still limited

 to interactive shells); and any use of a component of CDPATH, including a `.' but

 excluding an empty component that is otherwise treated as `.', causes the directory

 to be printed.

 PUSHD_IGNORE_DUPS

 Don't push multiple copies of the same directory onto the directory stack.

 PUSHD_MINUS

 Exchanges the meanings of `+' and `-' when used with a number to specify a direc?

 tory in the stack.

 PUSHD_SILENT (-E)

 Do not print the directory stack after pushd or popd.

 PUSHD_TO_HOME (-D)

 Have pushd with no arguments act like `pushd $HOME'.

 Completion

 ALWAYS_LAST_PROMPT <D>

 If unset, key functions that list completions try to return to the last prompt if Page 3/36

 given a numeric argument. If set these functions try to return to the last prompt

 if given no numeric argument.

 ALWAYS_TO_END

 If a completion is performed with the cursor within a word, and a full completion

 is inserted, the cursor is moved to the end of the word. That is, the cursor is

 moved to the end of the word if either a single match is inserted or menu comple?

 tion is performed.

 AUTO_LIST (-9) <D>

 Automatically list choices on an ambiguous completion.

 AUTO_MENU <D>

 Automatically use menu completion after the second consecutive request for comple?

 tion, for example by pressing the tab key repeatedly. This option is overridden by

 MENU_COMPLETE.

 AUTO_NAME_DIRS

 Any parameter that is set to the absolute name of a directory immediately becomes a

 name for that directory, that will be used by the `%~' and related prompt se?

 quences, and will be available when completion is performed on a word starting with

 `~'. (Otherwise, the parameter must be used in the form `~param' first.)

 AUTO_PARAM_KEYS <D>

 If a parameter name was completed and a following character (normally a space) au?

 tomatically inserted, and the next character typed is one of those that have to

 come directly after the name (like `}', `:', etc.), the automatically added charac?

 ter is deleted, so that the character typed comes immediately after the parameter

 name. Completion in a brace expansion is affected similarly: the added character

 is a `,', which will be removed if `}' is typed next.

 AUTO_PARAM_SLASH <D>

 If a parameter is completed whose content is the name of a directory, then add a

 trailing slash instead of a space.

 AUTO_REMOVE_SLASH <D>

 When the last character resulting from a completion is a slash and the next charac?

 ter typed is a word delimiter, a slash, or a character that ends a command (such as

 a semicolon or an ampersand), remove the slash.

 BASH_AUTO_LIST Page 4/36

 On an ambiguous completion, automatically list choices when the completion function

 is called twice in succession. This takes precedence over AUTO_LIST. The setting

 of LIST_AMBIGUOUS is respected. If AUTO_MENU is set, the menu behaviour will then

 start with the third press. Note that this will not work with MENU_COMPLETE, since

 repeated completion calls immediately cycle through the list in that case.

 COMPLETE_ALIASES

 Prevents aliases on the command line from being internally substituted before com?

 pletion is attempted. The effect is to make the alias a distinct command for com?

 pletion purposes.

 COMPLETE_IN_WORD

 If unset, the cursor is set to the end of the word if completion is started. Other?

 wise it stays there and completion is done from both ends.

 GLOB_COMPLETE

 When the current word has a glob pattern, do not insert all the words resulting

 from the expansion but generate matches as for completion and cycle through them

 like MENU_COMPLETE. The matches are generated as if a `*' was added to the end of

 the word, or inserted at the cursor when COMPLETE_IN_WORD is set. This actually

 uses pattern matching, not globbing, so it works not only for files but for any

 completion, such as options, user names, etc.

 Note that when the pattern matcher is used, matching control (for example, case-in?

 sensitive or anchored matching) cannot be used. This limitation only applies when

 the current word contains a pattern; simply turning on the GLOB_COMPLETE option

 does not have this effect.

 HASH_LIST_ALL <D>

 Whenever a command completion or spelling correction is attempted, make sure the

 entire command path is hashed first. This makes the first completion slower but

 avoids false reports of spelling errors.

 LIST_AMBIGUOUS <D>

 This option works when AUTO_LIST or BASH_AUTO_LIST is also set. If there is an un?

 ambiguous prefix to insert on the command line, that is done without a completion

 list being displayed; in other words, auto-listing behaviour only takes place when

 nothing would be inserted. In the case of BASH_AUTO_LIST, this means that the list

 will be delayed to the third call of the function. Page 5/36

 LIST_BEEP <D>

 Beep on an ambiguous completion. More accurately, this forces the completion wid?

 gets to return status 1 on an ambiguous completion, which causes the shell to beep

 if the option BEEP is also set; this may be modified if completion is called from a

 user-defined widget.

 LIST_PACKED

 Try to make the completion list smaller (occupying less lines) by printing the

 matches in columns with different widths.

 LIST_ROWS_FIRST

 Lay out the matches in completion lists sorted horizontally, that is, the second

 match is to the right of the first one, not under it as usual.

 LIST_TYPES (-X) <D>

 When listing files that are possible completions, show the type of each file with a

 trailing identifying mark.

 MENU_COMPLETE (-Y)

 On an ambiguous completion, instead of listing possibilities or beeping, insert the

 first match immediately. Then when completion is requested again, remove the first

 match and insert the second match, etc. When there are no more matches, go back to

 the first one again. reverse-menu-complete may be used to loop through the list in

 the other direction. This option overrides AUTO_MENU.

 REC_EXACT (-S)

 If the string on the command line exactly matches one of the possible completions,

 it is accepted, even if there is another completion (i.e. that string with some?

 thing else added) that also matches.

 Expansion and Globbing

 BAD_PATTERN (+2) <C> <Z>

 If a pattern for filename generation is badly formed, print an error message. (If

 this option is unset, the pattern will be left unchanged.)

 BARE_GLOB_QUAL <Z>

 In a glob pattern, treat a trailing set of parentheses as a qualifier list, if it

 contains no `|', `(' or (if special) `~' characters. See the section `Filename

 Generation'.

 BRACE_CCL Page 6/36

 Expand expressions in braces which would not otherwise undergo brace expansion to a

 lexically ordered list of all the characters. See the section `Brace Expansion'.

 CASE_GLOB <D>

 Make globbing (filename generation) sensitive to case. Note that other uses of

 patterns are always sensitive to case. If the option is unset, the presence of any

 character which is special to filename generation will cause case-insensitive

 matching. For example, cvs(/) can match the directory CVS owing to the presence of

 the globbing flag (unless the option BARE_GLOB_QUAL is unset).

 CASE_MATCH <D>

 Make regular expressions using the zsh/regex module (including matches with =~)

 sensitive to case.

 CSH_NULL_GLOB <C>

 If a pattern for filename generation has no matches, delete the pattern from the

 argument list; do not report an error unless all the patterns in a command have no

 matches. Overrides NOMATCH.

 EQUALS <Z>

 Perform = filename expansion. (See the section `Filename Expansion'.)

 EXTENDED_GLOB

 Treat the `#', `~' and `^' characters as part of patterns for filename generation,

 etc. (An initial unquoted `~' always produces named directory expansion.)

 FORCE_FLOAT

 Constants in arithmetic evaluation will be treated as floating point even without

 the use of a decimal point; the values of integer variables will be converted to

 floating point when used in arithmetic expressions. Integers in any base will be

 converted.

 GLOB (+F, ksh: +f) <D>

 Perform filename generation (globbing). (See the section `Filename Generation'.)

 GLOB_ASSIGN <C>

 If this option is set, filename generation (globbing) is performed on the right

 hand side of scalar parameter assignments of the form `name=pattern (e.g. `foo=*').

 If the result has more than one word the parameter will become an array with those

 words as arguments. This option is provided for backwards compatibility only: glob?

 bing is always performed on the right hand side of array assignments of the form Page 7/36

 `name=(value)' (e.g. `foo=(*)') and this form is recommended for clarity; with this

 option set, it is not possible to predict whether the result will be an array or a

 scalar.

 GLOB_DOTS (-4)

 Do not require a leading `.' in a filename to be matched explicitly.

 GLOB_STAR_SHORT

 When this option is set and the default zsh-style globbing is in effect, the pat?

 tern `**/*' can be abbreviated to `**' and the pattern `***/*' can be abbreviated

 to ***. Hence `**.c' finds a file ending in .c in any subdirectory, and `***.c'

 does the same while also following symbolic links. A / immediately after the `**'

 or `***' forces the pattern to be treated as the unabbreviated form.

 GLOB_SUBST <C> <K> <S>

 Treat any characters resulting from parameter expansion as being eligible for file?

 name expansion and filename generation, and any characters resulting from command

 substitution as being eligible for filename generation. Braces (and commas in be?

 tween) do not become eligible for expansion.

 HIST_SUBST_PATTERN

 Substitutions using the :s and :& history modifiers are performed with pattern

 matching instead of string matching. This occurs wherever history modifiers are

 valid, including glob qualifiers and parameters. See the section Modifiers in zsh?

 expn(1).

 IGNORE_BRACES (-I) <S>

 Do not perform brace expansion. For historical reasons this also includes the ef?

 fect of the IGNORE_CLOSE_BRACES option.

 IGNORE_CLOSE_BRACES

 When neither this option nor IGNORE_BRACES is set, a sole close brace character `}'

 is syntactically significant at any point on a command line. This has the effect

 that no semicolon or newline is necessary before the brace terminating a function

 or current shell construct. When either option is set, a closing brace is syntac?

 tically significant only in command position. Unlike IGNORE_BRACES, this option

 does not disable brace expansion.

 For example, with both options unset a function may be defined in the following

 fashion: Page 8/36

 args() { echo $# }

 while if either option is set, this does not work and something equivalent to the

 following is required:

 args() { echo $#; }

 KSH_GLOB <K>

 In pattern matching, the interpretation of parentheses is affected by a preceding

 `@', `*', `+', `?' or `!'. See the section `Filename Generation'.

 MAGIC_EQUAL_SUBST

 All unquoted arguments of the form `anything=expression' appearing after the com?

 mand name have filename expansion (that is, where expression has a leading `~' or

 `=') performed on expression as if it were a parameter assignment. The argument is

 not otherwise treated specially; it is passed to the command as a single argument,

 and not used as an actual parameter assignment. For example, in echo

 foo=~/bar:~/rod, both occurrences of ~ would be replaced. Note that this happens

 anyway with typeset and similar statements.

 This option respects the setting of the KSH_TYPESET option. In other words, if

 both options are in effect, arguments looking like assignments will not undergo

 word splitting.

 MARK_DIRS (-8, ksh: -X)

 Append a trailing `/' to all directory names resulting from filename generation

 (globbing).

 MULTIBYTE <D>

 Respect multibyte characters when found in strings. When this option is set,

 strings are examined using the system library to determine how many bytes form a

 character, depending on the current locale. This affects the way characters are

 counted in pattern matching, parameter values and various delimiters.

 The option is on by default if the shell was compiled with MULTIBYTE_SUPPORT; oth?

 erwise it is off by default and has no effect if turned on.

 If the option is off a single byte is always treated as a single character. This

 setting is designed purely for examining strings known to contain raw bytes or

 other values that may not be characters in the current locale. It is not necessary

 to unset the option merely because the character set for the current locale does

 not contain multibyte characters. Page 9/36

 The option does not affect the shell's editor, which always uses the locale to de?

 termine multibyte characters. This is because the character set displayed by the

 terminal emulator is independent of shell settings.

 NOMATCH (+3) <C> <Z>

 If a pattern for filename generation has no matches, print an error, instead of

 leaving it unchanged in the argument list. This also applies to file expansion of

 an initial `~' or `='.

 NULL_GLOB (-G)

 If a pattern for filename generation has no matches, delete the pattern from the

 argument list instead of reporting an error. Overrides NOMATCH.

 NUMERIC_GLOB_SORT

 If numeric filenames are matched by a filename generation pattern, sort the file?

 names numerically rather than lexicographically.

 RC_EXPAND_PARAM (-P)

 Array expansions of the form `foo${xx}bar', where the parameter xx is set to (a b

 c), are substituted with `fooabar foobbar foocbar' instead of the default `fooa b

 cbar'. Note that an empty array will therefore cause all arguments to be removed.

 REMATCH_PCRE

 If set, regular expression matching with the =~ operator will use Perl-Compatible

 Regular Expressions from the PCRE library. (The zsh/pcre module must be avail?

 able.) If not set, regular expressions will use the extended regexp syntax pro?

 vided by the system libraries.

 SH_GLOB <K> <S>

 Disables the special meaning of `(', `|', `)' and '<' for globbing the result of

 parameter and command substitutions, and in some other places where the shell ac?

 cepts patterns. If SH_GLOB is set but KSH_GLOB is not, the shell allows the inter?

 pretation of subshell expressions enclosed in parentheses in some cases where there

 is no space before the opening parenthesis, e.g. !(true) is interpreted as if there

 were a space after the !. This option is set by default if zsh is invoked as sh or

 ksh.

 UNSET (+u, ksh: +u) <K> <S> <Z>

 Treat unset parameters as if they were empty when substituting, and as if they were

 zero when reading their values in arithmetic expansion and arithmetic commands. Page 10/36

 Otherwise they are treated as an error.

 WARN_CREATE_GLOBAL

 Print a warning message when a global parameter is created in a function by an as?

 signment or in math context. This often indicates that a parameter has not been

 declared local when it should have been. Parameters explicitly declared global

 from within a function using typeset -g do not cause a warning. Note that there is

 no warning when a local parameter is assigned to in a nested function, which may

 also indicate an error.

 WARN_NESTED_VAR

 Print a warning message when an existing parameter from an enclosing function

 scope, or global, is set in a function by an assignment or in math context. As?

 signment to shell special parameters does not cause a warning. This is the compan?

 ion to WARN_CREATE_GLOBAL as in this case the warning is only printed when a param?

 eter is not created. Where possible, use of typeset -g to set the parameter sup?

 presses the error, but note that this needs to be used every time the parameter is

 set. To restrict the effect of this option to a single function scope, use `func?

 tions -W'.

 For example, the following code produces a warning for the assignment inside the

 function nested as that overrides the value within toplevel

 toplevel() {

 local foo="in fn"

 nested

 }

 nested() {

 foo="in nested"

 }

 setopt warn_nested_var

 toplevel

 History

 APPEND_HISTORY <D>

 If this is set, zsh sessions will append their history list to the history file,

 rather than replace it. Thus, multiple parallel zsh sessions will all have the new

 entries from their history lists added to the history file, in the order that they Page 11/36

 exit. The file will still be periodically re-written to trim it when the number of

 lines grows 20% beyond the value specified by $SAVEHIST (see also the

 HIST_SAVE_BY_COPY option).

 BANG_HIST (+K) <C> <Z>

 Perform textual history expansion, csh-style, treating the character `!' specially.

 EXTENDED_HISTORY <C>

 Save each command's beginning timestamp (in seconds since the epoch) and the dura?

 tion (in seconds) to the history file. The format of this prefixed data is:

 `: <beginning time>:<elapsed seconds>;<command>'.

 HIST_ALLOW_CLOBBER

 Add `|' to output redirections in the history. This allows history references to

 clobber files even when CLOBBER is unset.

 HIST_BEEP <D>

 Beep in ZLE when a widget attempts to access a history entry which isn't there.

 HIST_EXPIRE_DUPS_FIRST

 If the internal history needs to be trimmed to add the current command line, set?

 ting this option will cause the oldest history event that has a duplicate to be

 lost before losing a unique event from the list. You should be sure to set the

 value of HISTSIZE to a larger number than SAVEHIST in order to give you some room

 for the duplicated events, otherwise this option will behave just like HIST_IG?

 NORE_ALL_DUPS once the history fills up with unique events.

 HIST_FCNTL_LOCK

 When writing out the history file, by default zsh uses ad-hoc file locking to avoid

 known problems with locking on some operating systems. With this option locking is

 done by means of the system's fcntl call, where this method is available. On re?

 cent operating systems this may provide better performance, in particular avoiding

 history corruption when files are stored on NFS.

 HIST_FIND_NO_DUPS

 When searching for history entries in the line editor, do not display duplicates of

 a line previously found, even if the duplicates are not contiguous.

 HIST_IGNORE_ALL_DUPS

 If a new command line being added to the history list duplicates an older one, the

 older command is removed from the list (even if it is not the previous event). Page 12/36

 HIST_IGNORE_DUPS (-h)

 Do not enter command lines into the history list if they are duplicates of the pre?

 vious event.

 HIST_IGNORE_SPACE (-g)

 Remove command lines from the history list when the first character on the line is

 a space, or when one of the expanded aliases contains a leading space. Only normal

 aliases (not global or suffix aliases) have this behaviour. Note that the command

 lingers in the internal history until the next command is entered before it van?

 ishes, allowing you to briefly reuse or edit the line. If you want to make it van?

 ish right away without entering another command, type a space and press return.

 HIST_LEX_WORDS

 By default, shell history that is read in from files is split into words on all

 white space. This means that arguments with quoted whitespace are not correctly

 handled, with the consequence that references to words in history lines that have

 been read from a file may be inaccurate. When this option is set, words read in

 from a history file are divided up in a similar fashion to normal shell command

 line handling. Although this produces more accurately delimited words, if the size

 of the history file is large this can be slow. Trial and error is necessary to de?

 cide.

 HIST_NO_FUNCTIONS

 Remove function definitions from the history list. Note that the function lingers

 in the internal history until the next command is entered before it vanishes, al?

 lowing you to briefly reuse or edit the definition.

 HIST_NO_STORE

 Remove the history (fc -l) command from the history list when invoked. Note that

 the command lingers in the internal history until the next command is entered be?

 fore it vanishes, allowing you to briefly reuse or edit the line.

 HIST_REDUCE_BLANKS

 Remove superfluous blanks from each command line being added to the history list.

 HIST_SAVE_BY_COPY <D>

 When the history file is re-written, we normally write out a copy of the file named

 $HISTFILE.new and then rename it over the old one. However, if this option is un?

 set, we instead truncate the old history file and write out the new version Page 13/36

 in-place. If one of the history-appending options is enabled, this option only has

 an effect when the enlarged history file needs to be re-written to trim it down to

 size. Disable this only if you have special needs, as doing so makes it possible

 to lose history entries if zsh gets interrupted during the save.

 When writing out a copy of the history file, zsh preserves the old file's permis?

 sions and group information, but will refuse to write out a new file if it would

 change the history file's owner.

 HIST_SAVE_NO_DUPS

 When writing out the history file, older commands that duplicate newer ones are

 omitted.

 HIST_VERIFY

 Whenever the user enters a line with history expansion, don't execute the line di?

 rectly; instead, perform history expansion and reload the line into the editing

 buffer.

 INC_APPEND_HISTORY

 This option works like APPEND_HISTORY except that new history lines are added to

 the $HISTFILE incrementally (as soon as they are entered), rather than waiting un?

 til the shell exits. The file will still be periodically re-written to trim it

 when the number of lines grows 20% beyond the value specified by $SAVEHIST (see

 also the HIST_SAVE_BY_COPY option).

 INC_APPEND_HISTORY_TIME

 This option is a variant of INC_APPEND_HISTORY in which, where possible, the his?

 tory entry is written out to the file after the command is finished, so that the

 time taken by the command is recorded correctly in the history file in EX?

 TENDED_HISTORY format. This means that the history entry will not be available im?

 mediately from other instances of the shell that are using the same history file.

 This option is only useful if INC_APPEND_HISTORY and SHARE_HISTORY are turned off.

 The three options should be considered mutually exclusive.

 SHARE_HISTORY <K>

 This option both imports new commands from the history file, and also causes your

 typed commands to be appended to the history file (the latter is like specifying

 INC_APPEND_HISTORY, which should be turned off if this option is in effect). The

 history lines are also output with timestamps ala EXTENDED_HISTORY (which makes it Page 14/36

 easier to find the spot where we left off reading the file after it gets re-writ?

 ten).

 By default, history movement commands visit the imported lines as well as the local

 lines, but you can toggle this on and off with the set-local-history zle binding.

 It is also possible to create a zle widget that will make some commands ignore im?

 ported commands, and some include them.

 If you find that you want more control over when commands get imported, you may

 wish to turn SHARE_HISTORY off, INC_APPEND_HISTORY or INC_APPEND_HISTORY_TIME (see

 above) on, and then manually import commands whenever you need them using `fc -RI'.

 Initialisation

 ALL_EXPORT (-a, ksh: -a)

 All parameters subsequently defined are automatically exported.

 GLOBAL_EXPORT <Z>

 If this option is set, passing the -x flag to the builtins declare, float, integer,

 readonly and typeset (but not local) will also set the -g flag; hence parameters

 exported to the environment will not be made local to the enclosing function, un?

 less they were already or the flag +g is given explicitly. If the option is unset,

 exported parameters will be made local in just the same way as any other parameter.

 This option is set by default for backward compatibility; it is not recommended

 that its behaviour be relied upon. Note that the builtin export always sets both

 the -x and -g flags, and hence its effect extends beyond the scope of the enclosing

 function; this is the most portable way to achieve this behaviour.

 GLOBAL_RCS (-d) <D>

 If this option is unset, the startup files /etc/zsh/zprofile, /etc/zsh/zshrc,

 /etc/zsh/zlogin and /etc/zsh/zlogout will not be run. It can be disabled and

 re-enabled at any time, including inside local startup files (.zshrc, etc.).

 RCS (+f) <D>

 After /etc/zsh/zshenv is sourced on startup, source the .zshenv, /etc/zsh/zprofile,

 .zprofile, /etc/zsh/zshrc, .zshrc, /etc/zsh/zlogin, .zlogin, and .zlogout files, as

 described in the section `Files'. If this option is unset, the /etc/zsh/zshenv

 file is still sourced, but any of the others will not be; it can be set at any time

 to prevent the remaining startup files after the currently executing one from being

 sourced. Page 15/36

 Input/Output

 ALIASES <D>

 Expand aliases.

 CLOBBER (+C, ksh: +C) <D>

 Allows `>' redirection to truncate existing files. Otherwise `>!' or `>|' must be

 used to truncate a file.

 If the option is not set, and the option APPEND_CREATE is also not set, `>>!' or

 `>>|' must be used to create a file. If either option is set, `>>' may be used.

 CORRECT (-0)

 Try to correct the spelling of commands. Note that, when the HASH_LIST_ALL option

 is not set or when some directories in the path are not readable, this may falsely

 report spelling errors the first time some commands are used.

 The shell variable CORRECT_IGNORE may be set to a pattern to match words that will

 never be offered as corrections.

 CORRECT_ALL (-O)

 Try to correct the spelling of all arguments in a line.

 The shell variable CORRECT_IGNORE_FILE may be set to a pattern to match file names

 that will never be offered as corrections.

 DVORAK Use the Dvorak keyboard instead of the standard qwerty keyboard as a basis for ex?

 amining spelling mistakes for the CORRECT and CORRECT_ALL options and the

 spell-word editor command.

 FLOW_CONTROL <D>

 If this option is unset, output flow control via start/stop characters (usually as?

 signed to ^S/^Q) is disabled in the shell's editor.

 IGNORE_EOF (-7)

 Do not exit on end-of-file. Require the use of exit or logout instead. However,

 ten consecutive EOFs will cause the shell to exit anyway, to avoid the shell hang?

 ing if its tty goes away.

 Also, if this option is set and the Zsh Line Editor is used, widgets implemented by

 shell functions can be bound to EOF (normally Control-D) without printing the nor?

 mal warning message. This works only for normal widgets, not for completion wid?

 gets.

 INTERACTIVE_COMMENTS (-k) <K> <S> Page 16/36

 Allow comments even in interactive shells.

 HASH_CMDS <D>

 Note the location of each command the first time it is executed. Subsequent invo?

 cations of the same command will use the saved location, avoiding a path search.

 If this option is unset, no path hashing is done at all. However, when CORRECT is

 set, commands whose names do not appear in the functions or aliases hash tables are

 hashed in order to avoid reporting them as spelling errors.

 HASH_DIRS <D>

 Whenever a command name is hashed, hash the directory containing it, as well as all

 directories that occur earlier in the path. Has no effect if neither HASH_CMDS nor

 CORRECT is set.

 HASH_EXECUTABLES_ONLY

 When hashing commands because of HASH_CMDS, check that the file to be hashed is ac?

 tually an executable. This option is unset by default as if the path contains a

 large number of commands, or consists of many remote files, the additional tests

 can take a long time. Trial and error is needed to show if this option is benefi?

 cial.

 MAIL_WARNING (-U)

 Print a warning message if a mail file has been accessed since the shell last

 checked.

 PATH_DIRS (-Q)

 Perform a path search even on command names with slashes in them. Thus if

 `/usr/local/bin' is in the user's path, and he or she types `X11/xinit', the com?

 mand `/usr/local/bin/X11/xinit' will be executed (assuming it exists). Commands

 explicitly beginning with `/', `./' or `../' are not subject to the path search.

 This also applies to the `.' and source builtins.

 Note that subdirectories of the current directory are always searched for executa?

 bles specified in this form. This takes place before any search indicated by this

 option, and regardless of whether `.' or the current directory appear in the com?

 mand search path.

 PATH_SCRIPT <K> <S>

 If this option is not set, a script passed as the first non-option argument to the

 shell must contain the name of the file to open. If this option is set, and the Page 17/36

 script does not specify a directory path, the script is looked for first in the

 current directory, then in the command path. See the section INVOCATION in zsh(1).

 PRINT_EIGHT_BIT

 Print eight bit characters literally in completion lists, etc. This option is not

 necessary if your system correctly returns the printability of eight bit characters

 (see ctype(3)).

 PRINT_EXIT_VALUE (-1)

 Print the exit value of programs with non-zero exit status. This is only available

 at the command line in interactive shells.

 RC_QUOTES

 Allow the character sequence `''' to signify a single quote within singly quoted

 strings. Note this does not apply in quoted strings using the format $'...', where

 a backslashed single quote can be used.

 RM_STAR_SILENT (-H) <K> <S>

 Do not query the user before executing `rm *' or `rm path/*'.

 RM_STAR_WAIT

 If querying the user before executing `rm *' or `rm path/*', first wait ten seconds

 and ignore anything typed in that time. This avoids the problem of reflexively an?

 swering `yes' to the query when one didn't really mean it. The wait and query can

 always be avoided by expanding the `*' in ZLE (with tab).

 SHORT_LOOPS <C> <Z>

 Allow the short forms of for, repeat, select, if, and function constructs.

 SUN_KEYBOARD_HACK (-L)

 If a line ends with a backquote, and there are an odd number of backquotes on the

 line, ignore the trailing backquote. This is useful on some keyboards where the

 return key is too small, and the backquote key lies annoyingly close to it. As an

 alternative the variable KEYBOARD_HACK lets you choose the character to be removed.

 Job Control

 AUTO_CONTINUE

 With this option set, stopped jobs that are removed from the job table with the

 disown builtin command are automatically sent a CONT signal to make them running.

 AUTO_RESUME (-W)

 Treat single word simple commands without redirection as candidates for resumption Page 18/36

 of an existing job.

 BG_NICE (-6) <C> <Z>

 Run all background jobs at a lower priority. This option is set by default.

 CHECK_JOBS <Z>

 Report the status of background and suspended jobs before exiting a shell with job

 control; a second attempt to exit the shell will succeed. NO_CHECK_JOBS is best

 used only in combination with NO_HUP, else such jobs will be killed automatically.

 The check is omitted if the commands run from the previous command line included a

 `jobs' command, since it is assumed the user is aware that there are background or

 suspended jobs. A `jobs' command run from one of the hook functions defined in the

 section SPECIAL FUNCTIONS in zshmisc(1) is not counted for this purpose.

 CHECK_RUNNING_JOBS <Z>

 Check for both running and suspended jobs when CHECK_JOBS is enabled. When this

 option is disabled, zsh checks only for suspended jobs, which matches the default

 behavior of bash.

 This option has no effect unless CHECK_JOBS is set.

 HUP <Z>

 Send the HUP signal to running jobs when the shell exits.

 LONG_LIST_JOBS (-R)

 Print job notifications in the long format by default.

 MONITOR (-m, ksh: -m)

 Allow job control. Set by default in interactive shells.

 NOTIFY (-5, ksh: -b) <Z>

 Report the status of background jobs immediately, rather than waiting until just

 before printing a prompt.

 POSIX_JOBS <K> <S>

 This option makes job control more compliant with the POSIX standard.

 When the option is not set, the MONITOR option is unset on entry to subshells, so

 that job control is no longer active. When the option is set, the MONITOR option

 and job control remain active in the subshell, but note that the subshell has no

 access to jobs in the parent shell.

 When the option is not set, jobs put in the background or foreground with bg or fg

 are displayed with the same information that would be reported by jobs. When the Page 19/36

 option is set, only the text is printed. The output from jobs itself is not af?

 fected by the option.

 When the option is not set, job information from the parent shell is saved for out?

 put within a subshell (for example, within a pipeline). When the option is set,

 the output of jobs is empty until a job is started within the subshell.

 In previous versions of the shell, it was necessary to enable POSIX_JOBS in order

 for the builtin command wait to return the status of background jobs that had al?

 ready exited. This is no longer the case.

 Prompting

 PROMPT_BANG <K>

 If set, `!' is treated specially in prompt expansion. See EXPANSION OF PROMPT SE?

 QUENCES in zshmisc(1).

 PROMPT_CR (+V) <D>

 Print a carriage return just before printing a prompt in the line editor. This is

 on by default as multi-line editing is only possible if the editor knows where the

 start of the line appears.

 PROMPT_SP <D>

 Attempt to preserve a partial line (i.e. a line that did not end with a newline)

 that would otherwise be covered up by the command prompt due to the PROMPT_CR op?

 tion. This works by outputting some cursor-control characters, including a series

 of spaces, that should make the terminal wrap to the next line when a partial line

 is present (note that this is only successful if your terminal has automatic mar?

 gins, which is typical).

 When a partial line is preserved, by default you will see an inverse+bold character

 at the end of the partial line: a `%' for a normal user or a `#' for root. If

 set, the shell parameter PROMPT_EOL_MARK can be used to customize how the end of

 partial lines are shown.

 NOTE: if the PROMPT_CR option is not set, enabling this option will have no effect.

 This option is on by default.

 PROMPT_PERCENT <C> <Z>

 If set, `%' is treated specially in prompt expansion. See EXPANSION OF PROMPT SE?

 QUENCES in zshmisc(1).

 PROMPT_SUBST <K> <S> Page 20/36

 If set, parameter expansion, command substitution and arithmetic expansion are per?

 formed in prompts. Substitutions within prompts do not affect the command status.

 TRANSIENT_RPROMPT

 Remove any right prompt from display when accepting a command line. This may be

 useful with terminals with other cut/paste methods.

 Scripts and Functions

 ALIAS_FUNC_DEF <S>

 By default, zsh does not allow the definition of functions using the `name ()' syn?

 tax if name was expanded as an alias: this causes an error. This is usually the

 desired behaviour, as otherwise the combination of an alias and a function based on

 the same definition can easily cause problems.

 When this option is set, aliases can be used for defining functions.

 For example, consider the following definitions as they might occur in a startup

 file.

 alias foo=bar

 foo() {

 print This probably does not do what you expect.

 }

 Here, foo is expanded as an alias to bar before the () is encountered, so the func?

 tion defined would be named bar. By default this is instead an error in native

 mode. Note that quoting any part of the function name, or using the keyword func?

 tion, avoids the problem, so is recommended when the function name can also be an

 alias.

 C_BASES

 Output hexadecimal numbers in the standard C format, for example `0xFF' instead of

 the usual `16#FF'. If the option OCTAL_ZEROES is also set (it is not by default),

 octal numbers will be treated similarly and hence appear as `077' instead of

 `8#77'. This option has no effect on the choice of the output base, nor on the

 output of bases other than hexadecimal and octal. Note that these formats will be

 understood on input irrespective of the setting of C_BASES.

 C_PRECEDENCES

 This alters the precedence of arithmetic operators to be more like C and other pro?

 gramming languages; the section ARITHMETIC EVALUATION in zshmisc(1) has an explicit Page 21/36

 list.

 DEBUG_BEFORE_CMD <D>

 Run the DEBUG trap before each command; otherwise it is run after each command.

 Setting this option mimics the behaviour of ksh 93; with the option unset the be?

 haviour is that of ksh 88.

 ERR_EXIT (-e, ksh: -e)

 If a command has a non-zero exit status, execute the ZERR trap, if set, and exit.

 This is disabled while running initialization scripts.

 The behaviour is also disabled inside DEBUG traps. In this case the option is han?

 dled specially: it is unset on entry to the trap. If the option DEBUG_BEFORE_CMD

 is set, as it is by default, and the option ERR_EXIT is found to have been set on

 exit, then the command for which the DEBUG trap is being executed is skipped. The

 option is restored after the trap exits.

 Non-zero status in a command list containing && or || is ignored for commands not

 at the end of the list. Hence

 false && true

 does not trigger exit.

 Exiting due to ERR_EXIT has certain interactions with asynchronous jobs noted in

 the section JOBS in zshmisc(1).

 ERR_RETURN

 If a command has a non-zero exit status, return immediately from the enclosing

 function. The logic is similar to that for ERR_EXIT, except that an implicit re?

 turn statement is executed instead of an exit. This will trigger an exit at the

 outermost level of a non-interactive script.

 Normally this option inherits the behaviour of ERR_EXIT that code followed by `&&'

 `||' does not trigger a return. Hence in the following:

 summit || true

 no return is forced as the combined effect always has a zero return status.

 Note. however, that if summit in the above example is itself a function, code in?

 side it is considered separately: it may force a return from summit (assuming the

 option remains set within summit), but not from the enclosing context. This behav?

 iour is different from ERR_EXIT which is unaffected by function scope.

 EVAL_LINENO <Z> Page 22/36

 If set, line numbers of expressions evaluated using the builtin eval are tracked

 separately of the enclosing environment. This applies both to the parameter LINENO

 and the line number output by the prompt escape %i. If the option is set, the

 prompt escape %N will output the string `(eval)' instead of the script or function

 name as an indication. (The two prompt escapes are typically used in the parame?

 ter PS4 to be output when the option XTRACE is set.) If EVAL_LINENO is unset, the

 line number of the surrounding script or function is retained during the evalua?

 tion.

 EXEC (+n, ksh: +n) <D>

 Do execute commands. Without this option, commands are read and checked for syntax

 errors, but not executed. This option cannot be turned off in an interactive

 shell, except when `-n' is supplied to the shell at startup.

 FUNCTION_ARGZERO <C> <Z>

 When executing a shell function or sourcing a script, set $0 temporarily to the

 name of the function/script. Note that toggling FUNCTION_ARGZERO from on to off

 (or off to on) does not change the current value of $0. Only the state upon entry

 to the function or script has an effect. Compare POSIX_ARGZERO.

 LOCAL_LOOPS

 When this option is not set, the effect of break and continue commands may propa?

 gate outside function scope, affecting loops in calling functions. When the option

 is set in a calling function, a break or a continue that is not caught within a

 called function (regardless of the setting of the option within that function) pro?

 duces a warning and the effect is cancelled.

 LOCAL_OPTIONS <K>

 If this option is set at the point of return from a shell function, most options

 (including this one) which were in force upon entry to the function are restored;

 options that are not restored are PRIVILEGED and RESTRICTED. Otherwise, only this

 option, and the LOCAL_LOOPS, XTRACE and PRINT_EXIT_VALUE options are restored.

 Hence if this is explicitly unset by a shell function the other options in force at

 the point of return will remain so. A shell function can also guarantee itself a

 known shell configuration with a formulation like `emulate -L zsh'; the -L acti?

 vates LOCAL_OPTIONS.

 LOCAL_PATTERNS Page 23/36

 If this option is set at the point of return from a shell function, the state of

 pattern disables, as set with the builtin command `disable -p', is restored to what

 it was when the function was entered. The behaviour of this option is similar to

 the effect of LOCAL_OPTIONS on options; hence `emulate -L sh' (or indeed any other

 emulation with the -L option) activates LOCAL_PATTERNS.

 LOCAL_TRAPS <K>

 If this option is set when a signal trap is set inside a function, then the previ?

 ous status of the trap for that signal will be restored when the function exits.

 Note that this option must be set prior to altering the trap behaviour in a func?

 tion; unlike LOCAL_OPTIONS, the value on exit from the function is irrelevant.

 However, it does not need to be set before any global trap for that to be correctly

 restored by a function. For example,

 unsetopt localtraps

 trap - INT

 fn() { setopt localtraps; trap '' INT; sleep 3; }

 will restore normal handling of SIGINT after the function exits.

 MULTI_FUNC_DEF <Z>

 Allow definitions of multiple functions at once in the form `fn1 fn2...()'; if the

 option is not set, this causes a parse error. Definition of multiple functions

 with the function keyword is always allowed. Multiple function definitions are not

 often used and can cause obscure errors.

 MULTIOS <Z>

 Perform implicit tees or cats when multiple redirections are attempted (see the

 section `Redirection').

 OCTAL_ZEROES <S>

 Interpret any integer constant beginning with a 0 as octal, per IEEE Std

 1003.2-1992 (ISO 9945-2:1993). This is not enabled by default as it causes prob?

 lems with parsing of, for example, date and time strings with leading zeroes.

 Sequences of digits indicating a numeric base such as the `08' component in `08#77'

 are always interpreted as decimal, regardless of leading zeroes.

 PIPE_FAIL

 By default, when a pipeline exits the exit status recorded by the shell and re?

 turned by the shell variable $? reflects that of the rightmost element of a pipe? Page 24/36

 line. If this option is set, the exit status instead reflects the status of the

 rightmost element of the pipeline that was non-zero, or zero if all elements exited

 with zero status.

 SOURCE_TRACE

 If set, zsh will print an informational message announcing the name of each file it

 loads. The format of the output is similar to that for the XTRACE option, with the

 message <sourcetrace>. A file may be loaded by the shell itself when it starts up

 and shuts down (Startup/Shutdown Files) or by the use of the `source' and `dot'

 builtin commands.

 TYPESET_SILENT

 If this is unset, executing any of the `typeset' family of commands with no options

 and a list of parameters that have no values to be assigned but already exist will

 display the value of the parameter. If the option is set, they will only be shown

 when parameters are selected with the `-m' option. The option `-p' is available

 whether or not the option is set.

 VERBOSE (-v, ksh: -v)

 Print shell input lines as they are read.

 XTRACE (-x, ksh: -x)

 Print commands and their arguments as they are executed. The output is preceded by

 the value of $PS4, formatted as described in the section EXPANSION OF PROMPT SE?

 QUENCES in zshmisc(1).

 Shell Emulation

 APPEND_CREATE <K> <S>

 This option only applies when NO_CLOBBER (-C) is in effect.

 If this option is not set, the shell will report an error when a append redirection

 (>>) is used on a file that does not already exists (the traditional zsh behaviour

 of NO_CLOBBER). If the option is set, no error is reported (POSIX behaviour).

 BASH_REMATCH

 When set, matches performed with the =~ operator will set the BASH_REMATCH array

 variable, instead of the default MATCH and match variables. The first element of

 the BASH_REMATCH array will contain the entire matched text and subsequent elements

 will contain extracted substrings. This option makes more sense when KSH_ARRAYS is

 also set, so that the entire matched portion is stored at index 0 and the first Page 25/36

 substring is at index 1. Without this option, the MATCH variable contains the en?

 tire matched text and the match array variable contains substrings.

 BSD_ECHO <S>

 Make the echo builtin compatible with the BSD echo(1) command. This disables back?

 slashed escape sequences in echo strings unless the -e option is specified.

 CONTINUE_ON_ERROR

 If a fatal error is encountered (see the section ERRORS in zshmisc(1)), and the

 code is running in a script, the shell will resume execution at the next statement

 in the script at the top level, in other words outside all functions or shell con?

 structs such as loops and conditions. This mimics the behaviour of interactive

 shells, where the shell returns to the line editor to read a new command; it was

 the normal behaviour in versions of zsh before 5.0.1.

 CSH_JUNKIE_HISTORY <C>

 A history reference without an event specifier will always refer to the previous

 command. Without this option, such a history reference refers to the same event as

 the previous history reference on the current command line, defaulting to the pre?

 vious command.

 CSH_JUNKIE_LOOPS <C>

 Allow loop bodies to take the form `list; end' instead of `do list; done'.

 CSH_JUNKIE_QUOTES <C>

 Changes the rules for single- and double-quoted text to match that of csh. These

 require that embedded newlines be preceded by a backslash; unescaped newlines will

 cause an error message. In double-quoted strings, it is made impossible to escape

 `$', ``' or `"' (and `\' itself no longer needs escaping). Command substitutions

 are only expanded once, and cannot be nested.

 CSH_NULLCMD <C>

 Do not use the values of NULLCMD and READNULLCMD when running redirections with no

 command. This make such redirections fail (see the section `Redirection').

 KSH_ARRAYS <K> <S>

 Emulate ksh array handling as closely as possible. If this option is set, array

 elements are numbered from zero, an array parameter without subscript refers to the

 first element instead of the whole array, and braces are required to delimit a sub?

 script (`${path[2]}' rather than just `$path[2]') or to apply modifiers to any pa? Page 26/36

 rameter (`${PWD:h}' rather than `$PWD:h').

 KSH_AUTOLOAD <K> <S>

 Emulate ksh function autoloading. This means that when a function is autoloaded,

 the corresponding file is merely executed, and must define the function itself.

 (By default, the function is defined to the contents of the file. However, the

 most common ksh-style case - of the file containing only a simple definition of the

 function - is always handled in the ksh-compatible manner.)

 KSH_OPTION_PRINT <K>

 Alters the way options settings are printed: instead of separate lists of set and

 unset options, all options are shown, marked `on' if they are in the non-default

 state, `off' otherwise.

 KSH_TYPESET

 This option is now obsolete: a better appropximation to the behaviour of other

 shells is obtained with the reserved word interface to declare, export, float, in?

 teger, local, readonly and typeset. Note that the option is only applied when the

 reserved word interface is not in use.

 Alters the way arguments to the typeset family of commands, including declare, ex?

 port, float, integer, local and readonly, are processed. Without this option, zsh

 will perform normal word splitting after command and parameter expansion in argu?

 ments of an assignment; with it, word splitting does not take place in those cases.

 KSH_ZERO_SUBSCRIPT

 Treat use of a subscript of value zero in array or string expressions as a refer?

 ence to the first element, i.e. the element that usually has the subscript 1. Ig?

 nored if KSH_ARRAYS is also set.

 If neither this option nor KSH_ARRAYS is set, accesses to an element of an array or

 string with subscript zero return an empty element or string, while attempts to set

 element zero of an array or string are treated as an error. However, attempts to

 set an otherwise valid subscript range that includes zero will succeed. For exam?

 ple, if KSH_ZERO_SUBSCRIPT is not set,

 array[0]=(element)

 is an error, while

 array[0,1]=(element)

 is not and will replace the first element of the array. Page 27/36

 This option is for compatibility with older versions of the shell and is not recom?

 mended in new code.

 POSIX_ALIASES <K> <S>

 When this option is set, reserved words are not candidates for alias expansion: it

 is still possible to declare any of them as an alias, but the alias will never be

 expanded. Reserved words are described in the section RESERVED WORDS in zsh?

 misc(1).

 Alias expansion takes place while text is being read; hence when this option is set

 it does not take effect until the end of any function or other piece of shell code

 parsed as one unit. Note this may cause differences from other shells even when

 the option is in effect. For example, when running a command with `zsh -c', or

 even `zsh -o posixaliases -c', the entire command argument is parsed as one unit,

 so aliases defined within the argument are not available even in later lines. If

 in doubt, avoid use of aliases in non-interactive code.

 POSIX_ARGZERO

 This option may be used to temporarily disable FUNCTION_ARGZERO and thereby restore

 the value of $0 to the name used to invoke the shell (or as set by the -c command

 line option). For compatibility with previous versions of the shell, emulations

 use NO_FUNCTION_ARGZERO instead of POSIX_ARGZERO, which may result in unexpected

 scoping of $0 if the emulation mode is changed inside a function or script. To

 avoid this, explicitly enable POSIX_ARGZERO in the emulate command:

 emulate sh -o POSIX_ARGZERO

 Note that NO_POSIX_ARGZERO has no effect unless FUNCTION_ARGZERO was already en?

 abled upon entry to the function or script.

 POSIX_BUILTINS <K> <S>

 When this option is set the command builtin can be used to execute shell builtin

 commands. Parameter assignments specified before shell functions and special

 builtins are kept after the command completes unless the special builtin is pre?

 fixed with the command builtin. Special builtins are ., :, break, continue, de?

 clare, eval, exit, export, integer, local, readonly, return, set, shift, source,

 times, trap and unset.

 In addition, various error conditions associated with the above builtins or exec

 cause a non-interactive shell to exit and an interactive shell to return to its Page 28/36

 top-level processing.

 Furthermore, functions and shell builtins are not executed after an exec prefix;

 the command to be executed must be an external command found in the path.

 Furthermore, the getopts builtin behaves in a POSIX-compatible fashion in that the

 associated variable OPTIND is not made local to functions.

 Moreover, the warning and special exit code from [[-o non_existent_option]] are

 suppressed.

 POSIX_IDENTIFIERS <K> <S>

 When this option is set, only the ASCII characters a to z, A to Z, 0 to 9 and _ may

 be used in identifiers (names of shell parameters and modules).

 In addition, setting this option limits the effect of parameter substitution with

 no braces, so that the expression $# is treated as the parameter $# even if fol?

 lowed by a valid parameter name. When it is unset, zsh allows expressions of the

 form $#name to refer to the length of $name, even for special variables, for exam?

 ple in expressions such as $#- and $#*.

 Another difference is that with the option set assignment to an unset variable in

 arithmetic context causes the variable to be created as a scalar rather than a nu?

 meric type. So after `unset t; ((t = 3))'. without POSIX_IDENTIFIERS set t has

 integer type, while with it set it has scalar type.

 When the option is unset and multibyte character support is enabled (i.e. it is

 compiled in and the option MULTIBYTE is set), then additionally any alphanumeric

 characters in the local character set may be used in identifiers. Note that

 scripts and functions written with this feature are not portable, and also that

 both options must be set before the script or function is parsed; setting them dur?

 ing execution is not sufficient as the syntax variable=value has already been

 parsed as a command rather than an assignment.

 If multibyte character support is not compiled into the shell this option is ig?

 nored; all octets with the top bit set may be used in identifiers. This is

 non-standard but is the traditional zsh behaviour.

 POSIX_STRINGS <K> <S>

 This option affects processing of quoted strings. Currently it only affects the

 behaviour of null characters, i.e. character 0 in the portable character set corre?

 sponding to US ASCII. Page 29/36

 When this option is not set, null characters embedded within strings of the form

 $'...' are treated as ordinary characters. The entire string is maintained within

 the shell and output to files where necessary, although owing to restrictions of

 the library interface the string is truncated at the null character in file names,

 environment variables, or in arguments to external programs.

 When this option is set, the $'...' expression is truncated at the null character.

 Note that remaining parts of the same string beyond the termination of the quotes

 are not truncated.

 For example, the command line argument a$'b\0c'd is treated with the option off as

 the characters a, b, null, c, d, and with the option on as the characters a, b, d.

 POSIX_TRAPS <K> <S>

 When this option is set, the usual zsh behaviour of executing traps for EXIT on

 exit from shell functions is suppressed. In that case, manipulating EXIT traps al?

 ways alters the global trap for exiting the shell; the LOCAL_TRAPS option is ig?

 nored for the EXIT trap. Furthermore, a return statement executed in a trap with

 no argument passes back from the function the value from the surrounding context,

 not from code executed within the trap.

 SH_FILE_EXPANSION <K> <S>

 Perform filename expansion (e.g., ~ expansion) before parameter expansion, command

 substitution, arithmetic expansion and brace expansion. If this option is unset,

 it is performed after brace expansion, so things like `~$USERNAME' and `~{pfal?

 stad,rc}' will work.

 SH_NULLCMD <K> <S>

 Do not use the values of NULLCMD and READNULLCMD when doing redirections, use `:'

 instead (see the section `Redirection').

 SH_OPTION_LETTERS <K> <S>

 If this option is set the shell tries to interpret single letter options (which are

 used with set and setopt) like ksh does. This also affects the value of the - spe?

 cial parameter.

 SH_WORD_SPLIT (-y) <K> <S>

 Causes field splitting to be performed on unquoted parameter expansions. Note that

 this option has nothing to do with word splitting. (See zshexpn(1).)

 TRAPS_ASYNC Page 30/36

 While waiting for a program to exit, handle signals and run traps immediately.

 Otherwise the trap is run after a child process has exited. Note this does not af?

 fect the point at which traps are run for any case other than when the shell is

 waiting for a child process.

 Shell State

 INTERACTIVE (-i, ksh: -i)

 This is an interactive shell. This option is set upon initialisation if the stan?

 dard input is a tty and commands are being read from standard input. (See the dis?

 cussion of SHIN_STDIN.) This heuristic may be overridden by specifying a state for

 this option on the command line. The value of this option can only be changed via

 flags supplied at invocation of the shell. It cannot be changed once zsh is run?

 ning.

 LOGIN (-l, ksh: -l)

 This is a login shell. If this option is not explicitly set, the shell becomes a

 login shell if the first character of the argv[0] passed to the shell is a `-'.

 PRIVILEGED (-p, ksh: -p)

 Turn on privileged mode. Typically this is used when script is to be run with ele?

 vated privileges. This should be done as follows directly with the -p option to zsh

 so that it takes effect during startup.

 #!/bin/zsh -p

 The option is enabled automatically on startup if the effective user (group) ID is

 not equal to the real user (group) ID. In this case, turning the option off causes

 the effective user and group IDs to be set to the real user and group IDs. Be aware

 that if that fails the shell may be running with different IDs than was intended so

 a script should check for failure and act accordingly, for example:

 unsetopt privileged || exit

 The PRIVILEGED option disables sourcing user startup files. If zsh is invoked as

 `sh' or `ksh' with this option set, /etc/suid_profile is sourced (after /etc/pro?

 file on interactive shells). Sourcing ~/.profile is disabled and the contents of

 the ENV variable is ignored. This option cannot be changed using the -m option of

 setopt and unsetopt, and changing it inside a function always changes it globally

 regardless of the LOCAL_OPTIONS option.

 RESTRICTED (-r) Page 31/36

 Enables restricted mode. This option cannot be changed using unsetopt, and setting

 it inside a function always changes it globally regardless of the LOCAL_OPTIONS op?

 tion. See the section `Restricted Shell'.

 SHIN_STDIN (-s, ksh: -s)

 Commands are being read from the standard input. Commands are read from standard

 input if no command is specified with -c and no file of commands is specified. If

 SHIN_STDIN is set explicitly on the command line, any argument that would otherwise

 have been taken as a file to run will instead be treated as a normal positional pa?

 rameter. Note that setting or unsetting this option on the command line does not

 necessarily affect the state the option will have while the shell is running - that

 is purely an indicator of whether or not commands are actually being read from

 standard input. The value of this option can only be changed via flags supplied at

 invocation of the shell. It cannot be changed once zsh is running.

 SINGLE_COMMAND (-t, ksh: -t)

 If the shell is reading from standard input, it exits after a single command has

 been executed. This also makes the shell non-interactive, unless the INTERACTIVE

 option is explicitly set on the command line. The value of this option can only be

 changed via flags supplied at invocation of the shell. It cannot be changed once

 zsh is running.

 Zle

 BEEP (+B) <D>

 Beep on error in ZLE.

 COMBINING_CHARS

 Assume that the terminal displays combining characters correctly. Specifically, if

 a base alphanumeric character is followed by one or more zero-width punctuation

 characters, assume that the zero-width characters will be displayed as modifica?

 tions to the base character within the same width. Not all terminals handle this.

 If this option is not set, zero-width characters are displayed separately with spe?

 cial mark-up.

 If this option is set, the pattern test [[:WORD:]] matches a zero-width punctuation

 character on the assumption that it will be used as part of a word in combination

 with a word character. Otherwise the base shell does not handle combining charac?

 ters specially. Page 32/36

 EMACS If ZLE is loaded, turning on this option has the equivalent effect of `bindkey -e'.

 In addition, the VI option is unset. Turning it off has no effect. The option

 setting is not guaranteed to reflect the current keymap. This option is provided

 for compatibility; bindkey is the recommended interface.

 OVERSTRIKE

 Start up the line editor in overstrike mode.

 SINGLE_LINE_ZLE (-M) <K>

 Use single-line command line editing instead of multi-line.

 Note that although this is on by default in ksh emulation it only provides superfi?

 cial compatibility with the ksh line editor and reduces the effectiveness of the

 zsh line editor. As it has no effect on shell syntax, many users may wish to dis?

 able this option when using ksh emulation interactively.

 VI If ZLE is loaded, turning on this option has the equivalent effect of `bindkey -v'.

 In addition, the EMACS option is unset. Turning it off has no effect. The option

 setting is not guaranteed to reflect the current keymap. This option is provided

 for compatibility; bindkey is the recommended interface.

 ZLE (-Z)

 Use the zsh line editor. Set by default in interactive shells connected to a ter?

 minal.

OPTION ALIASES

 Some options have alternative names. These aliases are never used for output, but can be

 used just like normal option names when specifying options to the shell.

 BRACE_EXPAND

 NO_IGNORE_BRACES (ksh and bash compatibility)

 DOT_GLOB

 GLOB_DOTS (bash compatibility)

 HASH_ALL

 HASH_CMDS (bash compatibility)

 HIST_APPEND

 APPEND_HISTORY (bash compatibility)

 HIST_EXPAND

 BANG_HIST (bash compatibility)

 LOG NO_HIST_NO_FUNCTIONS (ksh compatibility) Page 33/36

 MAIL_WARN

 MAIL_WARNING (bash compatibility)

 ONE_CMD

 SINGLE_COMMAND (bash compatibility)

 PHYSICAL

 CHASE_LINKS (ksh and bash compatibility)

 PROMPT_VARS

 PROMPT_SUBST (bash compatibility)

 STDIN SHIN_STDIN (ksh compatibility)

 TRACK_ALL

 HASH_CMDS (ksh compatibility)

SINGLE LETTER OPTIONS

 Default set

 -0 CORRECT

 -1 PRINT_EXIT_VALUE

 -2 NO_BAD_PATTERN

 -3 NO_NOMATCH

 -4 GLOB_DOTS

 -5 NOTIFY

 -6 BG_NICE

 -7 IGNORE_EOF

 -8 MARK_DIRS

 -9 AUTO_LIST

 -B NO_BEEP

 -C NO_CLOBBER

 -D PUSHD_TO_HOME

 -E PUSHD_SILENT

 -F NO_GLOB

 -G NULL_GLOB

 -H RM_STAR_SILENT

 -I IGNORE_BRACES

 -J AUTO_CD

 -K NO_BANG_HIST Page 34/36

 -L SUN_KEYBOARD_HACK

 -M SINGLE_LINE_ZLE

 -N AUTO_PUSHD

 -O CORRECT_ALL

 -P RC_EXPAND_PARAM

 -Q PATH_DIRS

 -R LONG_LIST_JOBS

 -S REC_EXACT

 -T CDABLE_VARS

 -U MAIL_WARNING

 -V NO_PROMPT_CR

 -W AUTO_RESUME

 -X LIST_TYPES

 -Y MENU_COMPLETE

 -Z ZLE

 -a ALL_EXPORT

 -e ERR_EXIT

 -f NO_RCS

 -g HIST_IGNORE_SPACE

 -h HIST_IGNORE_DUPS

 -i INTERACTIVE

 -k INTERACTIVE_COMMENTS

 -l LOGIN

 -m MONITOR

 -n NO_EXEC

 -p PRIVILEGED

 -r RESTRICTED

 -s SHIN_STDIN

 -t SINGLE_COMMAND

 -u NO_UNSET

 -v VERBOSE

 -w CHASE_LINKS

 -x XTRACE Page 35/36

 -y SH_WORD_SPLIT

 sh/ksh emulation set

 -C NO_CLOBBER

 -T TRAPS_ASYNC

 -X MARK_DIRS

 -a ALL_EXPORT

 -b NOTIFY

 -e ERR_EXIT

 -f NO_GLOB

 -i INTERACTIVE

 -l LOGIN

 -m MONITOR

 -n NO_EXEC

 -p PRIVILEGED

 -r RESTRICTED

 -s SHIN_STDIN

 -t SINGLE_COMMAND

 -u NO_UNSET

 -v VERBOSE

 -x XTRACE

 Also note

 -A Used by set for setting arrays

 -b Used on the command line to specify end of option processing

 -c Used on the command line to specify a single command

 -m Used by setopt for pattern-matching option setting

 -o Used in all places to allow use of long option names

 -s Used by set to sort positional parameters

zsh 5.8.1 February 12, 2022 ZSHOPTIONS(1)

Page 36/36

