Manual Pages for UNIX Darwin command on man tcp
MyWebUniversity

Manual Pages for UNIX Darwin command on man tcp

TCP(4) BSD Kernel Interfaces Manual TCP(4)

NAME

ttccpp - Internet Transmission Control Protocol

SYNOPSIS

##iinncclluuddee <>

##iinncclluuddee <>

int ssoocckkeett(AFINET, SOCKSTREAM, 0);

DESCRIPTION

The TCP protocol provides reliable, flow-controlled, two-way transmission

of data. It is a byte-stream protocol used to support the SOCKSTREAM

abstraction. TCP uses the standard Internet address format and, in addi-

tion, provides a per-host collection of ``port addresses''. Thus, each

address is composed of an Internet address specifying the host and net-

work, with a specific TCP port on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either ``active'' or ``passive''.

Active sockets initiate connections to passive sockets. By default TCP

sockets are created active; to create a passive socket the listen(2) sys-

tem call must be used after binding the socket with the bind(2) system call. Only passive sockets may use the accept(2) call to accept incoming connections. Only active sockets may use the connect(2) call to initiate connections. Passive sockets may ``underspecify'' their location to match incoming connection requests from multiple networks. This technique, termed ``wildcard addressing'', allows a single server to provide service to clients on multiple networks. To create a socket which listens on all networks, the Internet address INADDRANY must be bound. The TCP port may still be specified at this time; if the port is not specified the system will assign one. Once a connection has been established the socket's address is fixed by the peer entity's location. The address assigned the socket is the address associated with the network interface through which packets are being transmitted and received. Normally this address corresponds to the peer entity's network. TCP supports one socket option which is set with setsockopt(2) and tested with getsockopt(2). Under most circumstances, TCP sends data when it is

presented; when outstanding data has not yet been acknowledged, it gath-

ers small amounts of output to be sent in a single packet once an

acknowledgement is received. For a small number of clients, such as win-

dow systems that send a stream of mouse events which receive no replies, this packetization may cause significant delays. Therefore, TCP provides

a boolean option, TCPNODELAY (from , to defeat this algo-

rithm. The option level for the setsockopt call is the protocol number for TCP, available from getprotobyname(3). Options at the IP transport level may be used with TCP; see ip(4).

Incoming connection requests that are source-routed are noted, and the

reverse source route is used in responding. DIAGNOSTICS A socket operation may fail with one of the following errors returned: [EISCONN] when trying to establish a connection on a socket which already has one; [ENOBUFS] when the system runs out of memory for an internal data structure;

[ETIMEDOUT] when a connection was dropped due to excessive retrans-

missions; [ECONNRESET] when the remote peer forces the connection to be closed;

[ECONNREFUSED] when the remote peer actively refuses connection estab-

lishment (usually because no process is listening to the port); [EADDRINUSE] when an attempt is made to create a socket with a port which has already been allocated;

[EADDRNOTAVAIL] when an attempt is made to create a socket with a net-

work address for which no network interface exists.

SEE ALSO

getsockopt(2), socket(2), intro(4), inet(4), ip(4) HISTORY The ttccpp protocol stack appeared in 4.2BSD. 4.2 Berkeley Distribution June 5, 1993 4.2 Berkeley Distribution




Contact us      |      About us      |      Term of use      |       Copyright © 2000-2019 MyWebUniversity.com ™