
Windows PowerShell Get-Help on Cmdlet 'Assert-MockCalled'

PS:\>Get-HELP Assert-MockCalled -Full

NAME

 Assert-MockCalled

SYNOPSIS

 Checks if a Mocked command has been called a certain number of times

 and throws an exception if it has not.

SYNTAX

 Assert-MockCalled [-CommandName] <String> [[-Times] <Int32>] [[-ParameterFilter] <ScriptBlock>] [[-ModuleName]

<String>] [[-Scope] <String>] [-Exactly]

 [<CommonParameters>]

 Assert-MockCalled [-CommandName] <String> [[-Times] <Int32>] -ExclusiveFilter <ScriptBlock> [[-ModuleName]

<String>] [[-Scope] <String>] [-Exactly]

 [<CommonParameters>]

DESCRIPTION

 This command verifies that a mocked command has been called a certain number Page 1/8

 of times. If the call history of the mocked command does not match the parameters

 passed to Assert-MockCalled, Assert-MockCalled will throw an exception.

PARAMETERS

 -CommandName <String>

 The mocked command whose call history should be checked.

 Required? true

 Position? 1

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 -Times <Int32>

 The number of times that the mock must be called to avoid an exception

 from throwing.

 Required? false

 Position? 2

 Default value 1

 Accept pipeline input? false

 Accept wildcard characters? false

 -ParameterFilter <ScriptBlock>

 An optional filter to qualify wich calls should be counted. Only those

 calls to the mock whose parameters cause this filter to return true

 will be counted.

 Required? false

 Position? 3

 Default value {$True}

 Accept pipeline input? false Page 2/8

 Accept wildcard characters? false

 -ExclusiveFilter <ScriptBlock>

 Required? true

 Position? named

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 -ModuleName <String>

 The module where the mock being checked was injected. This is optional,

 and must match the ModuleName that was used when setting up the Mock.

 Required? false

 Position? 4

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 -Scope <String>

 An optional parameter specifying the Pester scope in which to check for

 calls to the mocked command. By default, Assert-MockCalled will find

 all calls to the mocked command in the current Context block (if present),

 or the current Describe block (if there is no active Context.) Valid

 values are Describe, Context and It. If you use a scope of Describe or

 Context, the command will identify all calls to the mocked command in the

 current Describe / Context block, as well as all child scopes of that block.

 Required? false

 Position? 5

 Default value

 Accept pipeline input? false Page 3/8

 Accept wildcard characters? false

 -Exactly [<SwitchParameter>]

 If this switch is present, the number specified in Times must match

 exactly the number of times the mock has been called. Otherwise it

 must match "at least" the number of times specified. If the value

 passed to the Times parameter is zero, the Exactly switch is implied.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? false

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

OUTPUTS

NOTES

 The parameter filter passed to Assert-MockCalled does not necessarily have to match the parameter filter

 (if any) which was used to create the Mock. Assert-MockCalled will find any entry in the command history

 which matches its parameter filter, regardless of how the Mock was created. However, if any calls to the

 mocked command are made which did not match any mock's parameter filter (resulting in the original command

 being executed instead of a mock), these calls to the original command are not tracked in the call history.

 In other words, Assert-MockCalled can only be used to check for calls to the mocked implementation, not Page 4/8

 to the original.

 -------------------------- EXAMPLE 1 --------------------------

 C:\PS>Mock Set-Content {}

 {... Some Code ...}

 C:\PS>Assert-MockCalled Set-Content

 This will throw an exception and cause the test to fail if Set-Content is not called in Some Code.

 -------------------------- EXAMPLE 2 --------------------------

 C:\PS>Mock Set-Content -parameterFilter {$path.StartsWith("$env:temp\")}

 {... Some Code ...}

 C:\PS>Assert-MockCalled Set-Content 2 { $path -eq "$env:temp\test.txt" }

 This will throw an exception if some code calls Set-Content on $path=$env:temp\test.txt less than 2 times

 -------------------------- EXAMPLE 3 --------------------------

 C:\PS>Mock Set-Content {}

 {... Some Code ...} Page 5/8

 C:\PS>Assert-MockCalled Set-Content 0

 This will throw an exception if some code calls Set-Content at all

 -------------------------- EXAMPLE 4 --------------------------

 C:\PS>Mock Set-Content {}

 {... Some Code ...}

 C:\PS>Assert-MockCalled Set-Content -Exactly 2

 This will throw an exception if some code does not call Set-Content Exactly two times.

 -------------------------- EXAMPLE 5 --------------------------

 PS C:\>Describe 'Assert-MockCalled Scope behavior' {

 Mock Set-Content { }

 It 'Calls Set-Content at least once in the It block' {

 {... Some Code ...}

 Assert-MockCalled Set-Content -Exactly 0 -Scope It

 }

 } Page 6/8

 Checks for calls only within the current It block.

 -------------------------- EXAMPLE 6 --------------------------

 PS C:\>Describe 'Describe' {

 Mock -ModuleName SomeModule Set-Content { }

 {... Some Code ...}

 It 'Calls Set-Content at least once in the Describe block' {

 Assert-MockCalled -ModuleName SomeModule Set-Content

 }

 }

 Checks for calls to the mock within the SomeModule module. Note that both the Mock

 and Assert-MockCalled commands use the same module name.

 -------------------------- EXAMPLE 7 --------------------------

 PS C:\>Assert-MockCalled Get-ChildItem -ExclusiveFilter { $Path -eq 'C:\' }

 Checks to make sure that Get-ChildItem was called at least one time with

 the -Path parameter set to 'C:\', and that it was not called at all with

 the -Path parameter set to any other value.

 Page 7/8

RELATED LINKS

Page 8/8

