
Windows PowerShell Get-Help on Cmdlet 'ConvertFrom-StringData'

PS:\>Get-HELP ConvertFrom-StringData -Full

NAME

 ConvertFrom-StringData

SYNOPSIS

 Converts a string containing one or more key and value pairs to a hash table.

SYNTAX

 ConvertFrom-StringData [-StringData] <System.String> [<CommonParameters>]

DESCRIPTION

 The `ConvertFrom-StringData` cmdlet converts a string that contains one or more key and value pairs into a hash table.

Because each key-value pair must be on a

 separate line, here-strings are often used as the input format. By default, the key must be separated from the value by an

equals sign (`=`) character.

 The `ConvertFrom-StringData` cmdlet is considered to be a safe cmdlet that can be used in the DATA section of a script

or function. When used in a DATA section, the

 contents of the string must conform to the rules for a DATA section. For more information, see about_Data_Sections Page 1/7

 (../Microsoft.PowerShell.Core/About/about_Data_Sections.md).

 `ConvertFrom-StringData` supports escape character sequences that are allowed by conventional machine translation

tools. That is, the cmdlet can interpret backslashes

 (``) as escape characters in the string data by using the Regex.Unescape Method

(/dotnet/api/system.text.regularexpressions.regex.unescape), instead of the PowerShell

 backtick character (`` ` ``) that would normally signal the end of a line in a script. Inside the here-string, the backtick

character does not work. You can also

 preserve a literal backslash in your results by escaping it with a preceding backslash, like this: `\`. Unescaped backslash

characters, such as those that are

 commonly used in file paths, can render as illegal escape sequences in your results.

PARAMETERS

 -StringData <System.String>

 Specifies the string to be converted. You can use this parameter or pipe a string to `ConvertFrom-StringData`. The

parameter name is optional.

 The value of this parameter must be a string that contains one or more key-value pairs. Each key-value pair must be

on a separate line, or each pair must be

 separated by newline characters (`` `n ``).

 You can include comments in the string, but the comments cannot be on the same line as a key-value pair.

`ConvertFrom-StringData` ignores single-line comments.

 The `#` character must be the first non-whitespace character on the line. All characters on the line after the `#` are

ignored. The comments are not included in

 the hash table.

 A here-string is a string consisting of one or more lines. Quotation marks within the here-string are interpreted literally

as part of the string data. For more

 information, see about_Quoting_Rules (../Microsoft.PowerShell.Core/About/about_Quoting_Rules.md).

 Required? true Page 2/7

 Position? 0

 Default value None

 Accept pipeline input? True (ByValue)

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.String

 You can pipe a string containing a key-value pair to this cmdlet.

OUTPUTS

 System.Collections.Hashtable

 This cmdlet returns a hash table that it creates from the key-value pairs.

NOTES

 A here-string is a string consisting of one or more lines within which quotation marks are interpreted literally.

 This cmdlet can be useful in scripts that display user messages in multiple spoken languages. You can use the

dictionary-style hash tables to isolate text strings

 from code, such as in resource files, and to format the text strings for use in translation tools.

 Example 1: Convert a single-quoted here-string to a hash table

 $Here = @' Page 3/7

 Msg1 = The string parameter is required.

 Msg2 = Credentials are required for this command.

 Msg3 = The specified variable does not exist.

 '@

 ConvertFrom-StringData -StringData $Here

 Name Value

 ---- -----

 Msg3 The specified variable does not exist.

 Msg2 Credentials are required for this command.

 Msg1 The string parameter is required.

 ---- Example 2: Convert a here-string containing a comment ----

 ConvertFrom-StringData -StringData @'

 Name = Disks.ps1

 # Category is optional.

 Category = Storage

 Cost = Free

 '@

 Name Value

 ---- -----

 Cost Free

 Category Storage

 Name Disks.ps1

 The value of the StringData parameter is a here-string, instead of a variable that contains a here-string. Either format is

valid. The here-string includes a comment

 about one of the strings. `ConvertFrom-StringData` ignores single-line comments, but the `#` character must be the firstPage 4/7

non-whitespace character on the line. All

 characters on the line after the `#` are ignored.

 --------- Example 3: Convert a string to a hash table ---------

 $A = ConvertFrom-StringData -StringData "Top = Red `n Bottom = Blue"

 $A

 Name Value

 ---- -----

 Bottom Blue

 Top Red

 To satisfy the condition that each key-value pair must be on a separate line, the string uses the PowerShell newline

character (`` `n ``) to separate the pairs.

 Example 4: Use ConvertFrom-StringData in the DATA section of a script

 $TextMsgs = DATA {

 ConvertFrom-StringData @'

 Text001 = The $Notebook variable contains the name of the user's system notebook.

 Text002 = The $MyNotebook variable contains the name of the user's private notebook.

 '@

 }

 $TextMsgs

 Name Value

 ---- -----

 Text001 The $Notebook variable contains the name of the user's system notebook.

 Text002 The $MyNotebook variable contains the name of the user's private notebook.

 Because the text includes variable names, it must be enclosed in a single-quoted string so that the variables are

interpreted literally and not expanded. Variables

 are not permitted in the DATA section.

 ---- Example 5: Use the pipeline operator to pass a string ---- Page 5/7

 $Here = @'

 Msg1 = The string parameter is required.

 Msg2 = Credentials are required for this command.

 Msg3 = The specified variable does not exist.

 '@

 $Hash = $Here | ConvertFrom-StringData

 $Hash

 Name Value

 ---- -----

 Msg3 The specified variable does not exist.

 Msg2 Credentials are required for this command.

 Msg1 The string parameter is required.

 Example 6: Use escape characters to add new lines and return characters

 ConvertFrom-StringData @"

 Vincentio = Heaven doth with us as we with torches do,\nNot light them for themselves; for if our virtues\nDid not go forth

of us, 'twere all alike\nAs if we had them

 not.

 Angelo = Let there be some more test made of my metal,\nBefore so noble and so great a figure\nBe stamp'd upon it.

 "@ | Format-List

 Name : Angelo

 Value : Let there be some more test made of my metal,

 Before so noble and so great a figure

 Be stamp'd upon it.

 Name : Vincentio

 Value : Heaven doth with us as we with torches do,

 Not light them for themselves; for if our virtues Page 6/7

 Did not go forth of us, 'twere all alike

 As if we had them not.

 Example 7: Use backslash escape character to correctly render a file path

 ConvertFrom-StringData "Message=Look in c:\\Windows\\System32"

 Name Value

 ---- -----

 Message Look in c:\Windows\System32

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/convertfrom-stringdata?view=powershell-5.1&WT.

mc_id=ps-gethelp

Page 7/7

