FPDF Library

PDF generator

PowerShell Get-Help cmdlet
PS C:\> Get-Help

Full credit is given to all the above companies including
the Operating System that this PDF file was generated!

Windows PowerShell Get-Help on Cmdlet 'ConvertTo-SecureString'

PS:\>Get-HELP ConvertTo-SecureString -Full

NAME

ConvertTo-SecureString

SYNOPSIS

Converts plain text or encrypted strings to secure strings.

SYNTAX

ConvertTo-SecureString [-String] <System.String> [[-AsPlainText]] [[-Force]] [cCommonParameters>]

ConvertTo-SecureString [-String] <System.String> [-Key <System.Byte[]>] [<KCommonParameters>]

ConvertTo-SecureString [-String] <System.String> [[-SecureKey] <System.Security.SecureString>]

[<CommonParameters>]

DESCRIPTION
The “ConvertTo-SecureString” cmdlet converts encrypted standard strings into secure strings. It can also convert plain
text to secure strings. It is used with

“ConvertFrom-SecureString” and "Read-Host'. The secure string created by the cmdlet can be used withregélets or

functions that require a parameter of type

SecureString . The secure string can be converted back to an encrypted, standard string using the
“ConvertFrom-SecureString” cmdlet. This enables it to be stored in a

file for later use.

If the standard string being converted was encrypted with "ConvertFrom-SecureString™ using a specified key, that same
key must be provided as the value of the Key or

SecureKey parameter of the "ConvertTo-SecureString™ cmdlet.

PARAMETERS
-AsPlainText <System.Management.Automation.SwitchParameter>
Specifies a plain text string to convert to a secure string. The secure string cmdlets help protect confidential text. The
text is encrypted for privacy and is
deleted from computer memory after it is used. If you use this parameter to provide plain text as input, the system
cannot protect that input in this manner. To

use this parameter, you must also specify the Force parameter.

Required? false
Position? 1
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Force <System.Management.Automation.SwitchParameter>

Confirms that you understand the implications of using the AsPlainText parameter and still want to use it.

Required? false
Position? 2
Default value False

Accept pipeline input? False

Accept wildcard characters? false

Page 2/6

-Key <System.Byte[]>

Specifies the encryption key used to convert the original secure string into the encrypted standard string. Valid key

lengths are 16, 24 and 32 bytes.

Required? false
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-SecureKey <System.Security.SecureString>

Specifies the encryption key used to convert the original secure string into the encrypted standard string. The key must

be provided in the format of a secure

string. The secure string will be converted to a byte array to be used as the key. Valid secure key lengths are 8, 12 and

16 code points.

Required? false
Position? 1
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-String <System.String>

Specifies the string to convert to a secure string.

Required? true
Position? 0
Default value None

Accept pipeline input? True (ByValue)

Accept wildcard characters? false

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, Page 3/6

ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see

about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS
System.String

You can pipe a standard encrypted string to this cmdlet.

OUTPUTS
System.Security.SecureString

This cmdlet returns the created SecureString object.

NOTES

Some characters, such as emoticons, correspond to several code points in the string that contains them. Avoid using
these characters because they may cause

problems and misunderstandings when used in a password.

-- Example 1: Convert a secure string to an encrypted string --

PS C:\> $Secure = Read-Host -AsSecureString

PS C:\> $Secure

System.Security.SecureString

PS C:\> $Encrypted = ConvertFrom-SecureString -SecureString $Secure

PS C:\> $Encrypted
01000000d08c9ddf0115d1118c7a00c04fc297eb010000001a114d45b8dd3f4aallad7cO0abdae98000000000
02000000000003660000a8000000100000005df63cea84bfb7d70bd6842e7efa79820000000004800000a000
000010000000f10cd0f4a99a8d5814d94e0687d7430b100000008bf11f1960158405h2779613€9352c6d1400
0000e6b7bf46a9d485ff211b9b2a2df3bd6eb67aae4l

PS C:\> $Secure2 = ConvertTo-SecureString -String $Encrypted Page 4/6

PS C:\> $Secure2

System.Security.SecureString

The first command uses the AsSecureString parameter of the "Read-Host™ cmdlet to create a secure string. After you
enter the command, any characters that you type are

converted into a secure string and then saved in the “$Secure’ variable.

The second command displays the contents of the “$Secure” variable. Because the “$Secure’ variable contains a secure
string, PowerShell displays only the

System.Security.SecureString type.

The third command uses the “ConvertFrom-SecureString” cmdlet to convert the secure string in the “$Secure” variable
into an encrypted standard string. It saves the

result in the “"$Encrypted’ variable.

The fourth command displays the encrypted string in the value of the “$Encrypted” variable.

The fifth command uses the “ConvertTo-SecureString" cmdlet to convert the encrypted standard string in the
“$Encrypted’ variable back into a secure string. It saves
the result in the "$Secure2’ variable. The sixth command displays the value of the “$Secure2 variable. The SecureString
type indicates that the command was
successful.

Example 2: Create a secure string from an encrypted string in a file

$Secure = Read-Host -AsSecureString
$Encrypted = ConvertFrom-SecureString -SecureString $Secure -Key (1..16)
$Encrypted | Set-Content Encrypted.txt

$Secure2 = Get-Content Encrypted.txt | ConvertTo-SecureString -Key (1..16)

The first command uses the AsSecureString parameter of the "Read-Host™ cmdlet to create a secure string. After you
enter the command, any characters that you type are

converted into a secure string and then saved in the "$Secure’ variable.

Page 5/6

The second command uses the “ConvertFrom-SecureString” cmdlet to convert the secure string in the “$Secure” variable
into an encrypted standard string by using the

specified key. The contents are saved in the “$Encrypted’ variable.

The third command uses a pipeline operator (°|’) to send the value of the "$Encrypted” variable to the “Set-Content’
cmdlet, which saves the value in the

Encrypted.txt file.

The fourth command uses the “Get-Content” cmdlet to get the encrypted standard string in the Encrypted.txt file. The
command uses a pipeline operator to send the
encrypted string to the "ConvertTo-SecureString™ cmdlet, which converts it to a secure string by using the specified key.
The results are saved in the "$Secure2’
variable.

-- Example 3: Convert a plain text string to a secure string --

$Secure_String_Pwd = ConvertTo-SecureString "P@ssWO0rD!" -AsPlainText -Force

> [ICAUTION] > You should avoid using plain text strings in script or from the command line. The plain text can > show up

in event logs and command history logs.

RELATED LINKS
Online Version:
https://learn.microsoft.com/powershell/module/microsoft.powershell.security/convertto-securestring?view=powershell-5.1&W
T.mc_id=ps-gethelp
ConvertFrom-SecureString

Read-Host

Page 6/6

