
Windows PowerShell Get-Help on Cmdlet 'Debug-Process'

PS:\>Get-HELP Debug-Process -Full

NAME

 Debug-Process

SYNOPSIS

 Debugs one or more processes running on the local computer.

SYNTAX

 Debug-Process [-Id] <System.Int32[]> [-Confirm] [-WhatIf] [<CommonParameters>]

 Debug-Process -InputObject <System.Diagnostics.Process[]> [-Confirm] [-WhatIf] [<CommonParameters>]

 Debug-Process [-Name] <System.String[]> [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Debug-Process` cmdlet attaches a debugger to one or more running processes on a local computer. You can

specify the processes by their process name or process ID

 (PID), or you can pipe process objects to this cmdlet.

 Page 1/6

 This cmdlet attaches the debugger that is currently registered for the process. Before using this cmdlet, verify that a

debugger is downloaded and correctly

 configured.

PARAMETERS

 -Id <System.Int32[]>

 Specifies the process IDs of the processes to be debugged. The Id parameter name is optional.

 To find the process ID of a process, type `Get-Process`.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -InputObject <System.Diagnostics.Process[]>

 Specifies the process objects that represent processes to be debugged. Enter a variable that contains the process

objects or a command that gets the process

 objects, such as the `Get-Process` cmdlet. You can also pipe process objects to this cmdlet.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByValue)

 Accept wildcard characters? false

 -Name <System.String[]>

 Specifies the names of the processes to be debugged. If there is more than one process with the same name, this

cmdlet attaches a debugger to all processes with

 that name. The Name parameter is optional.

 Page 2/6

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet is not run.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.Int32

 You can pipe a process ID to this cmdlet. Page 3/6

 System.Diagnostics.Process

 You can pipe a process object to this cmdlet.

 System.String

 You can pipe a process name to this cmdlet.

OUTPUTS

 None

 This cmdlet returns no output.

NOTES

 This cmdlet uses the AttachDebugger method of the Windows Management Instrumentation (WMI) Win32_Process

class. For more information about this method, see

 AttachDebugger method (https://go.microsoft.com/fwlink/?LinkId=143640)in the MSDN library.

 -- Example 1: Attach a debugger to a process on the computer --

 PS C:\> Debug-Process -Name "Windows Powershell"

 This command attaches a debugger to the PowerShell process on the computer.

 Example 2: Attach a debugger to all processes that begin with the specified string

 PS C:\> Debug-Process -Name "SQL*"

 This command attaches a debugger to all processes that have names that begin with SQL.

 ------ Example 3: Attach a debugger to multiple processes ------

 PS C:\> Debug-Process "Winlogon", "Explorer", "Outlook" Page 4/6

 This command attaches a debugger to the Winlogon, Explorer, and Outlook processes.

 ----- Example 4: Attach a debugger to multiple process IDs -----

 PS C:\> Debug-Process -Id 1132, 2028

 This command attaches a debugger to the processes that have process IDs 1132 and 2028.

 Example 5: Use Get-Process to get a process then attach a debugger to it

 PS C:\> Get-Process "Windows PowerShell" | Debug-Process

 This command attaches a debugger to the PowerShell processes on the computer. It uses the `Get-Process` cmdlet to

get the PowerShell processes on the computer, and it

 uses a pipeline operator (`|`) to send the processes to the `Debug-Process` cmdlet.

 To specify a particular PowerShell process, use the ID parameter of `Get-Process`.

 Example 6: Attach a debugger to a current process on the local computer

 PS C:\> $PID | Debug-Process

 This command attaches a debugger to the current PowerShell processes on the computer.

 The command uses the `$PID` automatic variable, which contains the process ID of the current PowerShell process.

Then, it uses a pipeline operator (`|`) to send the

 process ID to the `Debug-Process` cmdlet.

 For more information about the `$PID` automatic variable, see about_Automatic_Variables

(../Microsoft.PowerShell.Core/About/about_Automatic_Variables.md).

 Example 7: Attach a debugger to the specified process on multiple computers

 PS C:\> Get-Process -ComputerName "Server01", "Server02" -Name "MyApp" | Debug-Process

 This command attaches a debugger to the MyApp processes on the Server01 and Server02 computers. Page 5/6

 The command uses the `Get-Process` cmdlet to get the MyApp processes on the Server01 and Server02 computers. It

uses a pipeline operator to send the processes to the

 `Debug-Process` cmdlet, which attaches the debuggers.

 Example 8: Attach a debugger to a process that uses the InputObject parameter

 PS C:\> $P = Get-Process "Windows PowerShell"

 PS C:\> Debug-Process -InputObject $P

 This command attaches a debugger to the PowerShell processes on the local computer.

 The first command uses the `Get-Process` cmdlet to get the PowerShell processes on the computer. It saves the

resulting process object in the variable named `$P`.

 The second command uses the InputObject parameter of the `Debug-Process` cmdlet to submit the process object in the

`$P` variable.

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.management/debug-process?view=powershell-5.1&WT.

mc_id=ps-gethelp

 Debug-Process

 Get-Process

 Start-Process

 Stop-Process

 Wait-Process

Page 6/6

