
Windows PowerShell Get-Help on Cmdlet 'Export-Clixml'

PS:\>Get-HELP Export-Clixml -Full

NAME

 Export-Clixml

SYNOPSIS

 Creates an XML-based representation of an object or objects and stores it in a file.

SYNTAX

 Export-Clixml [-Depth <System.Int32>] [-Encoding {ASCII | BigEndianUnicode | Default | OEM | Unicode | UTF7 | UTF8 |

UTF32}] [-Force] -InputObject

 <System.Management.Automation.PSObject> -LiteralPath <System.String> [-NoClobber] [-Confirm] [-WhatIf]

[<CommonParameters>]

 Export-Clixml [-Path] <System.String> [-Depth <System.Int32>] [-Encoding {ASCII | BigEndianUnicode | Default | OEM |

Unicode | UTF7 | UTF8 | UTF32}] [-Force]

 -InputObject <System.Management.Automation.PSObject> [-NoClobber] [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Export-Clixml` cmdlet serialized an object into a Common Language Infrastructure (CLI) XML-based representationPage 1/8

stores it in a file. You can then use the

 `Import-Clixml` cmdlet to recreate the saved object based on the contents of that file. For more information about CLI, see

Language independence

 (/dotnet/standard/language-independence).

 This cmdlet is similar to `ConvertTo-Xml`, except that `Export-Clixml` stores the resulting XML in a file. `ConvertTo-XML`

returns the XML, so you can continue to

 process it in PowerShell.

 A valuable use of `Export-Clixml` on Windows computers is to export credentials and secure strings securely as XML. For

an example, see Example 3.

PARAMETERS

 -Depth <System.Int32>

 Specifies how many levels of contained objects are included in the XML representation. The default value is `2`.

 The default value can be overridden for the object type in the `Types.ps1xml` files. For more information, see

about_Types.ps1xml

 (../Microsoft.PowerShell.Core/About/about_Types.ps1xml.md).

 Required? false

 Position? named

 Default value 2

 Accept pipeline input? False

 Accept wildcard characters? false

 -Encoding <System.String>

 Specifies the type of encoding for the target file. The default value is Unicode .

 The acceptable values for this parameter are as follows:

 - `ASCII` Uses ASCII (7-bit) character set. Page 2/8

 - `BigEndianUnicode` Uses UTF-16 with the big-endian byte order.

 - `Default` Uses the encoding that corresponds to the system's active code page (usually ANSI).

 - `OEM` Uses the encoding that corresponds to the system's current OEM code page.

 - `Unicode` Uses UTF-16 with the little-endian byte order.

 - `UTF7` Uses UTF-7.

 - `UTF8` Uses UTF-8.

 - `UTF32` Uses UTF-32 with the little-endian byte order.

 Required? false

 Position? named

 Default value Unicode

 Accept pipeline input? False

 Accept wildcard characters? false

 -Force <System.Management.Automation.SwitchParameter>

 Forces the command to run without asking for user confirmation.

 Causes the cmdlet to clear the read-only attribute of the output file if necessary. The cmdlet will attempt to reset the

read-only attribute when the command

 completes.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false Page 3/8

 -InputObject <System.Management.Automation.PSObject>

 Specifies the object to be converted. Enter a variable that contains the objects, or type a command or expression that

gets the objects. You can also pipe objects

 to `Export-Clixml`.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByValue)

 Accept wildcard characters? false

 -LiteralPath <System.String>

 Specifies the path to the file where the XML representation of the object will be stored. Unlike Path , the value of the

LiteralPath parameter is used exactly as

 it's typed. No characters are interpreted as wildcards. If the path includes escape characters, enclose it in single

quotation marks. Single quotation marks tell

 PowerShell not to interpret any characters as escape sequences.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -NoClobber <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet doesn't overwrite the contents of an existing file. By default, if a file exists in the specified

path, `Export-Clixml` overwrites the

 file without warning.

 Required? false

 Position? named

 Default value False Page 4/8

 Accept pipeline input? False

 Accept wildcard characters? false

 -Path <System.String>

 Specifies the path to the file where the XML representation of the object will be stored.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet isn't run.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable, Page 5/8

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.Management.Automation.PSObject

 You can pipeline any object to this cmdlet.

OUTPUTS

 System.IO.FileInfo

 This cmdlet returns a FileInfo object representing the created file with the stored data.

NOTES

 ---------- Example 1: Export a string to an XML file ----------

 "This is a test" | Export-Clixml -Path .\sample.xml

 The string `This is a test` is sent down the pipeline. `Export-Clixml` uses the Path parameter to create an XML file named

`sample.xml` in the current directory.

 ---------- Example 2: Export an object to an XML file ----------

 Get-Acl C:\test.txt | Export-Clixml -Path .\FileACL.xml

 $fileacl = Import-Clixml -Path .\FileACL.xml

 The `Get-Acl` cmdlet gets the security descriptor of the `Test.txt` file. It sends the object down the pipeline to pass the

security descriptor to `Export-Clixml`.

 The XML-based representation of the object is stored in a file named `FileACL.xml`.

 Page 6/8

 The `Import-Clixml` cmdlet creates an object from the XML in the `FileACL.xml` file. Then, it saves the object in the

`$fileacl` variable.

 ------- Example 3: Encrypt an exported credential object -------

 $Credxmlpath = Join-Path (Split-Path $Profile) TestScript.ps1.credential

 $Credential | Export-Clixml $Credxmlpath

 $Credxmlpath = Join-Path (Split-Path $Profile) TestScript.ps1.credential

 $Credential = Import-Clixml $Credxmlpath

 The `Export-Clixml` cmdlet encrypts credential objects by using the Windows Data Protection API

(/previous-versions/windows/apps/hh464970(v=win.10)). The encryption

 ensures that only your user account on only that computer can decrypt the contents of the credential object. The exported

`CLIXML` file can't be used on a different

 computer or by a different user.

 In the example, the file in which the credential is stored is represented by `TestScript.ps1.credential`. Replace TestScript

with the name of the script with which

 you're loading the credential.

 You send the credential object down the pipeline to `Export-Clixml`, and save it to the path, `$Credxmlpath`, that you

specified in the first command.

 To import the credential automatically into your script, run the final two commands. Run `Import-Clixml` to import the

secured credential object into your script.

 This import eliminates the risk of exposing plain-text passwords in your script.

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/export-clixml?view=powershell-5.1&WT.mc_id=ps-

gethelp

 ConvertTo-Html

 ConvertTo-Xml

 Export-Csv Page 7/8

 Import-Clixml

 Join-Path

 Securely Store Credentials on Disk https://powershellcookbook.com/recipe/PukO/securely-store-credentials-on-disk

 Use PowerShell to Pass Credentials to Legacy Systems

https://devblogs.microsoft.com/scripting/use-powershell-to-pass-credentials-to-legacy-systems/

 Windows.Security.Cryptography.DataProtection

Page 8/8

