PDF generator

FPDF Library

*

PowerShell Get-Help cmdlet e

PS C:\> Get-Help

Full credit is given to all the above companies including
the Operating System that this PDF file was generated!

Windows PowerShell Get-Help on Cmdlet 'Export-Csv'

PS:\>Get-HELP Export-Csv -Full

Export-Csv

SYNOPSIS

Converts objects into a series of character-separated value (CSV) strings and saves the strings to a file.

Export-Csv [[-Path] <System.String>] [[-Delimiter] <System.Char>] [-Append] [-Encoding {ASCII | BigEndianUnicode |

Default | OEM | Unicode | UTF7 | UTF8 | UTF32}]

[-Force] -InputObject <System.Management.Automation.PSObject> [-LiteralPath <System.String>] [-NoClobber]

[-NoTypelnformation] [-Confirm] [-Whatlf]

[<CommonParameters>]

Export-Csv [[-Path] <System.String>] [-Append] [-Encoding {ASCII | BigEndianUnicode | Default | OEM | Unicode | UTF7 |

UTF8 | UTF32}] [-Force] -InputObject

<System.Management.Automation.PSObject> [-LiteralPath <System.String>] [-NoClobber] [-NoTypelnformation]

[-UseCulture] [-Confirm] [-Whatlf] [<xCommonParameters>]

Page 1/15

DESCRIPTION
The "Export-CSV" cmdlet creates a CSV file of the objects that you submit. Each object is a row that includes a
character-separated list of the object's property
values. You can use the "Export-CSV" cmdlet to create spreadsheets and share data with programs that accept CSV files

as input.

Do not format objects before sending them to the "Export-CSV" cmdlet. If "Export-CSV" receives formatted objects the
CSV file contains the format properties rather

than the object properties. To export only selected properties of an object, use the “Select-Object™ cmdlet.

PARAMETERS
-Append <System.Management.Automation.SwitchParameter>
Use this parameter so that "Export-CSV" adds CSV output to the end of the specified file. Without this parameter,
"Export-CSV' replaces the file contents without

warning.

This parameter was introduced in Windows PowerShell 3.0.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Delimiter <System.Char>
Specifies a delimiter to separate the property values. The default is a comma (7,"). Enter a character, such as a colon
(). To specify a semicolon (7;),

enclose it in quotation marks.

Required? false
Position? 1

Default value comma (,) Page 2/15

Accept pipeline input? False

Accept wildcard characters? false

-Encoding <System.String>

Specifies the encoding for the exported CSV file. The default value is "ASCII".

The acceptable values for this parameter are as follows:

"ASCII" Uses ASCII (7-bit) character set.

"BigEndianUnicode™ Uses UTF-16 with the big-endian byte order.

"Default” Uses the encoding that corresponds to the system's active code page (usually ANSI).

"OEM" Uses the encoding that corresponds to the system's current OEM code page.

“Unicode™ Uses UTF-16 with the little-endian byte order.

- 'UTF7" Uses UTF-7.

- 'UTF8" Uses UTF-8.

- "UTF32" Uses UTF-32 with the little-endian byte order.

Required? false
Position? named
Default value ASCII

Accept pipeline input? False

Accept wildcard characters? false

-Force <System.Management.Automation.SwitchParameter>

This parameter allows "Export-Csv’ to overwrite files with the Read Only attribute.

Page 3/15

When Force and Append parameters are combined, objects that contain mismatched properties can be written to a
CSV file. Only the properties that match are written

to the file. The mismatched properties are discarded.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-InputObject <System.Management.Automation.PSObject>
Specifies the objects to export as CSV strings. Enter a variable that contains the objects or type a command or
expression that gets the objects. You can also

pipe objects to "Export-CSV".

Required? true
Position? named
Default value None

Accept pipeline input? True (ByPropertyName, ByValue)

Accept wildcard characters? false

-LiteralPath <System.String>

Specifies the path to the CSV output file. Unlike Path , the value of the LiteralPath parameter is used exactly as it is

typed. No characters are interpreted as

wildcards. If the path includes escape characters, use single quotation marks. Single quotation marks tell PowerShell

not to interpret any characters as escape

sequences.
Required? false

Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false Page 4/15

-NoClobber <System.Management.Automation.SwitchParameter>

Use this parameter so that "Export-CSV" does not overwrite an existing file. By default, if the file exists in the specified
path, "Export-CSV" overwrites the

file without warning.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-NoTypelnformation <System.Management.Automation.SwitchParameter>

Removes the "#TYPE" information header from the output. This parameter became the default in PowerShell 6.0 and is

included for backwards compatibility.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Path <System.String>

A required parameter that specifies the location to save the CSV output file.

Required? false
Position? 0
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-UseCulture <System.Management.Automation.SwitchParameter>

Uses the list separator for the current culture as the item delimiter. To find the list separator for a cultifégeselhe

following command:

“(Get-Culture).TextInfo.ListSeparator'.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Confirm <System.Management.Automation.SwitchParameter>

Prompts you for confirmation before running the cmdlet.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Whatlf <System.Management.Automation.SwitchParameter>

Prevents the cmdlet from being processed or making changes. The output shows what would happen if the cmdlet

were run.
Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

<CommonParameters>
This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see

about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216). Page 6/15

INPUTS
System.Management.Automation.PSObject

You can pipe any object with an Extended Type System (ETS) adapter to this cmdlet.

OUTPUTS
None

This cmdlet returns no output.

NOTES

Windows PowerShell includes the following aliases for "Export-Csv';

-‘epcsv’

The "Export-CSV" cmdlet converts the objects that you submit into a series of CSV strings and saves them in the
specified text file. You can use "Export-CSV" to

save objects in a CSV file and then use the “Import-Csv' cmdlet to create objects from the CSV file.

In the CSV file, each object is represented by a character-separated list of the property values of the object. The
property values are converted to strings using
the ToString() method. The strings are represented by the property value name. "Export-CSV does not export the

methods of the object.

The CSV strings are output as follows:

- By default the first string contains the #TYPE information header followed by the object type's fully qualified name.
For example, #TYPE
System.Diagnostics.Process . - If NoTypelnformation is used the first string includes the column headers. The headers

contain the first object's property names Page 7/15

as a character-separated list. - The remaining strings contain character-separated lists of each object's property values.

When you submit multiple objects to "Export-CSV", "Export-CSV" organizes the file based on the properties of the first
object that you submit. If the remaining
objects do not have one of the specified properties, the property value of that object is null, as represented by two
consecutive commas. If the remaining objects

have additional properties, those property values are not included in the file.

You can use the “Import-Csv’ cmdlet to recreate objects from the CSV strings in the files. The resulting objects are
CSV versions of the original objects that

consist of string representations of the property values and no methods.

The “ConvertTo-Csv' and “ConvertFrom-Csv' cmdlets convert objects to CSV strings and from CSV strings.
"Export-CSV' is the same as "ConvertTo-CSV", except that it

saves the CSV strings in a file.

Get-Process -Name WmiPrvSE |
Select-Object -Property BasePriority,Id,Sessionld,WorkingSet |
Export-Csv -Path \WmiData.csv -NoTypelnformation

Import-Csv -Path \WmiData.csv

BasePriority Id Sessionld WorkingSet

8 976 O 20267008
8 2292 0 36786176
8 3816 0 30351360
8 8604 0 15011840
8 10008 O 8830976
8 11764 0 14237696
8 546320 9502720

Page 8/15

The "Get-Process™ cmdlet gets the Process objects. The Name parameter filters the output to include only the WmiPrvSE

process objects. The process objects are sent
down the pipeline to the "Select-Object” cmdlet. “Select-Object™ uses the Property parameter to select a subset of

process object properties. The process objects are

sent down the pipeline to the "Export-Csv' cmdlet. "Export-Csv" converts the process objects to a series of CSV strings.
The Path parameter specifies that the

"WmiData.csv' file is saved in the current directory. The NoTypelnformation parameter removes the #TYPE information
header from the CSV output and is not required in

PowerShell 6. The “Import-Csv' cmdlet uses the Path parameter to display the file located in the current directory.

---- Example 2: Export processes to a comma-delimited file ----

Get-Process | Export-Csv -Path .\Processes.csv -NoTypelnformation

Get-Content -Path .\Processes.csv

"Name","SI","Handles","VM","WS","PM","NPM","Path","Parent","Com pany","CPU","FileVersion", .

"ApplicationFrameHost","4","511","2203597099008","35364864","21979136","30048", ...

The “Get-Process’ cmdlet gets Process objects. The process objects are sent down the pipeline to the "Export-Csv’
cmdlet. "Export-Csv" converts the process objects to
a series of CSV strings. The Path parameter specifies that the “Processes.csv’ file is saved in the current directory. The
NoTypelnformation parameter removes the
#TYPE information header from the CSV output and is not required in PowerShell 6. The "Get-Content” cmdlet uses the
Path parameter to display the file located in the
current directory.

-- Example 3: Export processes to a semicolon delimited file --

Get-Process | Export-Csv -Path .\Processes.csv -Delimiter *;' -NoTypelnformation

Get-Content -Path .\Processes.csv

"Name";"SI";"Handles";"VM";"WS";"PM";"NPM";"Path";"Parent";"Company";"CPU";"FileVersion"; ...

"ApplicationFrameHost";"4";"509";"2203595321344";"34807808";"21770240";"29504"; ...

The “Get-Process’ cmdlet gets Process objects. The process objects are sent down the pipeline to the “PRger2Es,

cmdlet. "Export-Csv" converts the process objects to

a series of CSV strings. The Path parameter specifies that the "Processes.csv’ file is saved in the current directory. The
Delimiter parameter specifies a semicolon

to separate the string values. The NoTypelnformation parameter removes the #TYPE information header from the CSV
output and is not required in PowerShell 6. The

"Get-Content” cmdlet uses the Path parameter to display the file located in the current directory.

Example 4: Export processes using the current culture's list separator

(Get-Culture).TextInfo.ListSeparator
Get-Process | Export-Csv -Path .\Processes.csv -UseCulture -NoTypelnformation

Get-Content -Path .\Processes.csv

"Name","SI","Handles","VM","WS","PM","NPM","Path","Parent","Company","CPU","FileVersion", ...

"ApplicationFrameHost","4","511","2203597099008","35364864","21979136","30048", ...

The “Get-Culture” cmdlet uses the nested properties TextInfo and ListSeparator and displays the current culture's default
list separator. The "Get-Process” cmdlet

gets Process objects. The process objects are sent down the pipeline to the "Export-Csv' cmdlet. "Export-Csv’ converts
the process objects to a series of CSV strings.

The Path parameter specifies that the “Processes.csv' file is saved in the current directory. The UseCulture parameter
uses the current culture's default list

separator as the delimiter. The NoTypelnformation parameter removes the #TYPE information header from the CSV
output and is not required in PowerShell 6. The

"Get-Content’ cmdlet uses the Path parameter to display the file located in the current directory.

Get-Process | Export-Csv -Path .\Processes.csv

Get-Content -Path .\Processes.csv

#TYPE System.Diagnostics.Process
"Name","SI","Handles","VM","WS","PM","NPM","Path","Company","CPU","FileVersion", ...

"ApplicationFrameHost","4","507","2203595001856","35139584","20934656","29504", ...
Page 10/15

The "Get-Process’ cmdlet gets Process objects. The process objects are sent down the pipeline to the "Export-Csv’
cmdlet. "Export-Csv" converts the process objects to

a series of CSV strings. The Path parameter specifies that the “Processes.csv’ file is saved in the current directory. The
"Get-Content” cmdlet uses the Path

parameter to display the file located in the current directory.

$AppService = (Get-Service -DisplayName *Application* | Select-Object -Property DisplayName, Status)
$AppService | Export-Csv -Path .\Services.Csv -NoTypelnformation

Get-Content -Path .\Services.Csv

$WinService = (Get-Service -DisplayName *Windows* | Select-Object -Property DisplayName, Status)
$WinService | Export-Csv -Path .\Services.csv -NoTypelnformation -Append

Get-Content -Path .\Services.Csv

"DisplayName","Status"

"Application Layer Gateway Service","Stopped"
"Application Identity","Running"

"Windows Audio Endpoint Builder","Running"
"Windows Audio","Running"

"Windows Event Log","Running"

The "Get-Service™ cmdlet gets service objects. The DisplayName parameter returns services that contain the word
Application. The service objects are sent down the

pipeline to the “Select-Object” cmdlet. "Select-Object” uses the Property parameter to specify the DisplayName and
Status properties. The "$AppService™ variable

stores the objects.

The "$AppService™ objects are sent down the pipeline to the "Export-Csv’ cmdlet. "Export-Csv™ converts the service
objects to a series of CSV strings. The Path
parameter specifies that the "Services.csv' file is saved in the current directory. The NoTypelnformation parameter
removes the #TYPE information header from the CSV
output and is not required in PowerShell 6. The "Get-Content” cmdlet uses the Path parameter to display the file located

in the current directory. Page 11/15

The "Get-Service® and "Select-Object” cmdlets are repeated for services that contain the word Windows. The
“$WinService' variable stores the service objects. The
"Export-Csv’ cmdlet uses the Append parameter to specify that the “$WinService™ objects are added to the existing
“Services.csv file. The "Get-Content” cmdlet is
repeated to display the updated file that includes the appended data.

Example 7: Format cmdlet within a pipeline creates unexpected results

Get-Date | Select-Object -Property DateTime, Day, DayOfWeek, DayOfYear |
Export-Csv -Path .\DateTime.csv -NoTypelnformation

Get-Content -Path .\DateTime.csv

"DateTime","Day","DayOfWeek","DayOfYear"

"Wednesday, January 2, 2019 14:59:34","2" "Wednesday","2"

Get-Date | Format-Table -Property DateTime, Day, DayOfWeek, DayOfYear |
Export-Csv -Path .\FTDateTime.csv -NoTypelnformation

Get-Content -Path .\FTDateTime.csv

"Classld2e4f51ef21dd47e99d3c952918aff9cd","pageHeaderEntry","pageFooterEntry","autosizelnfo", ...
"033ecb2bc07a4d43b5ef94ed5a35d280",,,,"Microsoft.PowerShell. Commands.Internal.Format. ...
"9e210fe47d09416682b841769c78b8a3",,,,,

"27c87ef9bbda4f709f6b4002fad4af63c",,,,,

"4ec4f0187cb04f4cb6973460dfe252df",,,,,

"cf522b78d86c486691226b40aa69e95c",,,,,

The "Get-Date” cmdlet gets the DateTime object. The object is sent down the pipeline to the “Select-Object” cmdlet.
“Select-Object” uses the Property parameter to

select a subset of object properties. The object is sent down the pipeline to the "Export-Csv’ cmdlet. "Export-Csv’
converts the object to a CSV format. The Path

parameter specifies that the "DateTime.csv file is saved in the current directory. The NoTypelnformation parameter
removes the #TYPE information header from the CSV

output and is not required in PowerShell 6. The “Get-Content” cmdlet uses the Path parameter to display RRgeCE/1file

located in the current directory.

When the "Format-Table® cmdlet is used within the pipeline to select properties unexpected results are received.
"Format-Table" sends table format objects down the
pipeline to the "Export-Csv' cmdlet rather than the DateTime object. "Export-Csv" converts the table format objects to a
series of CSV strings. The "Get-Content’
cmdlet displays the CSV file which contains the table format objects.

Example 8: Using the Force parameter to overwrite read-only files

New-Item -Path \ReadOnly.csv -ltemType File
Set-ltemProperty -Path .\ReadOnly.csv -Name IsReadOnly -Value $true

Get-Process | Export-Csv -Path .\ReadOnly.csv -NoTypelnformation

Export-Csv : Access to the path 'C:\ReadOnly.csv' is denied.
At line:1 char:15
+ Get-Process | Export-Csv -Path .\ReadOnly.csv -NoTypelnformation

+

+ Categorylnfo : OpenError: (:) [Export-Csv], UnauthorizedAccessException

+ FullyQualifiedErrorld : FileOpenFailure,Microsoft.PowerShell. Commands.ExportCsvCommand

Get-Process | Export-Csv -Path .\ReadOnly.csv -NoTypelnformation -Force

Get-Content -Path .\ReadOnly.csv

"Name";"SI";"Handles";"VM";"WS";"PM";"NPM";"Path";"Parent";"Company";"CPU";"FileVersion"; ...

"ApplicationFrameHost";"4";"509";"2203595321344","34807808";"21770240";"29504"; ...

The "New-Item™ cmdlet uses the Path and ItemType parameters to create the "ReadOnly.csv” file in the current directory.
The "Set-ltemProperty” cmdlet uses the Name

and Value parameters to change the file's IsReadOnly property to true. The "Get-Process™ cmdlet gets Process objects.
The process objects are sent down the pipeline

to the "Export-Csv’ cmdlet. "Export-Csv™ converts the process objects to a series of CSV strings. The Path parameter
specifies that the "ReadOnly.csv' file is saved

in the current directory. The NoTypelnformation parameter removes the #TYPE information header from thé®@®/1&0k5ut

and is not required in PowerShell 6. The output

shows that the file is not written because access is denied.

The Force parameter is added to the "Export-Csv' cmdlet to force the export to write to the file. The "Get-Content™ cmdlet
uses the Path parameter to display the file

located in the current directory.

$Content = [PSCustomObject]@{Name = 'PowerShell'; Version = '7.0'}
$Content | Export-Csv -Path .\ParmFile.csv -NoTypelnformation
$AdditionalContent = [PSCustomObject]@{Name = 'Windows PowerShell'; Edition = 'Desktop'}

$AdditionalContent | Export-Csv -Path .\ParmFile.csv -NoTypelnformation -Append

Export-Csv : Cannot append CSV content to the following file: ParmFile.csv.

The appended object does not have a property that corresponds to the following column:
Version. To continue with mismatched properties, add the -Force parameter, and then retry
the command.

At line:1 char:22

+ $AdditionalContent | Export-Csv -Path .\ParmFile.csv -NoTypelnformation -Append

+
+ Categorylnfo : InvalidData: (Version:String) [Export-Csv], InvalidOperationException

+ FullyQualifiedErrorld : CannotAppendCsvWithMismatchedPropertyNames,Microsoft.PowerShell. ...

$AdditionalContent | Export-Csv -Path .\ParmFile.csv -NoTypelnformation -Append -Force

Import-Csv -Path .\ParmFile.csv

Name Version

PowerShell 7.0

Windows PowerShell

An expression creates the PSCustomObject with Name and Version properties. The values are stored in the “$Content’

variable. The "$Content’ variable is sent down the Page 14/15

pipeline to the "Export-Csv' cmdlet. "Export-Csv’ uses the Path parameter and saves the "ParmFile.csv’ file in the current

directory. The NoTypelnformation parameter

removes the #TYPE information header from the CSV output and is not required in PowerShell 6.

Another expression creates a PSCustomObject with the Name and Edition properties. The values are stored in the
“$AdditionalContent” variable. The “$AdditionalContent’
variable is sent down the pipeline to the "Export-Csv’ cmdlet. The Append parameter is used to add the data to the file.
The append fails because there is a property

name mismatch between Version and Edition .

The "Export-Csv' cmdlet Force parameter is used to force the export to write to the file. The Edition property is discarded.
The “Import-Csv' cmdlet uses the Path

parameter to display the file located in the current directory.

RELATED LINKS

Online Version:
https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/export-csv?view=powershell-5.1&WT.mc_id=ps-g
ethelp

ConvertFrom-Csv
ConvertTo-Csv
Format-Table
Import-Csv

Select-Object

Page 15/15

