
Windows PowerShell Get-Help on Cmdlet 'Export-PSSession'

PS:\>Get-HELP Export-PSSession -Full

NAME

 Export-PSSession

SYNOPSIS

 Exports commands from another session and saves them in a PowerShell module.

SYNTAX

 Export-PSSession [-Session] <System.Management.Automation.Runspaces.PSSession> [-OutputModule]

<System.String> [[-CommandName] <System.String[]>] [[-FormatTypeName]

 <System.String[]>] [-AllowClobber] [-ArgumentList <System.Object[]>] [-Certificate

<System.Security.Cryptography.X509Certificates.X509Certificate2>] [-CommandType

 {Alias | All | Application | Cmdlet | Configuration | ExternalScript | Filter | Function | Script | Workflow}] [-Encoding {ASCII |

BigEndianUnicode | Default | OEM |

 Unicode | UTF7 | UTF8 | UTF32}] [-Force] [-FullyQualifiedModule

<Microsoft.PowerShell.Commands.ModuleSpecification[]>] [-Module <System.String[]>] [<CommonParameters>]

DESCRIPTION

 The `Export-PSSession` cmdlet gets cmdlets, functions, aliases, and other command types from another PowerShellPage 1/14

session (PSSession) on a local or remote computer and

 saves them in a PowerShell module. To add the commands from the module to the current session, use the

`Import-Module` cmdlet.

 Unlike `Import-PSSession`, which imports commands from another PSSession into the current session,

`Export-PSSession` saves the commands in a module. The commands are

 not imported into the current session.

 To export commands, use the `New-PSSession` cmdlet to create a PSSession that has the commands that you want to

export. Then use the `Export-PSSession` cmdlet to

 export the commands.

 To prevent command name conflicts, the default for `Export-PSSession` is to export all commands, except for commands

that exist in the current session. You can use

 the CommandName parameter to specify the commands to export.

 The `Export-PSSession` cmdlet uses the implicit remoting feature of PowerShell. When you import commands into the

current session, they run implicitly in the original

 session or in a similar session on the originating computer.

PARAMETERS

 -AllowClobber <System.Management.Automation.SwitchParameter>

 Exports the specified commands, even if they have the same names as commands in the current session.

 If you export a command with the same name as a command in the current session, the exported command hides or

replaces the original commands. For more

 information, see about_Command_Precedence

(../Microsoft.PowerShell.Core/About/about_Command_Precedence.md).

 Required? false

 Position? named

 Default value False Page 2/14

 Accept pipeline input? False

 Accept wildcard characters? false

 -ArgumentList <System.Object[]>

 Exports the variant of the command that results from using the specified arguments (parameter values).

 For example, to export the variant of the `Get-Item` command in the certificate (Cert:) drive in the PSSession in `$S`,

type `Export-PSSession -Session $S

 -Command Get-Item -ArgumentList cert:`.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Certificate <System.Security.Cryptography.X509Certificates.X509Certificate2>

 Specifies the client certificate that is used to sign the format files (*.Format.ps1xml) or script module files (.psm1) in the

module that `Export-PSSession`

 creates. Enter a variable that contains a certificate or a command or expression that gets the certificate.

 To find a certificate, use the `Get-PfxCertificate` cmdlet or use the `Get-ChildItem` cmdlet in the Certificate (Cert:) drive.

If the certificate is not valid or

 does not have sufficient authority, the command fails.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -CommandName <System.String[]>

 Exports only the commands with the specified names or name patterns. Wildcards are permitted. Use CommandNamePage 3/14

or its alias, Name .

 By default, `Export-PSSession` exports all commands from the PSSession except for commands that have the same

names as commands in the current session. This

 prevents commands from being hidden or replaced by commands in the current session. To export all commands,

even those that hide or replace other commands, use

 the AllowClobber parameter.

 If you use the CommandName parameter, the formatting files for the commands are not exported unless you use the

FormatTypeName parameter. Similarly, if you use

 the FormatTypeName parameter, no commands are exported unless you use the CommandName parameter.

 Required? false

 Position? 2

 Default value All commands in the session.

 Accept pipeline input? False

 Accept wildcard characters? true

 -CommandType <System.Management.Automation.CommandTypes>

 Exports only the specified types of command objects. Use CommandType or its alias, Type .

 The acceptable values for this parameter are as follows:

 - `Alias`: All PowerShell aliases in the current session.

 - `All`: All command types. It is the equivalent of `Get-Command -Name *`.

 - `Application`: All files other than PowerShell files in paths listed in the Path environment

 variable (`$env:path`), including .txt, .exe, and .dll files. - `Cmdlet`: The cmdlets in the current session. Cmdlet is the

default.

 - `Configuration`: A PowerShell configuration. For more information, see about_Session_Configurations Page 4/14

 (../Microsoft.PowerShell.Core/About/about_Session_Configurations.md). - `ExternalScript`: All .ps1 files in the paths

listed in the Path environment variable

 (`$env:path`). - `Filter` and `Function`: All PowerShell functions.

 - `Script` Script blocks in the current session.

 - `Workflow` A PowerShell workflow. For more information, see about_Workflows

(../PSWorkflow/About/about_Workflows.md).

 These values are defined as a flag-based enumeration. You can combine multiple values together to set multiple flags

using this parameter. The values can be

 passed to the CommandType parameter as an array of values or as a comma-separated string of those values. The

cmdlet will combine the values using a binary-OR

 operation. Passing values as an array is the simplest option and also allows you to use tab-completion on the values.

 Required? false

 Position? named

 Default value All commands in the session.

 Accept pipeline input? False

 Accept wildcard characters? false

 -Encoding <System.String>

 Specifies the type of encoding for the target file. The default value is `UTF8`.

 The acceptable values for this parameter are as follows:

 - `ASCII`: Uses ASCII (7-bit) character set.

 - `BigEndianUnicode`: Uses UTF-16 with the big-endian byte order.

 - `Default`; Uses the encoding that corresponds to the system's active code page.

 - `OEM`: Uses the encoding that corresponds to the system's current OEM code page. Page 5/14

 - `Unicode`: Uses UTF-16 with the little-endian byte order.

 - `UTF7`: Uses UTF-7.

 - `UTF8`: Uses UTF-8.

 - `UTF32`: Uses UTF-32 with the little-endian byte order.

 Required? false

 Position? named

 Default value UTF8

 Accept pipeline input? False

 Accept wildcard characters? false

 -Force <System.Management.Automation.SwitchParameter>

 Overwrites one or more existing output files, even if the file has the read-only attribute.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -FormatTypeName <System.String[]>

 Exports formatting instructions only for the specified Microsoft .NET Framework types. Enter the type names. By

default, `Export-PSSession` exports formatting

 instructions for all .NET Framework types that are not in the System.Management.Automation namespace.

 The value of this parameter must be the name of a type that is returned by a `Get-FormatData` command in the

session from which the commands are being imported.

 To get all of the formatting data in the remote session, type `*`.

 Page 6/14

 If you use the FormatTypeName parameter, no commands are exported unless you use the CommandName

parameter.

 If you use the CommandName parameter, the formatting files for the commands are not exported unless you use the

FormatTypeName parameter.

 Required? false

 Position? 3

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -FullyQualifiedModule <Microsoft.PowerShell.Commands.ModuleSpecification[]>

 The value can be a module name, a full module specification, or a path to a module file.

 When the value is a path, the path can be fully qualified or relative. A relative path is resolved relative to the script that

contains the using statement.

 When the value is a name or module specification, PowerShell searches the PSModulePath for the specified module.

 A module specification is a hashtable that has the following keys.

 - `ModuleName` - Required Specifies the module name. - `GUID` - Optional Specifies the GUID of the module. - It's

also Required to specify at least one of the

 three below keys. - `ModuleVersion` - Specifies a minimum acceptable version of the module. - `MaximumVersion` -

Specifies the maximum acceptable version of

 the module. - `RequiredVersion` - Specifies an exact, required version of the module. This can't be used with the

other Version keys.

 You can't specify the FullyQualifiedModule parameter in the same command as a Module parameter. the two

parameters are mutually exclusive.

 Required? false Page 7/14

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Module <System.String[]>

 Exports only the commands in the specified PowerShell snap-ins and modules. Enter the snap-in and module names.

Wildcards are not permitted.

 For more information, see `Import-Module` and about_PSSnapins

(../Microsoft.PowerShell.Core/About/about_PSSnapins.md).

 Required? false

 Position? named

 Default value All commands in the session.

 Accept pipeline input? False

 Accept wildcard characters? false

 -OutputModule <System.String>

 Specifies an optional path and name for the module created by `Export-PSSession`. The default path is

`$HOME\Documents\WindowsPowerShell\Modules`. This parameter

 is required.

 If the module subdirectory or any of the files that `Export-PSSession` creates already exist, the command fails. To

overwrite existing files, use the Force

 parameter.

 Required? true

 Position? 1

 Default value $HOME\Documents\WindowsPowerShell\Modules

 Accept pipeline input? False

 Accept wildcard characters? false

 Page 8/14

 -Session <System.Management.Automation.Runspaces.PSSession>

 Specifies the PSSession from which the commands are exported. Enter a variable that contains a session object or a

command that gets a session object, such as a

 `Get-PSSession` command. This parameter is required.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 None

 You can't pipe objects to this cmdlet.

OUTPUTS

 System.IO.FileInfo

 This cmdlet returns a list of files that comprise the module that it created.

NOTES

 Windows PowerShell includes the following aliases for `Export-PSSession`:

 - `epsn` Page 9/14

 `Export-PSSession` relies on the PowerShell remoting infrastructure. To use this cmdlet, the computer must be

configured for remoting. For more information, see

 about_Remote_Requirements (../Microsoft.PowerShell.Core/About/about_Remote_Requirements.md).

 You cannot use `Export-PSSession` to export a PowerShell provider.

 Exported commands run implicitly in the PSSession from which they were exported. The details of running the

commands remotely are handled entirely by PowerShell.

 You can run the exported commands just as you would run local commands.

 `Export-ModuleMember` captures and saves information about the PSSession in the module that it exports. If the

PSSession from which the commands were exported is

 closed when you import the module, and there are no active PSSessions to the same computer, the commands in the

module attempt to recreate the PSSession. If

 attempts to recreate the PSSession fail, the exported commands will not run.

 The session information that `Export-ModuleMember` captures and saves in the module does not include session

options, such as those that you specify in the

 `$PSSessionOption` preference variable or by using the SessionOption parameter of the `New-PSSession`,

`Enter-PSSession`, or `Invoke-Command` cmdlets. If the

 original PSSession is closed when you import the module, the module will use another PSSession to the same

computer, if one is available. To enable the imported

 commands to run in a correctly configured session, create a PSSession with the options that you want before you

import the module.

 To find the commands to export, `Export-PSSession` uses the `Invoke-Command` cmdlet to run a `Get-Command`

command in the PSSession. To get and save formatting

 data for the commands, it uses the `Get-FormatData` and `Export-FormatData` cmdlets. You might see error

messages from `Invoke-Command`, `Get-Command`,

 `Get-FormatData`, and `Export-FormatData` when you run an `Export-PSSession` command. Also,

`Export-PSSession` cannot export commands from a session that does not

 include the `Get-Command`, `Get-FormatData`, `Select-Object`, and `Get-Help` cmdlets. Page 10/14

 `Export-PSSession` uses the `Write-Progress` cmdlet to display the progress of the command. You might see the

progress bar while the command is running.

 Exported commands have the same limitations as other remote commands, including the inability to start a program

with a user interface, such as Notepad.

 Because PowerShell profiles are not run in PSSessions, the commands that a profile adds to a session are not

available to `Export-PSSession`. To export commands

 from a profile, use an `Invoke-Command` command to run the profile in the PSSession manually before exporting

commands.

 The module that `Export-PSSession` creates might include a formatting file, even if the command does not import

formatting data. If the command does not import

 formatting data, any formatting files that are created will not contain formatting data.

 --------- Example 1: Export commands from a PSSession ---------

 $S = New-PSSession -ComputerName Server01

 Export-PSSession -Session $S -OutputModule Server01

 The `New-PSSession` command creates a PSSession on the Server01 computer. The PSSession is stored in the `$S`

variable. The `Export-PSSession` command exports the

 `$S` variable's commands and formatting data into the Server01 module.

 ---------- Example 2: Export the Get and Set commands ----------

 $S = New-PSSession -ConnectionUri https://exchange.microsoft.com/mailbox -Credential

exchangeadmin01@hotmail.com -Authentication Negotiate

 Export-PSSession -Session $S -Module exch* -CommandName Get-*, Set-* -FormatTypeName * -OutputModule

$PSHOME\Modules\Exchange -Encoding ASCII

 These commands export the `Get` and `Set` commands from a Microsoft Exchange Server snap-in on a remote computer

to an Exchange module in the `$PSHOME\Modules` Page 11/14

 directory on the local computer. Placing the module in the `$PSHOME\Modules` directory makes it accessible to all users

of the computer.

 ------ Example 3: Export commands from a remote computer ------

 $S = New-PSSession -ComputerName Server01 -Credential Server01\User01

 Export-PSSession -Session $S -OutputModule TestCmdlets -Type Cmdlet -CommandName *test* -FormatTypeName *

 Remove-PSSession $S

 Import-Module TestCmdlets

 Get-Help Test*

 Test-Files

 The `New-PSSession` command creates a PSSession on the Server01 computer and saves it in the `$S` variable. The

`Export-PSSession` command exports the cmdlets whose

 names begin with Test from the PSSession in `$S` to the TestCmdlets module on the local computer.

 The `Remove-PSSession` cmdlet deletes the PSSession in `$S` from the current session. This command shows that the

PSSession need not be active to use the commands

 that were imported from the session. The `Import-Module` cmdlet adds the cmdlets in the TestCmdlets module to the

current session. The command can be run in any

 session at any time.

 The `Get-Help` cmdlet gets help for cmdlets whose names begin with Test. After the commands in a module are added to

the current session, you can use the `Get-Help`

 and `Get-Command` cmdlets to learn about the imported commands. The `Test-Files` cmdlet was exported from the

Server01 computer and added to the session. The

 `Test-Files` cmdlet runs in a remote session on the computer from which the command was imported. PowerShell creates

a session from information that is stored in the

 TestCmdlets module.

 Example 4: Export and clobber commands in the current session

 Export-PSSession -Session $S -AllowClobber -OutputModule AllCommands

 This `Export-PSSession` command exports all commands and all formatting data from the PSSession in the `$S` variablePage 12/14

into the current session. The AllowClobber

 parameter includes commands with the same names as commands in the current session.

 ------ Example 5: Export commands from a closed PSSession ------

 $Options = New-PSSessionOption -NoMachineProfile

 $S = New-PSSession -ComputerName Server01 -SessionOption $Options

 Export-PSSession -Session $S -OutputModule Server01

 Remove-PSSession $S

 New-PSSession -ComputerName Server01 -SessionOption $Options

 Import-Module Server01

 The `New-PSSessionOption` cmdlet creates a PSSessionOption object, and it saves the object in the `$Options` variable.

The `New-PSSession` command creates a PSSession

 on the Server01 computer. The SessionOption parameter uses the object stored in `$Options`. The session is stored in

the `$S` variable.

 The `Export-PSSession` cmdlet exports commands from the PSSession in `$S` to the Server01 module. The

`Remove-PSSession` cmdlet deletes the PSSession in the `$S`

 variable.

 The `New-PSSession` cmdlet creates a new PSSession that connects to the Server01 computer. The SessionOption

parameter uses the object stored in `$Options`. The

 `Import-Module` cmdlet imports the commands from the Server01 module. The commands in the module are run in the

PSSession on the Server01 computer.

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/export-pssession?view=powershell-5.1&WT.mc_id

=ps-gethelp

 about_Command_Precedence

 about_PSSessions

 about_PSSnapins

 about_Remote_Requirements Page 13/14

 Import-Module

 Import-PSSession

 Invoke-Command

 New-PSSession

 New-PSSessionOption

 Remove-PSSession

Page 14/14

