
Windows PowerShell Get-Help on Cmdlet 'Get-EventSubscriber'

PS:\>Get-HELP Get-EventSubscriber -Full

NAME

 Get-EventSubscriber

SYNOPSIS

 Gets the event subscribers in the current session.

SYNTAX

 Get-EventSubscriber [[-SourceIdentifier] <System.String>] [[-Force]] [<CommonParameters>]

 Get-EventSubscriber [-SubscriptionId] <System.Int32> [[-Force]] [<CommonParameters>]

DESCRIPTION

 The `Get-EventSubscriber` cmdlet gets the event subscribers in the current session.

 When you subscribe to an event by using a Register event cmdlet, an event subscriber is added to your Windows

PowerShell session, and the events to which you

 subscribed are added to your event queue whenever they are raised. To cancel an event subscription, delete the event

subscriber by using the `Unregister-Event` cmdlet. Page 1/7

PARAMETERS

 -Force <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets all event subscribers, including subscribers for events that are hidden by using the

SupportEvent parameter of

 `Register-ObjectEvent`, `Register-WmiEvent`, and `Register-EngineEvent`.

 Required? false

 Position? 1

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -SourceIdentifier <System.String>

 Specifies the SourceIdentifier property value that gets only the event subscribers. By default, `Get-EventSubscriber`

gets all event subscribers in the session.

 Wildcards are not permitted. This parameter is case-sensitive.

 Required? false

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -SubscriptionId <System.Int32>

 Specifies the subscription identifier that this cmdlet gets. By default, `Get-EventSubscriber` gets all event subscribers in

the session.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName) Page 2/7

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 None

 You can't pipe objects to this cmdlet.

OUTPUTS

 System.Management.Automation.PSEventSubscriber

 This cmdlet returns a PSEventSubscriber object for each event subscriber.

NOTES

 The `New-Event` cmdlet, which creates a custom event, does not generate a subscriber. Therefore, the

`Get-EventSubscriber` cmdlet will not find a subscriber

 object for these events. However, if you use the `Register-EngineEvent` cmdlet to subscribe to a custom event (in

order to forward the event or to specify an

 action), `Get-EventSubscriber` will find the subscriber that `Register-EngineEvent` generates.

 Events, event subscriptions, and the event queue exist only in the current session. If you close the current session, the

event queue is discarded and the event

 subscription is canceled.

 ---- Example 1: Get the event subscriber for a timer event ----

 Page 3/7

 $Timer = New-Object Timers.Timer

 $Timer | Get-Member -Type Event

 TypeName: System.Timers.Timer

 Name MemberType Definition

 ---- ---------- ----------

 Disposed Event System.EventHandler Disposed(System.Object, System.EventArgs)

 Elapsed Event System.Timers.ElapsedEventHandler Elapsed(System.Object, System.Timers.ElapsedEventArgs)

 Register-ObjectEvent -InputObject $Timer -EventName Elapsed -SourceIdentifier Timer.Elapsed

 Get-EventSubscriber

 SubscriptionId : 4

 SourceObject : System.Timers.Timer

 EventName : Elapsed

 SourceIdentifier : Timer.Elapsed

 Action :

 HandlerDelegate :

 SupportEvent : False

 ForwardEvent : False

 The third command uses the `Register-ObjectEvent` cmdlet to register for the Elapsed event on the timer object.

 The fourth command uses the `Get-EventSubscriber` cmdlet to get the event subscriber for the Elapsed event.

 Example 2: Use the dynamic module in PSEventJob in the Action property of the event subscriber

 $Timer = New-Object Timers.Timer

 $Timer.Interval = 500

 $params = @{

 InputObject = $Timer

 EventName = 'Elapsed'

 SourceIdentifier = 'Timer.Random' Page 4/7

 Action = { $Random = Get-Random -Min 0 -Max 100 }

 }

 Register-ObjectEvent @params

 Id Name State HasMoreData Location Command

 -- ---- ----- ----------- -------- -------

 3 Timer.Random NotStarted False $Random = Get-Random ...

 $Timer.Enabled = $True

 $Subscriber = Get-EventSubscriber -SourceIdentifier Timer.Random

 ($Subscriber.action).gettype().fullname

 System.Management.Automation.PSEventJob

 $Subscriber.action | Format-List -Property *

 State : Running

 Module : __DynamicModule_6b5cbe82-d634-41d1-ae5e-ad7fe8d57fe0

 StatusMessage :

 HasMoreData : True

 Location :

 Command : $random = Get-Random -Min 0 -Max 100

 JobStateInfo : Running

 Finished : System.Threading.ManualResetEvent

 InstanceId : 88944290-133d-4b44-8752-f901bd8012e2

 Id : 1

 Name : Timer.Random

 ChildJobs : {}

 ...

 & $Subscriber.action.module {$Random}

 The third command uses the `Register-ObjectEvent` cmdlet to register the Elapsed event of the timer object. ThePage 5/7

command includes an action that handles the event.

 Whenever the timer interval elapses, an event is raised and the commands in the action run. In this case, the

`Get-Random` cmdlet generates a random number between 0

 and 100 and saves it in the `$Random` variable. The source identifier of the event is Timer.Random.

 When you use an Action parameter in a `Register-ObjectEvent` command, the command returns a PSEventJob object

that represents the action.

 The fourth command enables the timer.

 The fifth command uses the `Get-EventSubscriber` cmdlet to get the event subscriber of the Timer.Random event. It

saves the event subscriber object in the

 `$Subscriber` variable.

 The sixth command shows that the Action property of the event subscriber object contains a PSEventJob object. In fact, it

contains the same PSEventJob object that the

 `Register-ObjectEvent` command returned.

 The seventh command uses the `Format-List` cmdlet to display all of the properties of the PSEventJob object in the

Action property in a list. The result reveals that

 the PSEventJob object has a Module property that contains a dynamic script module that implements the action.

 The remaining commands use the call operator (`&`) to invoke the command in the module and display the value of the

$Random variable. You can use the call operator to

 invoke any command in a module, including commands that are not exported. In this case, the commands show the

random number that is being generated when the Elapsed

 event occurs.

 For more information about modules, see about_Modules (../Microsoft.PowerShell.Core/About/about_Modules.md).

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/get-eventsubscriber?view=powershell-5.1&WT.mcPage 6/7

_id=ps-gethelp

 Get-Event

 New-Event

 Register-EngineEvent

 Register-ObjectEvent

 Remove-Event

 Unregister-Event

 Wait-Event

Page 7/7

