
Windows PowerShell Get-Help on Cmdlet 'Get-Job'

PS:\>Get-HELP Get-Job -Full

NAME

 Get-Job

SYNOPSIS

 Gets PowerShell background jobs that are running in the current session.

SYNTAX

 Get-Job [[-Id] <System.Int32[]>] [-After <System.DateTime>] [-Before <System.DateTime>] [-ChildJobState {NotStarted |

Running | Completed | Failed | Stopped | Blocked

 | Suspended | Disconnected | Suspending | Stopping | AtBreakpoint}] [-HasMoreData <System.Boolean>]

[-IncludeChildJob] [-Newest <System.Int32>] [<CommonParameters>]

 Get-Job [-After <System.DateTime>] [-Before <System.DateTime>] [-ChildJobState {NotStarted | Running | Completed |

Failed | Stopped | Blocked | Suspended |

 Disconnected | Suspending | Stopping | AtBreakpoint}] [-Command <System.String[]>] [-HasMoreData

<System.Boolean>] [-IncludeChildJob] [-Newest <System.Int32>]

 [<CommonParameters>]

 Get-Job [-InstanceId] <System.Guid[]> [-After <System.DateTime>] [-Before <System.DateTime>] [-ChildJobStatePage 1/17

{NotStarted | Running | Completed | Failed | Stopped |

 Blocked | Suspended | Disconnected | Suspending | Stopping | AtBreakpoint}] [-HasMoreData <System.Boolean>]

[-IncludeChildJob] [-Newest <System.Int32>]

 [<CommonParameters>]

 Get-Job [-Name] <System.String[]> [-After <System.DateTime>] [-Before <System.DateTime>] [-ChildJobState

{NotStarted | Running | Completed | Failed | Stopped |

 Blocked | Suspended | Disconnected | Suspending | Stopping | AtBreakpoint}] [-HasMoreData <System.Boolean>]

[-IncludeChildJob] [-Newest <System.Int32>]

 [<CommonParameters>]

 Get-Job [-State] {NotStarted | Running | Completed | Failed | Stopped | Blocked | Suspended | Disconnected |

Suspending | Stopping | AtBreakpoint} [-After

 <System.DateTime>] [-Before <System.DateTime>] [-ChildJobState {NotStarted | Running | Completed | Failed | Stopped

| Blocked | Suspended | Disconnected | Suspending

 | Stopping | AtBreakpoint}] [-HasMoreData <System.Boolean>] [-IncludeChildJob] [-Newest <System.Int32>]

[<CommonParameters>]

 Get-Job [-Filter] <System.Collections.Hashtable> [<CommonParameters>]

DESCRIPTION

 The `Get-Job` cmdlet gets objects that represent the background jobs that were started in the current session. You can

use `Get-Job` to get jobs that were started by

 using the `Start-Job` cmdlet, or by using the AsJob parameter of any cmdlet.

 Without parameters, a `Get-Job` command gets all jobs in the current session. You can use the parameters of `Get-Job`

to get particular jobs.

 The job object that `Get-Job` returns contains useful information about the job, but it does not contain the job results. To

get the results, use the `Receive-Job`

 cmdlet.

 Page 2/17

 A Windows PowerShell background job is a command that runs in the background without interacting with the current

session. Typically, you use a background job to run

 a complex command that takes a long time to finish. For more information about background jobs in Windows

PowerShell, see about_Jobs (./about/about_Jobs.md).

 Beginning in Windows PowerShell 3.0, the `Get-Job` cmdlet also gets custom job types, such as workflow jobs and

instances of scheduled jobs. To find the job type of a

 job, use the PSJobTypeName property of the job.

 To enable `Get-Job` to get a custom job type, import the module that supports the custom job type into the session before

you run a `Get-Job` command, either by using

 the `Import-Module` cmdlet or by using or getting a cmdlet in the module. For information about a particular custom job

type, see the documentation of the custom job

 type feature.

PARAMETERS

 -After <System.DateTime>

 Gets completed jobs that ended after the specified date and time. Enter a DateTime object, such as one returned by

the `Get-Date` cmdlet or a string that can be

 converted to a DateTime object, such as `Dec 1, 2012 2:00 AM` or `11/06`.

 This parameter works only on custom job types, such as workflow jobs and scheduled jobs, that have an EndTime

property. It does not work on standard background

 jobs, such as those created by using the `Start-Job` cmdlet. For information about support for this parameter, see the

help topic for the job type.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False Page 3/17

 Accept wildcard characters? false

 -Before <System.DateTime>

 Gets completed jobs that ended before the specified date and time. Enter a DateTime object.

 This parameter works only on custom job types, such as workflow jobs and scheduled jobs, that have an EndTime

property. It does not work on standard background

 jobs, such as those created by using the `Start-Job` cmdlet. For information about support for this parameter, see the

help topic for the job type.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -ChildJobState <System.Management.Automation.JobState>

 Gets only the child jobs that have the specified state. The acceptable values for this parameter are:

 - NotStarted

 - Running

 - Completed

 - Failed

 - Stopped

 - Blocked

 Page 4/17

 - Suspended

 - Disconnected

 - Suspending

 - Stopping

 By default, `Get-Job` does not get child jobs. By using the IncludeChildJob parameter, `Get-Job` gets all child jobs. If

you use the ChildJobState parameter, the

 IncludeChildJob parameter has no effect.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Command <System.String[]>

 Specifies an array of commands as strings. This cmdlet gets the jobs that include the specified commands. The default

is all jobs. You can use wildcard characters

 to specify a command pattern.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? true

 -Filter <System.Collections.Hashtable> Page 5/17

 Specifies a hash table of conditions. This cmdlet gets jobs that satisfy all of the conditions. Enter a hash table where

the keys are job properties and the

 values are job property values.

 This parameter works only on custom job types, such as workflow jobs and scheduled jobs. It does not work on

standard background jobs, such as those created by

 using the `Start-Job` cmdlet. For information about support for this parameter, see the help topic for the job type.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -HasMoreData <System.Boolean>

 Indicates whether this cmdlet gets only jobs that have the specified HasMoreData property value. The HasMoreData

property indicates whether all job results have

 been received in the current session. To get jobs that have more results, specify a value of `$True`. To get jobs that do

not have more results, specify a value

 of `$False`.

 To get the results of a job, use the `Receive-Job` cmdlet.

 When you use the `Receive-Job` cmdlet, it deletes from its in-memory, session-specific storage the results that it

returned. When it has returned all results of

 the job in the current session, it sets the value of the HasMoreData property of the job to `$False`) to indicate that it has

no more results for the job in the

 current session. Use the Keep parameter of `Receive-Job` to prevent `Receive-Job` from deleting results and changing

the value of the HasMoreData property. For

 more information, type `Get-Help Receive-Job`.

 Page 6/17

 The HasMoreData property is specific to the current session. If results for a custom job type are saved outside of the

session, such as the scheduled job type,

 which saves job results on disk, you can use the `Receive-Job` cmdlet in a different session to get the job results

again, even if the value of HasMoreData is

 `$False`. For more information, see the help topics for the custom job type.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Id <System.Int32[]>

 Specifies an array of IDs of jobs that this cmdlet gets.

 The ID is an integer that uniquely identifies the job in the current session. It is easier to remember and to type than the

instance ID, but it is unique only in

 the current session. You can type one or more IDs separated by commas. To find the ID of a job, type `Get-Job`

without parameters.

 Required? false

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -IncludeChildJob <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet returns child jobs, in addition to parent jobs.

 This parameter is especially useful for investigating workflow jobs, for which `Get-Job` returns a container parent job,

and job failures, because the reason for Page 7/17

 the failure is saved in a property of the child job.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -InstanceId <System.Guid[]>

 Specifies an array of instance IDs of jobs that this cmdlet gets. The default is all jobs.

 An instance ID is a GUID that uniquely identifies the job on the computer. To find the instance ID of a job, use

`Get-Job`.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -Name <System.String[]>

 Specifies an array of instance friendly names of jobs that this cmdlet gets. Enter a job name, or use wildcard characters

to enter a job name pattern. By default,

 `Get-Job` gets all jobs in the current session.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? true

 Page 8/17

 -Newest <System.Int32>

 Specifies a number of jobs to get. This cmdlet gets the jobs that ended most recently.

 The Newest parameter does not sort or return the newest jobs in end-time order. To sort the output, use the

`Sort-Object` cmdlet.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -State <System.Management.Automation.JobState>

 Specifies a job state. This cmdlet gets only jobs in the specified state. The acceptable values for this parameter are:

 - NotStarted

 - Running

 - Completed

 - Failed

 - Stopped

 - Blocked

 - Suspended

 - Disconnected

 Page 9/17

 - Suspending

 - Stopping

 By default, `Get-Job` gets all the jobs in the current session.

 For more information about job states, see JobState Enumeration

(/dotnet/api/system.management.automation.jobstate).

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 None

 You can't pipe objects to this cmdlet.

OUTPUTS

 System.Management.Automation.RemotingJob

 This cmdlet returns objects that represent the jobs in the session.

NOTES Page 10/17

 Windows PowerShell includes the following aliases for `Get-Job`:

 - `gjb`

 The PSJobTypeName property of jobs indicates the job type of the job. The property value is determined by the job

type author. The following list shows common job

 types.

 - BackgroundJob . Local job started by using `Start-Job`. - RemoteJob . Job started in a PSSession by using the AsJob

parameter of the `Invoke-Command` cmdlet.

 - PSWorkflowJob . Job started by using the AsJob common parameter of workflows.

 Example 1: Get all background jobs started in the current session

 Get-Job

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 1 Job1 BackgroundJob Completed True localhost $env:COMPUTERNAME

 -------- Example 2: Stop a job by using an instance ID --------

 $j = Get-Job -Name Job1

 $ID = $j.InstanceID

 $ID

 Guid

 03c3232e-1d23-453b-a6f4-ed73c9e29d55

 Page 11/17

 Stop-Job -InstanceId $ID

 ----- Example 3: Get jobs that include a specific command -----

 Get-Job -Command "*Get-Process*"

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 3 Job3 BackgroundJob Running True localhost Get-Process

 Example 4: Get jobs that include a specific command by using the pipeline

 [pscustomobject]@{Command='*Get-Process*'} | Get-Job

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 3 Job3 BackgroundJob Running True localhost Get-Process

 -------- Example 5: Get jobs that have not been started --------

 Get-Job -State NotStarted

 ---- Example 6: Get jobs that have not been assigned a name ----

 Get-Job -Name Job*

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 1 Job1 BackgroundJob Completed True localhost $env:COMPUTERNAME Page 12/17

 Example 7: Use a job object to represent the job in a command

 Start-Job -ScriptBlock {Get-Process} -Name MyJob

 $j = Get-Job -Name MyJob

 $j

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 6 MyJob BackgroundJob Completed True localhost Get-Process

 Receive-Job -Job $j

 Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

 ------- ------ ----- ----- ----- ------ -- -----------

 124 4 13572 12080 59 1140 audiodg

 783 16 11428 13636 100 548 CcmExec

 96 4 4252 3764 59 3856 ccmsetup

 ...

 Example 8: Get all jobs including jobs started by a different method

 Start-Job -ScriptBlock {Get-EventLog -LogName System}

 Invoke-Command -ComputerName S1 -ScriptBlock {Get-EventLog -LogName System} -AsJob

 Invoke-Command -ComputerName S2 -ScriptBlock {Start-Job -ScriptBlock {Get-EventLog -LogName System}}

 Get-Job

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 1 Job1 BackgroundJob Running True localhost Get-EventLog System

 2 Job2 RemoteJob Running True S1 Get-EventLog System Page 13/17

 $Session = New-PSSession -ComputerName S2

 Invoke-Command -Session $Session -ScriptBlock {Start-Job -ScriptBlock {Get-EventLog -LogName System}}

 Invoke-Command -Session $Session -ScriptBlock {Get-Job}

 Id Name PSJobTypeName State HasMoreData Location Command

PSComputerName

 -- ---- ------------- ----- ----------- -------- ------- --------------

 1 Job1 BackgroundJob Running True localhost Get-EventLog -LogName Sy. S2

 ------------- Example 9: Investigate a failed job -------------

 PS> Start-Job -ScriptBlock {Get-Process}

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 1 Job1 BackgroundJob Failed False localhost Get-Process

 PS> (Get-Job).JobStateInfo | Format-List -Property *

 State : Failed

 Reason :

 PS> Get-Job | Format-List -Property *

 HasMoreData : False

 StatusMessage :

 Location : localhost

 Command : get-process

 JobStateInfo : Failed

 Finished : System.Threading.ManualReset

 EventInstanceId : fb792295-1318-4f5d-8ac8-8a89c5261507

 Id : 1

 Name : Job1

 ChildJobs : {Job2} Page 14/17

 Output : {}

 Error : {}

 Progress : {}

 Verbose : {}

 Debug : {}

 Warning : {}

 StateChanged :

 PS> (Get-Job -Name job2).JobStateInfo.Reason

 Connecting to remote server using WSManCreateShellEx api failed. The async callback gave the

 following error message: Access is denied.

 --------------- Example 10: Get filtered results ---------------

 PS> Workflow WFProcess {Get-Process}

 PS> WFProcess -AsJob -JobName WFProcessJob -PSPrivateMetadata @{MyCustomId = 92107}

 PS> Get-Job -Filter @{MyCustomId = 92107}

 Id Name State HasMoreData Location Command

 -- ---- ----- ----------- -------- -------

 1 WFProcessJob Completed True localhost WFProcess

 --------- Example 11: Get information about child jobs ---------

 PS> Get-Job

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 2 Job2 BackgroundJob Completed True localhost .\Get-Archive.ps1

 4 Job4 RemoteJob Failed True Server01, Server02 .\Get-Archive.ps1

 7 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 8 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help Page 15/17

 9 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 10 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 PS> Get-Job -IncludeChildJob

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 2 Job2 BackgroundJob Completed True localhost .\Get-Archive.ps1

 3 Job3 Completed True localhost .\Get-Archive.ps1

 4 Job4 RemoteJob Failed True Server01, Server02 .\Get-Archive.ps1

 5 Job5 Failed False Server01 .\Get-Archive.ps1

 6 Job6 Completed True Server02 .\Get-Archive.ps1

 7 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 8 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 9 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 10 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 PS> Get-Job -Name Job4 -ChildJobState Failed

 Id Name PSJobTypeName State HasMoreData Location Command

 -- ---- ------------- ----- ----------- -------- -------

 2 Job2 BackgroundJob Completed True localhost .\Get-Archive.ps1

 4 Job4 RemoteJob Failed True Server01, Server02 .\Get-Archive.ps1

 5 Job5 Failed False Server01 .\Get-Archive.ps1

 7 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 8 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 9 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 10 UpdateHelpJob PSScheduledJob Completed True localhost Update-Help

 PS> (Get-Job -Name Job5).JobStateInfo.Reason

 Connecting to remote server Server01 failed with the following error message:

 Access is denied. Page 16/17

 For more information, see the about_Remote_Troubleshooting (./about/about_Remote_Troubleshooting.md)Help topic.

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/get-job?view=powershell-5.1&WT.mc_id=ps-gethel

p

 Invoke-Command

 Receive-Job

 Remove-Job

 Resume-Job

 Start-Job

 Stop-Job

 Suspend-Job

 Wait-Job

 about_Jobs

 about_Job_Details

 about_Remote_Jobs

 about_Scheduled_Jobs

Page 17/17

