FPDF Library

PDF generator

PowerShell Get-Help cmdlet
PS C:\> Get-Help

Full credit is given to all the above companies including
the Operating System that this PDF file was generated!

Windows PowerShell Get-Help on Cmdlet 'Get-Module'

PS:\>Get-HELP Get-Module -Full

NAME

Get-Module

SYNOPSIS

List the modules imported in the current session or that can be imported from the PSModulePath.

SYNTAX
Get-Module [[-Name] <System.String[]>] [-All] [-FullyQualifiedName

<Microsoft.PowerShell. Commands.ModuleSpecification[]>] [<CommonParameters>]

Get-Module [[[Name] <System.String[]>] [-All] [-FullyQualifiedName
<Microsoft.PowerShell. Commands.ModuleSpecification[]>] [-ListAvailable] [-PSEdition

<System.String>] [-Refresh] [<CommonParameters>]

Get-Module [[-Name] <System.String[]>] [-CimNamespace <System.String>] [-CimResourceUri <System.Uri>]
-CimSession <Microsoft. Management.Infrastructure.CimSession>
[-FullyQualifiedName <Microsoft.PowerShell. Commands.ModuleSpecification[]>] [-ListAvailable] [-Refresh]
[<CommonParameters>]

Page 1/18

Get-Module [[-Name] <System.String[]>] [-FullyQualifiedName <Microsoft.PowerShell. Commands.ModuleSpecification[]>]
[-ListAvailable] [-PSEdition <System.String>]

-PSSession <System.Management.Automation.Runspaces.PSSession> [-Refresh] [<CommonParameters>]

DESCRIPTION
The “Get-Module™ cmdlet lists the PowerShell modules that have been imported, or that can be imported, into a
PowerShell session. Without parameters, “Get-Module®
gets modules that have been imported into the current session. The ListAvailable parameter is used to list the modules
that are available to be imported from the

paths specified in the PSModulePath environment variable ("$env:PSModulePath’).

The module object that “Get-Module™ returns contains valuable information about the module. You can also pipe the
module objects to other cmdlets, such as the

“Import-Module™ and "Remove-Module™ cmdlets.

"Get-Module’ lists modules, but it does not import them. Starting in Windows PowerShell 3.0, modules are automatically
imported when you use a command in the module,
but a "Get-Module® command does not trigger an automatic import. You can also import the modules into your session

using the “Import-Module™ cmdlet.

Starting in Windows PowerShell 3.0, you can get and then, import modules from remote sessions into the local session.
This strategy uses the Implicit Remoting feature

of PowerShell and is equivalent to using the “Import-PSSession” cmdlet. When you use commands in modules imported
from another session, the commands run implicitly in

the remote session. This feature lets you manage the remote computer from the local session.

Also, starting in Windows PowerShell 3.0, you can use "Get-Module™ and “Import-Module™ to get and import Common
Information Model (CIM) modules. CIM modules define
cmdlets in Cmdlet Definition XML (CDXML) files. This feature lets you use cmdlets that are implemented in non-managed

code assemblies, such as those written in C++.

Implicit remoting can be used to manage remote computers that have PowerShell remoting enabled. Create aH298e¥di®n

on the remote computer and then use the PSSession
parameter of "Get-Module™ to get the PowerShell modules in the remote session. When you import a module from the
remote session the imported commands run in the

session on the remote computer.

You can use a similar strategy to manage computers that do not have PowerShell remoting enabled. These include
computers that are not running the Windows operating

system, and computers that have PowerShell but do not have PowerShell remoting enabled.

Start by creating a CIM session on the remote computer. A CIM session is a connection to Windows Management
Instrumentation (WMI) on the remote computer. Then use the

CIMSession parameter of “Get-Module™ to get CIM modules from the CIM session. When you import a CIM module by
using the “Import-Module™ cmdlet and then run the

imported commands, the commands run implicitly on the remote computer. You can use this WMI and CIM strategy to

manage the remote computer.

PARAMETERS
-All <System.Management.Automation.SwitchParameter>
Indicates that this cmdlet gets all modules in each module folder, including nested modules, manifest (".psdl’) files,
script module (C.psm1°) files, and binary

module (".dII") files. Without this parameter, "Get-Module™ gets only the default module in each module folder.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-CimNamespace <System.String>
Specifies the namespace of an alternate CIM provider that exposes CIM modules. The default value is the namespace

of the Module Discovery WMI provider.
Page 3/18

Use this parameter to get CIM modules from computers and devices that are not running the Windows operating

system.

This parameter was introduced in Windows PowerShell 3.0.

Required? false
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false
-CimResourceUri <System.Uri>
Specifies an alternate location for CIM modules. The default value is the resource URI of the Module Discovery WMI

provider on the remote computer.

Use this parameter to get CIM modules from computers and devices that are not running the Windows operating

system.

This parameter was introduced in Windows PowerShell 3.0.

Required? false
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-CimSession <Microsoft. Management.Infrastructure.CimSession>

Specifies a CIM session on the remote computer. Enter a variable that contains the CIM session or a command that

gets the CIM session, such as a Get-CimSession

(/powershell/module/cimcmdlets/get-cimsession)command.

"Get-Module™ uses the CIM session connection to get modules from the remote computer. When you import the

module by using the “Import-Module™ cmdlet and use the Page 4/18

commands from the imported module in the current session, the commands actually run on the remote computer.

You can use this parameter to get modules from computers and devices that are not running the Windows operating
system, and computers that have PowerShell, but do

not have PowerShell remoting enabled.

The CimSession parameter gets all modules in the CIMSession . However, you can import only CIM-based and Cmdlet

Definition XML (CDXML)-based modules.

Required? true
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-FullyQualifiedName <Microsoft.PowerShell. Commands.ModuleSpecification[]>

The value can be a module name, a full module specification, or a path to a module file.

When the value is a path, the path can be fully qualified or relative. A relative path is resolved relative to the script that

contains the using statement.

When the value is a name or module specification, PowerShell searches the PSModulePath for the specified module.

A module specification is a hashtable that has the following keys.

- "ModuleName™ - Required Specifies the module name. - "GUID" - Optional Specifies the GUID of the module. - It's

also Required to specify at least one of the

three below keys. - “ModuleVersion™ - Specifies a minimum acceptable version of the module. - "MaximumVersion™ -

Specifies the maximum acceptable version of

the module. - "RequiredVersion™ - Specifies an exact, required version of the module. This can't be used with the

other Version keys.

You cannot specify the FullyQualifiedName parameter in the same command as a Name parameter. Page 5/18

Required? false

Position? named

Default value None

Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? false

-ListAvailable <System.Management.Automation.SwitchParameter>

Indicates that this cmdlet gets all installed modules. "Get-Module™ gets modules in paths listed in the PSModulePath

environment variable. Without this parameter,

"Get-Module™ gets only the modules that are both listed in the PSModulePath environment variable, and that are

loaded in the current session. ListAvailable does

not return information about modules that are not found in the PSModulePath environment variable, even if those

modules are loaded in the current session.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Name <System.String[]>

Specifies names or name patterns of modules that this cmdlet gets. Wildcard characters are permitted. You can also
pipe the names to "Get-Module". You cannot
specify the FullyQualifiedName parameter in the same command as a Name parameter. Name cannot accept a
module GUID as a value. To return modules by specifying a

GUID, use FullyQualifiedName instead.

Required? false
Position? 0
Default value None

Accept pipeline input? True (ByValue)

Accept wildcard characters? true Page 6/18

-PSEdition <System.String>

Gets the modules that support specified edition of PowerShell.

The acceptable values for this parameter are:

- "Desktop’

- Core’

The "Get-Module™ cmdlet checks CompatiblePSEditions property of PSModulelnfo object for the specified value and

returns only those modules that have it set.

> [INOTE] > - Desktop Edition: Built on .NET Framework and provides compatibility with scripts and modules >

targeting versions of PowerShell running on full

footprint editions of Windows such as Server > Core and Windows Desktop. > - Core Edition: Built on .NET Core and

provides compatibility with scripts and

modules > targeting versions of PowerShell running on reduced footprint editions of Windows such as Nano >

Server and Windows loT.

Required? false
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-PSSession <System.Management.Automation.Runspaces.PSSession>
Gets the modules in the specified user-managed PowerShell session (PSSession). Enter a variable that contains the

session, a command that gets the session, such

as a "Get-PSSession” command, or a command that creates the session, such as a "New-PSSession” command.

When the session is connected to a remote computer, you must specify the ListAvailable parameter. Page 7/18

A "Get-Module® command that uses the PSSession parameter is equivalent to using the “Invoke-Command™ cmdlet to
run a “Get-Module -ListAvailable® command in a

PSSession .

This parameter was introduced in Windows PowerShell 3.0.

Required? true
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false
-Refresh <System.Management.Automation.SwitchParameter>
Indicates that this cmdlet refreshes the cache of installed commands. The command cache is created when the
session starts. It enables the "Get-Command™ cmdlet to

get commands from modules that are not imported into the session.

This parameter is designed for development and testing scenarios in which the contents of modules have changed

since the session started.

When you specify the Refresh parameter in a command, you must specify ListAvailable .

This parameter was introduced in Windows PowerShell 3.0.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, Page 8/18

ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see

about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS
System.String

You can pipe module names to this cmdlet.

OUTPUTS
System.Management.Automation.PSModulelnfo
This cmdlet returns objects that represent modules. When you specify the ListAvailable parameter, “Get-Module®
returns a ModulelnfoGrouping object, which is a

type of PSModulelnfo object that has the same properties and methods.

NOTES

Windows PowerShell includes the following aliases for “Get-Module:

- ‘gmo’

- Beginning in Windows PowerShell 3.0, the core commands that are included in PowerShell are packaged in
modules. The exception is Microsoft.PowerShell.Core ,
which is a snap-in (PSSnapin). By default, only the Microsoft.PowerShell.Core snap-in is added to the session.
Modules are imported automatically on first

use and you can use the “Import-Module® cmdlet to import them.

- In Windows PowerShell 2.0, and in host programs that create older-style sessions in later versions of PowerShell,
the core commands are packaged in snap-ins (
PSSnapins). The exception is Microsoft.PowerShell.Core , which is always a snap-in. Also, remote sessions, such as

those started by the "New-PSSession’ cmdlet, Page 9/18

are older-style sessions that include core snap-ins.

For information about the CreateDefault2 method that creates newer-style sessions with core modules, see
CreateDefault2 Method

(/dotnet/api/system.management.automation.runspaces.initialsessionstate.createdefault2).

- "Get-Module™ only gets modules in locations that are stored in the value of the PSModulePath environment variable
("$env:PSModulePath’). The “Import-Module®

cmdlet can import modules in other locations, but you cannot use the "Get-Module™ cmdlet to get them.

- Also, starting in PowerShell 3.0, new properties have been added to the object that "Get-Module™ returns that make
it easier to learn about modules even
before they are imported. All properties are populated before importing. These include the ExportedCommands ,
ExportedCmdlets and ExportedFunctions properties

that list the commands that the module exports.

- The ListAvailable parameter gets only well-formed modules, that is, folders that contain at least one file whose base
name is the same as the name of the

module folder. The base name is the name without the file name extension. Folders that contain files that have
different names are considered to be

containers, but not modules.

To get modules that are implemented as DLL files, but are not enclosed in a module folder, specify both the

ListAvailable and All parameters.

- To use the CIM session feature, the remote computer must have WS-Management remoting and Windows
Management Instrumentation (WMI), which is the Microsoft

implementation of the Common Information Model (CIM) standard. The computer must also have the Module
Discovery WMI provider or an alternate WMI provider that

has the same basic features.

You can use the CIM session feature on computers that are not running the Windows operating system and on

Windows computers that have PowerShell, but do not Page 10/18

have PowerShell remoting enabled.

You can also use the CIM parameters to get CIM modules from computers that have PowerShell remoting enabled.

This includes the local computer. When you create a

CIM session on the local computer, PowerShell uses DCOM, instead of WM, to create the session.

--- Example 1: Get modules imported into the current session ---

Get-Module

This command gets modules that have been imported into the current session.

---- Example 2: Get installed modules and available modules ----

Get-Module -ListAvailable

This command gets the modules that are installed on the computer and can be imported into the current session.

"Get-Module® looks for available modules in the path specified by the $env:PSModulePath environment variable. For

more information about PSModulePath , see

about_Modules (About/about_Modules.md)and about_Environment_Variables (About/about_Environment_Variables.md).

Get-Module -ListAvailable -All

This command gets all of the exported files for all available modules.

$FullyQualifiedName = @{ModuleName="Microsoft.PowerShell. Management";ModuleVersion="3.1.0.0"}

Get-Module -FullyQualifiedName $FullyQualifiedName | Format-Table -Property Name,Version

Name Version

Microsoft.PowerShell. Management 3.1.0.0 Page 11/18

This example gets the Microsoft.PowerShell. Management module by specifying the fully qualified name of the module by
using the FullyQualifiedName parameter. The
command then pipes the results into the "Format-Table™ cmdlet to format the results as a table with Name and Version as

the column headings.

In a fully qualified name for a module, the value ModuleVersion acts as minimum version. So, for this example, it matches
any Microsoft.PowerShell.Management module

that is version "3.1.0.0° or higher.

Get-Module | Get-Member -MemberType Property | Format-Table Name

Name

AccessMode

Author

ClrVersion
CompanyName
Copyright

Definition
Description
DotNetFrameworkVersion
ExportedAliases
ExportedCmdlets
ExportedCommands
ExportedFormatFiles
ExportedFunctions
ExportedTypeFiles
ExportedVariables
ExportedWorkflows
FileList

Guid Page 12/18

HelpInfoUri
LogPipelineExecutionDetails
ModuleBase
ModuleList
ModuleType

Name

NestedModules
OnRemove

Path
PowerShellHostName
PowerShellHostVersion
PowerShellVersion
PrivateData
ProcessorArchitecture
RequiredAssemblies
RequiredModules
RootModule

Scripts

SessionState

Version

This command gets the properties of the PSModulelnfo object that "Get-Module® returns. There is one object for each

module file.
You can use the properties to format and filter the module objects. For more information about the properties, see
PSModulelnfo Properties
(/dotnet/api/system.management.automation.psmoduleinfo).
The output includes the new properties, such as Author and CompanyName , that were introduced in Windows

PowerShell 3.0.

Get-Module -ListAvailable -All | Format-Table -Property Name, Moduletype, Path -Groupby Name Page 13/18

Name: AppLocker

Name ModuleType Path

AppLocker Manifest C:\Windows\system32\WindowsPowerShell\v1.0\Modules\AppLocker\AppLocker.psdl

Name: Appx

Name ModuleType Path

Appx Manifest C:\Windows\system32\WindowsPowerShell\v1.0\Modules\Appx\en-US\Appx.psd1l
Appx Manifest C:\Windows\system32\WindowsPowerShell\v1.0\Modules\Appx\Appx.psdl

Appx Script C:\Windows\system32\WindowsPowerShell\v1.0\Modules\Appx\Appx.psm1

Name: BestPractices

Name ModuleType Path

BestPractices Manifest C:\Windows\system32\WindowsPowerShell\v1.0\Modules\BestPractices\BestPractices.psdl

Name: BitsTransfer

Name ModuleType Path

BitsTransfer Manifest C:\Windows\system32\WindowsPowerShell\v1.0\Modules\BitsTransfer\BitsTransfer.psd1

This command gets all module files, both imported and available, and then groups them by module name. This lets you

see the module files that each script is exporting.
Page 14/18

First command

$m = Get-Module -list -Name BitsTransfer

Second command

Get-Content $m.Path

@
GUID ="{8FA5064B-8479-4c5c-86EA-0D311FE48875}"
Author = "Microsoft Corporation”
CompanyName = "Microsoft Corporation”
Copyright = "Microsoft Corporation. All rights reserved."
ModuleVersion ="1.0.0.0"
Description = "Windows PowerShell File Transfer Module"

PowerShellVersion ="2.0"

CLRVersion ="2.0"

NestedModules = "Microsoft.BackgroundintelligentTransfer.Management"
FormatsToProcess = "FileTransfer.Format.psixml"

RequiredAssemblies = Join-Path $psScriptRoot "Microsoft.BackgroundintelligentTransfer.Management.Interop.dll"

The first command gets the PSModulelnfo object that represents BitsTransfer module. It saves the object in the "$m’

variable.

The second command uses the “Get-Content’ cmdlet to get the content of the manifest file in the specified path. It uses

dot notation to get the path to the manifest

file, which is stored in the Path property of the object. The output shows the contents of the module manifest.

dir (Get-Module -ListAvailable FileTransfer).ModuleBase

Directory: C:\Windows\system32\WindowsPowerShell\v1.0\Modules\FileTransfer

Mode LastWriteTime Length Name Page 15/18

d---- 12/16/2008 12:36 PM en-Us

-a--- 11/19/2008 11:30 PM 16184 FileTransfer.Format.psixml
-a--- 11/20/2008 11:30 PM 1044 FileTransfer.psdl
-a--- 12/16/2008 12:20 AM 108544 Microsoft.BackgroundintelligentTransfer.Management.Interop.dll

This command lists the files in the directory of the module. This is another way to determine what is in a module before
you import it. Some modules might have help

files or ReadMe files that describe the module.

$s = New-PSSession -ComputerName ServerQ1

Get-Module -PSSession $s -ListAvailable

These commands get the modules that are installed on the Server01 computer.

The first command uses the "New-PSSession™ cmdlet to create a PSSession on the Server01 computer. The command

saves the PSSession in the “$s” variable.

The second command uses the PSSession and ListAvailable parameters of "Get-Module™ to get the modules in the

PSSession in the “$s” variable.

If you pipe modules from other sessions to the “Import-Module™ cmdlet, “Import-Module™ imports the module into the
current session by using the implicit remoting
feature. This is equivalent to using the ‘Import-PSSession™ cmdlet. You can use the cmdlets from the module in the
current session, but commands that use these
cmdlets actually run the remote session. For more information, see ‘Import-Module™ (Import-Module.md)and
“Import-PSSession’
(../Microsoft.PowerShell.Utility/Import-PSSession.md).

Example 10: Manage a computer that does not run the Windows operating system

$cs = New-CimSession -ComputerName RSDGF03 Page 16/18

Get-Module -CimSession $cs -Name Storage | Import-Module

Get-Command Get-Disk

CommandType Name ModuleName

Get-Disk

Number Friendly Name OperationalStatus Total Size Partition Style
0_ Vlrt_l;aIHE_) ATA Device Online 40 GB MBR

The first command uses the "New-CimSession™ cmdlet to create a session on the RSDGF03 remote computer. The
session connects to WMI on the remote computer. The command

saves the CIM session in the “$cs” variable.

The second command uses the CIM session in the “$cs™ variable to run a “Get-Module® command on the RSDGF03
computer. The command uses the Name parameter to specify
the Storage module. The command uses a pipeline operator ('|") to send the Storage module to the ‘Import-Module®

cmdlet, which imports it into the local session.

The third command runs the "Get-Command™ cmdlet on the "Get-Disk’ command in the Storage module. When you
import a CIM module into the local session, PowerShell
converts the CDXML files that represent the CIM module into PowerShell scripts, which appear as functions in the local

session.

The fourth command runs the "Get-Disk” command. Although the command is typed in the local session, it runs implicitly
on the remote computer from which it was

imported. The command gets objects from the remote computer and returns them to the local session.

RELATED LINKS

Online Page/kfélén:

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/get-module?view=powershell-5.1&WT.mc_id=ps-g
ethelp

Get-CimSession

New-CimSession

about_Modules

Get-PSSession

Import-Module

Import-PSSession

New-PSSession

Remove-Module

Page 18/18

