
Windows PowerShell Get-Help on Cmdlet 'Get-Process'

PS:\>Get-HELP Get-Process -Full

NAME

 Get-Process

SYNOPSIS

 Gets the processes that are running on the local computer or a remote computer.

SYNTAX

 Get-Process [[-Name] <System.String[]>] [-ComputerName <System.String[]>] [-FileVersionInfo] [-Module]

[<CommonParameters>]

 Get-Process [-ComputerName <System.String[]>] [-FileVersionInfo] -Id <System.Int32[]> [-Module]

[<CommonParameters>]

 Get-Process [-ComputerName <System.String[]>] [-FileVersionInfo] -InputObject <System.Diagnostics.Process[]>

[-Module] [<CommonParameters>]

 Get-Process -Id <System.Int32[]> -IncludeUserName [<CommonParameters>]

 Get-Process [[-Name] <System.String[]>] -IncludeUserName [<CommonParameters>] Page 1/12

 Get-Process -IncludeUserName -InputObject <System.Diagnostics.Process[]> [<CommonParameters>]

DESCRIPTION

 The `Get-Process` cmdlet gets the processes on a local or remote computer.

 Without parameters, this cmdlet gets all of the processes on the local computer. You can also specify a particular process

by process name or process ID (PID) or pass

 a process object through the pipeline to this cmdlet.

 By default, this cmdlet returns a process object that has detailed information about the process and supports methods

that let you start and stop the process. You can

 also use the parameters of the `Get-Process` cmdlet to get file version information for the program that runs in the

process and to get the modules that the process

 loaded.

PARAMETERS

 -ComputerName <System.String[]>

 Specifies the computers for which this cmdlet gets active processes. The default is the local computer.

 Type the NetBIOS name, an IP address, or a fully qualified domain name (FQDN) of one or more computers. To

specify the local computer, type the computer name, a

 dot (`.`), or `localhost`.

 This parameter does not rely on Windows PowerShell remoting. You can use the ComputerName parameter of this

cmdlet even if your computer is not configured to run

 remote commands.

 Required? false

 Position? named

 Default value Local computer Page 2/12

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -FileVersionInfo <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets the file version information for the program that runs in the process.

 On Windows Vista and later versions of Windows, you must open PowerShell with the **Run as administrator** option

to use this parameter on processes that you do

 not own.

 You cannot use the FileVersionInfo and ComputerName parameters of the `Get-Process` cmdlet in the same

command.

 To get file version information for a process on a remote computer, use the `Invoke-Command` cmdlet.

 Using this parameter is equivalent to getting the MainModule.FileVersionInfo property of each process object. When

you use this parameter, `Get-Process` returns a

 FileVersionInfo object System.Diagnostics.FileVersionInfo , not a process object. So, you cannot pipe the output of the

command to a cmdlet that expects a process

 object, such as `Stop-Process`.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Id <System.Int32[]>

 Specifies one or more processes by process ID (PID). To specify multiple IDs, use commas to separate the IDs. To

find the PID of a process, type `Get-Process`.

 Required? true

 Position? named Page 3/12

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -IncludeUserName <System.Management.Automation.SwitchParameter>

 Indicates that the UserName value of the Process object is returned with results of the command.

 Required? true

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -InputObject <System.Diagnostics.Process[]>

 Specifies one or more process objects. Enter a variable that contains the objects, or type a command or expression

that gets the objects.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByValue)

 Accept wildcard characters? false

 -Module <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets the modules that have been loaded by the processes.

 On Windows Vista and later versions of Windows, you must open PowerShell with the **Run as administrator** option

to use this parameter on processes that you do

 not own.

 To get the modules that have been loaded by a process on a remote computer, use the `Invoke-Command` cmdlet.

 This parameter is equivalent to getting the Modules property of each process object. When you use this parameter, thisPage 4/12

cmdlet returns a ProcessModule object

 System.Diagnostics.ProcessModule , not a process object. So, you cannot pipe the output of the command to a cmdlet

that expects a process object, such as

 `Stop-Process`.

 When you use both the Module and FileVersionInfo parameters in the same command, this cmdlet returns a

FileVersionInfo object with information about the file

 version of all modules.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Name <System.String[]>

 Specifies one or more processes by process name. You can type multiple process names (separated by commas) and

use wildcard characters. The parameter name

 (`Name`) is optional.

 Required? false

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? true

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS Page 5/12

 System.Diagnostics.Process

 You can pipe a process object to this cmdlet.

OUTPUTS

 System.Diagnostics.Process

 By default, this cmdlet returns a System.Diagnostics.Process object.

 System.Diagnostics.FileVersionInfo

 If you use the FileVersionInfo parameter, this cmdlet returns a FileVersionInfo object.

 System.Diagnostics.ProcessModule

 If you use the Module parameter, without the FileVersionInfo parameter, this cmdlet returns a ProcessModule object.

NOTES

 Windows PowerShell includes the following aliases for `Get-Process`:

 - `gps`

 - `ps`

 On computers that are running a 64-bit version of Windows, the 64-bit version of PowerShell gets only 64-bit process

modules and the 32-bit version of PowerShell

 gets only 32-bit process modules.

 To get process information from a remote computer, use the `Invoke-Command` cmdlet. For more information, see

Invoke-Command

 (xref:Microsoft.PowerShell.Core.Invoke-Command).

 Page 6/12

 You can use the properties and methods of the Windows Management Instrumentation (WMI) Win32_Process object in

PowerShell. For information, see Win32_Process

 (/windows/win32/cimwin32prov/win32-process).

 The default display of a process is a table that includes the following columns. For a description of all of the properties

of process objects, see Process

 Properties (/dotnet/api/system.diagnostics.process).

 - Handles : The number of handles that the process has opened. - NPM(K) : The amount of non-paged memory that

the process is using, in kilobytes. - PM(K) : The

 amount of pageable memory that the process is using, in kilobytes. - WS(K) : The size of the working set of the

process, in kilobytes. The working set consists of

 the pages of memory that were recently referenced by the process. - VM(M) : The amount of virtual memory that the

process is using, in megabytes. Virtual memory

 includes storage in the paging files on disk. - CPU(s) : The amount of processor time that the process has used on all

processors, in seconds. - ID : The

 process ID (PID) of the process. - ProcessName : The name of the process. For explanations of the concepts related

to processes, see the Glossary in Help and

 Support Center and the Help for Task Manager.

 You can also use the built-in alternate views of the processes available with `Format-Table`, such as StartTime and

Priority , and you can design your own views.

 Example 1: Get a list of all active processes on the local computer

 Get-Process

 This command gets a list of all active processes running on the local computer. For a definition of each column, see the

Notes (#notes)section.

 Example 2: Get all available data about one or more processes

 Get-Process winword, explorer | Format-List *

 Page 7/12

 This command gets all available data about the Winword and Explorer processes on the computer. It uses the Name

parameter to specify the processes, but it omits the

 optional parameter name. The pipeline operator (`|`) passes the data to the `Format-List` cmdlet, which displays all

available properties (`*`) of the Winword and

 Explorer process objects.

 You can also identify the processes by their process IDs. For instance, `Get-Process -Id 664, 2060`.

 Example 3: Get all processes with a working set greater than a specified size

 Get-Process | Where-Object {$_.WorkingSet -gt 20000000}

 This command gets all processes that have a working set greater than 20 MB. It uses the `Get-Process` cmdlet to get all

running processes. The pipeline operator (`|`)

 passes the process objects to the `Where-Object` cmdlet, which selects only the object with a value greater than

20,000,000 bytes for the WorkingSet property.

 WorkingSet is one of many properties of process objects. To see all of the properties, type `Get-Process | Get-Member`.

By default, the values of all amount

 properties are in bytes, even though the default display lists them in kilobytes and megabytes.

 Example 4: List processes on the computer in groups based on priority

 $A = Get-Process

 $A | Get-Process | Format-Table -View priority

 These commands list the processes on the computer in groups based on their priority class. The first command gets all

the processes on the computer and then stores

 them in the `$A` variable.

 The second command pipes the Process object stored in the `$A` variable to the `Get-Process` cmdlet, then to the

`Format-Table` cmdlet, which formats the processes by

 using the Priority view.

 The Priority view, and other views, are defined in the PS1XML format files in the PowerShell home directory (`$pshome`).

 Example 5: Add a property to the standard Get-Process output display Page 8/12

 Get-Process powershell | Format-Table `

 @{Label = "NPM(K)"; Expression = {[int]($_.NPM / 1024)}},

 @{Label = "PM(K)"; Expression = {[int]($_.PM / 1024)}},

 @{Label = "WS(K)"; Expression = {[int]($_.WS / 1024)}},

 @{Label = "VM(M)"; Expression = {[int]($_.VM / 1MB)}},

 @{Label = "CPU(s)"; Expression = {if ($_.CPU) {$_.CPU.ToString("N")}}},

 Id, ProcessName, StartTime -AutoSize

 NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName StartTime

 ------ ----- ----- ----- ------ -- ----------- ---------

 143 239540 259384 2366162 22.73 12720 powershell 12/5/2022 3:21:51 PM

 114 61776 104588 2366127 11.45 18336 powershell 12/5/2022 7:30:53 AM

 156 77924 82060 2366185 10.47 18812 powershell 12/5/2022 7:30:52 AM

 85 48216 115192 2366074 1.14 24428 powershell 12/8/2022 9:14:15 AM

 This example retrieves processes from the local computer. The retrieved processes are piped to the `Format-Table`

command that adds the StartTime property to the

 standard `Get-Process` output display.

 ------- Example 6: Get version information for a process -------

 Get-Process powershell -FileVersionInfo

 ProductVersion FileVersion FileName

 -------------- ----------- --------

 6.1.6713.1 6.1.6713.1 (f... C:\WINDOWS\system32\WindowsPowerShell\v1.0\powershell.exe

 This command uses the FileVersionInfo parameter to get the version information for the `powershell.exe` file that is the

main module for the PowerShell process.

 To run this command with processes that you do not own on Windows Vista and later versions of Windows, you must

open PowerShell with the Run as administrator option.

 --- Example 7: Get modules loaded with the specified process --- Page 9/12

 Get-Process SQL* -Module

 This command uses the Module parameter to get the modules that have been loaded by the process. This command gets

the modules for the processes that have names that

 begin with `SQL`.

 To run this command on Windows Vista and later versions of Windows with processes that you do not own, you must

start PowerShell with the Run as administrator option.

 ------------ Example 8: Find the owner of a process ------------

 Get-Process pwsh -IncludeUserName

 Handles WS(K) CPU(s) Id UserName ProcessName

 ------- ----- ------ -- -------- -----------

 782 132080 2.08 2188 DOMAIN01\user01 powershell

 $p = Get-WmiObject Win32_Process -Filter "name='powershell.exe'"

 $p.GetOwner()

 __GENUS : 2

 __CLASS : __PARAMETERS

 __SUPERCLASS :

 __DYNASTY : __PARAMETERS

 __RELPATH :

 __PROPERTY_COUNT : 3

 __DERIVATION : {}

 __SERVER :

 __NAMESPACE :

 __PATH :

 Domain : DOMAIN01

 ReturnValue : 0

 User : user01 Page 10/12

 The first command shows how to find the owner of a process. The IncludeUserName parameter requires elevated user

rights (Run as Administrator). The output reveals

 that the owner is `Domain01\user01`.

 The second and third command are another way to find the owner of a process.

 The second command uses `Get-WmiObject` to get the PowerShell process. It saves it in the `$p` variable.

 The third command uses the GetOwner method to get the owner of the process in `$p`. The output reveals that the owner

is `Domain01\user01`.

 Example 9: Use an automatic variable to identify the process hosting the current session

 Get-Process powershell

 Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

 ------- ------ ----- ----- ----- ------ -- -----------

 308 26 52308 61780 567 3.18 5632 powershell

 377 26 62676 63384 575 3.88 5888 powershell

 Get-Process -Id $PID

 Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

 ------- ------ ----- ----- ----- ------ -- -----------

 396 26 56488 57236 575 3.90 5888 powershell

 These commands show how to use the `$PID` automatic variable to identify the process that is hosting the current

PowerShell session. You can use this method to

 distinguish the host process from other PowerShell processes that you might want to stop or close.

 The first command gets all of the PowerShell processes in the current session.

 The second command gets the PowerShell process that is hosting the current session. Page 11/12

 Example 10: Get all processes that have a main window title and display them in a table

 Get-Process | Where-Object {$_.mainWindowTitle} | Format-Table Id, Name, mainWindowtitle -AutoSize

 This command gets all the processes that have a main window title, and it displays them in a table with the process ID

and the process name.

 The mainWindowTitle property is just one of many useful properties of the Process object that `Get-Process` returns. To

view all of the properties, pipe the results

 of a `Get-Process` command to the `Get-Member` cmdlet `Get-Process | Get-Member`.

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.management/get-process?view=powershell-5.1&WT.mc

_id=ps-gethelp

 Debug-Process

 Get-Process

 Start-Process

 Stop-Process

 Wait-Process

Page 12/12

