
Windows PowerShell Get-Help on Cmdlet 'Get-WinEvent'

PS:\>Get-HELP Get-WinEvent -Full

NAME

 Get-WinEvent

SYNOPSIS

 Gets events from event logs and event tracing log files on local and remote computers.

SYNTAX

 Get-WinEvent [[-LogName] <System.String[]>] [-ComputerName <System.String>] [-Credential

<System.Management.Automation.PSCredential>] [-FilterXPath <System.String>]

 [-Force] [-MaxEvents <System.Int64>] [-Oldest] [<CommonParameters>]

 Get-WinEvent [-ListLog] <System.String[]> [-ComputerName <System.String>] [-Credential

<System.Management.Automation.PSCredential>] [-Force] [<CommonParameters>]

 Get-WinEvent [-ListProvider] <System.String[]> [-ComputerName <System.String>] [-Credential

<System.Management.Automation.PSCredential>] [<CommonParameters>]

 Get-WinEvent [-ProviderName] <System.String[]> [-ComputerName <System.String>] [-Credential

<System.Management.Automation.PSCredential>] [-FilterXPath Page 1/22

 <System.String>] [-Force] [-MaxEvents <System.Int64>] [-Oldest] [<CommonParameters>]

 Get-WinEvent [-FilterHashtable] <System.Collections.Hashtable[]> [-ComputerName <System.String>] [-Credential

<System.Management.Automation.PSCredential>] [-Force]

 [-MaxEvents <System.Int64>] [-Oldest] [<CommonParameters>]

 Get-WinEvent [-FilterXml] <System.Xml.XmlDocument> [-ComputerName <System.String>] [-Credential

<System.Management.Automation.PSCredential>] [-MaxEvents

 <System.Int64>] [-Oldest] [<CommonParameters>]

 Get-WinEvent [-Path] <System.String[]> [-Credential <System.Management.Automation.PSCredential>] [-FilterXPath

<System.String>] [-MaxEvents <System.Int64>] [-Oldest]

 [<CommonParameters>]

DESCRIPTION

 The `Get-WinEvent` cmdlet gets events from event logs, including classic logs, such as the System and Application logs.

The cmdlet gets data from event logs that are

 generated by the Windows Event Log technology introduced in Windows Vista and events in log files generated by Event

Tracing for Windows (ETW) . By default,

 `Get-WinEvent` returns event information in the order of newest to oldest.

 `Get-WinEvent` lists event logs and event log providers. To interrupt the command, press

<kbd>CTRL</kbd>+<kbd>C</kbd>. You can get events from selected logs or from

 logs generated by selected event providers. And, you can combine events from multiple sources in a single command.

`Get-WinEvent` allows you to filter events using

 XPath queries, structured XML queries, and hash table queries.

 If you're not running PowerShell as an Administrator, you might see error messages that you cannot retrieve information

about a log.

PARAMETERS Page 2/22

 -ComputerName <System.String>

 Specifies the name of the computer that this cmdlet gets events from the event logs. Type the NetBIOS name, an IP

address, or the fully qualified domain name

 (FQDN) of the computer. The default value is the local computer, localhost . This parameter accepts only one computer

name at a time.

 To get event logs from remote computers, configure the firewall port for the event log service to allow remote access.

 This cmdlet does not rely on PowerShell remoting. You can use the ComputerName parameter even if your computer

is not configured to run remote commands.

 Required? false

 Position? named

 Default value Local computer

 Accept pipeline input? False

 Accept wildcard characters? false

 -Credential <System.Management.Automation.PSCredential>

 Specifies a user account that has permission to perform this action. The default value is the current user.

 Type a user name, such as User01 or Domain01\User01 . Or, enter a PSCredential object, such as one generated by

the `Get-Credential` cmdlet. If you type a user

 name, you are prompted for a password. If you type only the parameter name, you are prompted for both a username

and a password.

 Required? false

 Position? named

 Default value Current user

 Accept pipeline input? False

 Accept wildcard characters? false

 -FilterHashtable <System.Collections.Hashtable[]>

 Specifies a query in hash table format to select events from one or more event logs. The query contains a hash tablePage 3/22

with one or more key/value pairs.

 Hash table queries have the following rules:

 - Keys and values are case-insensitive.

 - Wildcard characters are valid only in the values associated with the LogName and ProviderName keys. - Each key

can be listed only once in each hash table.

 - The Path value takes paths to `.etl`, `.evt`, and `.evtx` log files. - The LogName , Path , and ProviderName keys can

be used in the same query. - The UserID

 key can take a valid security identifier (SID) or a domain account name that can be used to construct a valid

System.Security.Principal.NTAccount object . - The

 Data value takes event data in an unnamed field. For example, events in classic event logs.

 When `Get-WinEvent` cannot interpret a key/value pair, it interprets the key as a case-sensitive name for the event

data in the event.

 The valid `Get-WinEvent` key/value pairs are as follows:

 - LogName =`<String[]>` - ProviderName =`<String[]>` - Path =`<String[]>` - Keywords =`<Long[]>` - ID =`<Int32[]>` -

Level =`<Int32[]>` - StartTime =`<DateTime>`

 - EndTime =`<DateTime>` - UserID =`<SID>` - Data =`<String[]>`

 Required? true

 Position? 1

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -FilterXml <System.Xml.XmlDocument>

 Specifies a structured XML query that this cmdlet selects events from one or more event logs.

 Page 4/22

 To generate a valid XML query, use the Create Custom View and Filter Current Log features in Windows Event Viewer.

Use the items in the dialog box to create a

 query, and then click the XML tab to view the query in XML format. You can copy the XML from the XML tab into the

value of the FilterXml parameter. For more

 information about the Event Viewer features, see Event Viewer Help.

 Use an XML query to create a complex query that contains several XPath statements. The XML format also allows you

to use a Suppress XML element that excludes

 events from the query. For more information about the XML schema for event log queries, see Query Schema

(/windows/win32/wes/queryschema-schema)and the XML Event

 Queries section of Event Selection (/previous-versions/aa385231(v=vs.85)).

 Required? true

 Position? 1

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -FilterXPath <System.String>

 Specifies an XPath query that this cmdlet select events from one or more logs.

 For more information about the XPath language, see XPath Reference

(/previous-versions/dotnet/netframework-4.0/ms256115(v=vs.100))and the Selection Filters

 section of Event Selection (/previous-versions/aa385231(v=vs.85)).

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Force <System.Management.Automation.SwitchParameter>

 Gets debug and analytic logs, in addition to other event logs. The Force parameter is required to get a debug orPage 5/22

analytic log when the value of the name parameter

 includes wildcard characters.

 By default, the `Get-WinEvent` cmdlet excludes these logs unless you specify the full name of a debug or analytic log.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -ListLog <System.String[]>

 Specifies the event logs. Enter the event log names in a comma-separated list. Wildcards are permitted. To get all the

logs, use the asterisk (`*`) wildcard.

 Required? true

 Position? 1

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? true

 -ListProvider <System.String[]>

 Specifies the event log providers that this cmdlet gets. An event log provider is a program or service that writes events

to the event log.

 Enter the provider names in a comma-separated list. Wildcards are permitted. To get the providers of all the event logs

on the computer, use the asterisk (`*`)

 wildcard.

 Required? true

 Position? 1

 Default value None

 Accept pipeline input? False Page 6/22

 Accept wildcard characters? true

 -LogName <System.String[]>

 Specifies the event logs that this cmdlet get events from. Enter the event log names in a comma-separated list.

Wildcards are permitted. You can also pipe log

 names to the `Get-WinEvent` cmdlet.

 > [!NOTE] > PowerShell does not limit the amount of logs you can request. However, the `Get-WinEvent` cmdlet >

queries the Windows API which has a limit of 256.

 This can make it difficult to filter through all > of your logs at one time. You can work around this by using a `foreach`

loop to iterate through each > log like

 this: `Get-WinEvent -ListLog * | ForEach-Object{ Get-WinEvent -LogName $_.Logname }`

 Required? false

 Position? 1

 Default value None

 Accept pipeline input? True (ByPropertyName, ByValue)

 Accept wildcard characters? true

 -MaxEvents <System.Int64>

 Specifies the maximum number of events that are returned. Enter an integer such as 100. The default is to return all

the events in the logs or files.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Oldest <System.Management.Automation.SwitchParameter>

 Indicate that this cmdlet gets the events in oldest-first order. By default, events are returned in newest-first order.

 This parameter is required to get events from `.etl` and `.evt` files and from debug and analytic logs. In these files,Page 7/22

events are recorded in oldest-first order,

 and the events can be returned only in oldest-first order.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Path <System.String[]>

 Specifies the path to the event log files that this cmdlet get events from. Enter the paths to the log files in a

comma-separated list, or use wildcard characters

 to create file path patterns.

 `Get-WinEvent` supports files with the `.evt`, `.evtx`, and `.etl` file name extensions. You can include events from

different files and file types in the same

 command.

 Required? true

 Position? 1

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? true

 -ProviderName <System.String[]>

 Specifies, as a string array, the event log providers from which this cmdlet gets events. Enter the provider names in a

comma-separated list, or use wildcard

 characters to create provider name patterns.

 An event log provider is a program or service that writes events to the event log. It is not a PowerShell provider.

 Required? true

 Position? 1 Page 8/22

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? true

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.String

 You can pipe a LogName (string) to this cmdlet.

 System.Xml.XmlDocument

 You can pipe a FilterXML query to this cmdlet.

 System.Collections.Hashtable

 You can pipe a FilterHashtable query to this cmdlet.

OUTPUTS

 System.Diagnostics.Eventing.Reader.EventLogConfiguration

 With the ListLog parameter, this cmdlet returns EventLogConfiguration objects.

 System.Diagnostics.Eventing.Reader.EventLogRecord

 By default, this cmdlet returns EventLogRecord objects.

 System.Diagnostics.Eventing.Reader.ProviderMetadata

 With the ListProvider parameter, this cmdlet returns ProviderMetadata objects.

NOTES Page 9/22

 `Get-WinEvent` is designed to replace the `Get-EventLog` cmdlet on computers running Windows Vista and later

versions of Windows. `Get-EventLog` gets events only

 in classic event logs. `Get-EventLog` is retained for backward compatibility.

 The `Get-WinEvent` and `Get-EventLog` cmdlets are not supported in Windows Pre-installation Environment (Windows

PE).

 ------ Example 1: Get all the logs from a local computer ------

 Get-WinEvent -ListLog *

 LogMode MaximumSizeInBytes RecordCount LogName

 ------- ------------------ ----------- -------

 Circular 15532032 14500 Application

 Circular 1052672 117 Azure Information Protection

 Circular 1052672 3015 CxAudioSvcLog

 Circular 20971520 ForwardedEvents

 Circular 20971520 0 HardwareEvents

 The `Get-WinEvent` cmdlet gets log information from the computer. The ListLog parameter uses the asterisk (`*`) wildcard

to display information about each log.

 ------------- Example 2: Get the classic Setup log -------------

 Get-WinEvent -ListLog Setup | Format-List -Property *

 FileSize : 69632

 IsLogFull : False

 LastAccessTime : 3/13/2019 09:41:46

 LastWriteTime : 3/13/2019 09:41:46

 OldestRecordNumber : 1

 RecordCount : 23 Page 10/22

 LogName : Setup

 LogType : Operational

 LogIsolation : Application

 IsEnabled : True

 IsClassicLog : False

 SecurityDescriptor : O:BAG:SYD: ...

 LogFilePath : %SystemRoot%\System32\Winevt\Logs\Setup.evtx

 MaximumSizeInBytes : 1052672

 LogMode : Circular

 OwningProviderName : Microsoft-Windows-Eventlog

 ProviderNames : {Microsoft-Windows-WUSA, Microsoft-Windows-ActionQueue...

 ProviderLevel :

 ProviderKeywords :

 ProviderBufferSize : 64

 ProviderMinimumNumberOfBuffers : 0

 ProviderMaximumNumberOfBuffers : 64

 ProviderLatency : 1000

 ProviderControlGuid :

 The `Get-WinEvent` cmdlet uses the ListLog parameter to specify the Setup log. The object is sent down the pipeline to

the `Format-List` cmdlet. `Format-List` uses

 the Property parameter with the asterisk (`*`) wildcard to display each property.

 -------- Example 3: Configure the classic Security log --------

 $log = Get-WinEvent -ListLog Security

 $log.MaximumSizeInBytes = 1gb

 try{

 $log.SaveChanges()

 Get-WinEvent -ListLog Security | Format-List -Property *

 }catch [System.UnauthorizedAccessException]{

 $ErrMsg = 'You do not have permission to configure this log!'

 $ErrMsg += ' Try running this script with administrator privileges. '

 $ErrMsg += $_.Exception.Message Page 11/22

 Write-Error $ErrMsg

 }

 FileSize : 69632

 IsLogFull : False

 LastAccessTime : 3/13/2019 09:41:46

 LastWriteTime : 3/13/2019 09:41:46

 OldestRecordNumber : 1

 RecordCount : 23

 LogName : Security

 LogType : Administrative

 LogIsolation : Custom

 IsEnabled : True

 IsClassicLog : True

 SecurityDescriptor : O:BAG:SYD: ...

 LogFilePath : %SystemRoot%\System32\Winevt\Logs\Security.evtx

 MaximumSizeInBytes : 1073741824

 LogMode : Circular

 OwningProviderName :

 ProviderNames : {Microsoft-Windows-WUSA, Microsoft-Windows-ActionQueue...

 ProviderLevel :

 ProviderKeywords :

 ProviderBufferSize : 64

 ProviderMinimumNumberOfBuffers : 0

 ProviderMaximumNumberOfBuffers : 64

 ProviderLatency : 1000

 ProviderControlGuid :

 The `Get-WinEvent` cmdlet uses the ListLog parameter to specify the Security log. The object is saved to a variable. The

MaximumSizeInBytes property is set to 1

 gigabyte on the object. The SaveChanges method is called to push the change to the system inside of a try block to

handle access violations. The `Get-WinEvent` cmdlet

 is called again on the Security log and piped to the `Format-List` cmdlet to verify that the MaximumSizeInBytes propertyPage 12/22

has been saved on the machine.

 ----------- Example 4: Get event logs from a server -----------

 Get-WinEvent -ListLog * -ComputerName localhost | Where-Object { $_.RecordCount }

 LogMode MaximumSizeInBytes RecordCount LogName

 ------- ------------------ ----------- -------

 Circular 15532032 14546 Application

 Circular 1052672 117 Azure Information Protection

 Circular 1052672 2990 CxAudioSvcLog

 Circular 1052672 9 MSFTVPN Setup

 Circular 1052672 282 OAlerts

 The `Get-WinEvent` cmdlet gets log information from the computer. The ListLog parameter uses the asterisk (` `) wildcard

to display information about each log. The

 ComputerName * parameter specifies to get the logs from the local computer, localhost . The objects are sent down the

pipeline to the `Where-Object` cmdlet.

 `Where-Object` uses `$_.RecordCount` to return only logs that contain data. `$_` is a variable that represents the current

object in the pipeline. RecordCount is a

 property of the object with a non-null value.

 ------- Example 5: Get event logs from multiple servers -------

 $S = 'Server01', 'Server02', 'Server03'

 ForEach ($Server in $S) {

 Get-WinEvent -ListLog Application -ComputerName $Server |

 Select-Object LogMode, MaximumSizeInBytes, RecordCount, LogName,

 @{name='ComputerName'; expression={$Server}} |

 Format-Table -AutoSize

 }

 LogMode MaximumSizeInBytes RecordCount LogName ComputerName

 ------- ------------------ ----------- ------- ------------

 Circular 15532032 14577 Application Server01 Page 13/22

 Circular 15532032 9689 Application Server02

 Circular 15532032 5309 Application Server03

 The variable `$S` stores the names three servers: Server01 , Server02 , and Server03 . The ForEach statement uses a

loop to process each server, `($Server in $S)`.

 The script block in the curly braces (`{ }`) runs the `Get-WinEvent` command. The ListLog parameter specifies the

Application log. The ComputerName parameter uses the

 variable `$Server` to get log information from each server.

 The objects are sent down the pipeline to the `Select-Object` cmdlet. `Select-Object` gets the properties LogMode ,

MaximumSizeInBytes , RecordCount , LogName , and

 uses a calculated expression to display the ComputerName using the `$Server` variable. The objects are sent down the

pipeline to the `Format-Table` cmdlet to display

 the output in the PowerShell console. The AutoSize parameter formats the output to fit the screen.

 ------- Example 6: Get event log providers and log names -------

 Get-WinEvent -ListProvider *

 Name : .NET Runtime

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 Name : .NET Runtime Optimization Service

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 The `Get-WinEvent` cmdlet gets log information from the computer. The ListProvider parameter uses the asterisk (`*`)

wildcard to display information about each

 provider. In the output, the Name is the provider and LogLinks is the log that the provider writes to.

 Example 7: Get all event log providers that write to a specific log

 Page 14/22

 (Get-WinEvent -ListLog Application).ProviderNames

 .NET Runtime

 .NET Runtime Optimization Service

 Application

 Application Error

 Application Hang

 Application Management

 The `Get-WinEvent` cmdlet gets log information from the computer. The ListLog parameter uses Application to get

objects for that log. ProviderNames is a property of

 the object and displays the providers that write to the Application log.

 Example 8: Get event log provider names that contain a specific string

 Get-WinEvent -ListProvider *Policy*

 Name : Group Policy Applications

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 Name : Group Policy Client

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 Name : Group Policy Data Sources

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 The `Get-WinEvent` cmdlet gets log information from the computer. The ListProvider parameter uses the asterisk (` `)

wildcard to find Policy * anywhere within the Page 15/22

 provider's name.

 -- Example 9: Get Event Ids that the event provider generates --

 (Get-WinEvent -ListProvider Microsoft-Windows-GroupPolicy).Events | Format-Table Id, Description

 Id Description

 -- -----------

 1500 The Group Policy settings for the computer were processed successfully...

 1501 The Group Policy settings for the user were processed successfully...

 4115 Group Policy Service started.

 4116 Started the Group Policy service initialization phase.

 4117 Group Policy Session started.

 The `Get-WinEvent` cmdlet gets log information from the computer. The ListProvider parameter specifies the provider,

Microsoft-Windows-GroupPolicy . The expression is

 wrapped in parentheses and uses the Events property to get objects. The objects are sent down the pipeline to the

`Format-Table` cmdlet. `Format-Table` displays the

 Id and Description of the event objects.

 - Example 10: Get log information from event object properties -

 $Event = Get-WinEvent -LogName 'Windows PowerShell'

 $Event.Count

 $Event | Group-Object -Property Id -NoElement | Sort-Object -Property Count -Descending

 $Event | Group-Object -Property LevelDisplayName -NoElement

 195

 Count Name

 ----- ----

 147 600

 22 400

 21 601

 3 403 Page 16/22

 2 103

 Count Name

 ----- ----

 2 Warning

 193 Information

 The `Get-WinEvent` cmdlet uses the LogName parameter to specify the Windows PowerShell event log. The event

objects are stored in the `$Event` variable. The Count

 property of `$Event`shows the total number of logged events.

 The `$Event` variable is sent down the pipeline to the `Group-Object` cmdlet. `Group-Object` uses the Property

parameter to specify the Id property and counts the

 objects by the event Id value. The NoElement parameter removes other properties from the objects output. The grouped

objects are sent down the pipeline to the

 `Sort-Object` cmdlet. `Sort-Object` uses the Property parameter to sort the objects by Count . The Descending parameter

displays the output by count, from highest to

 lowest. In the output, the Count column contains the total number of each event. The Name column contains the grouped

event Id numbers.

 The `$Event` variable is sent down the pipeline to the `Group-Object` cmdlet. `Group-Object` uses the Property

parameter to specify the LevelDisplayName property and

 counts the objects by LevelDisplayName . The objects are grouped by the levels such as Warning and Information . The

NoElement parameter removes other properties from

 the output. In the output, the Count column contains the total number of each event. The Name column contains the

grouped LevelDisplayName .

 Example 11: Get error events that have a specified string in their name

 Get-WinEvent -LogName *PowerShell*, Microsoft-Windows-Kernel-WHEA* |

 Group-Object -Property LevelDisplayName, LogName -NoElement |

 Format-Table -AutoSize

 Count Name Page 17/22

 ----- ----

 1 Error, PowerShellCore/Operational

 26 Information, Microsoft-Windows-Kernel-WHEA/Operational

 488 Information, Microsoft-Windows-PowerShell/Operational

 77 Information, PowerShellCore/Operational

 9835 Information, Windows PowerShell

 19 Verbose, PowerShellCore/Operational

 444 Warning, Microsoft-Windows-PowerShell/Operational

 512 Warning, PowerShellCore/Operational

 The `Get-WinEvent` cmdlet gets log information from the computer. The LogName parameter uses a comma-separated

string with the asterisk (`*`) wildcard to specify the

 log names. The objects are sent down the pipeline to the `Group-Object` cmdlet. `Group-Object` uses the Property

parameter to group the objects by LevelDisplayName

 and LogName . The NoElement parameter removes other properties from the output. The grouped objects are sent down

the pipeline to the `Format-Table` cmdlet.

 `Format-Table` uses the AutoSize parameter to format the columns. The Count column contains the total number of each

event. The Name column contains the grouped

 LevelDisplayName and LogName .

 ------ Example 12: Get events from an archived event log ------

 Get-WinEvent -Path 'C:\Test\Windows PowerShell.evtx'

 ProviderName: PowerShell

 TimeCreated Id LevelDisplayName Message

 ----------- -- ---------------- -------

 3/15/2019 13:54:13 403 Information Engine state is changed from Available to Stopped...

 3/15/2019 13:54:13 400 Information Engine state is changed from None to Available...

 3/15/2019 13:54:13 600 Information Provider "Variable" is Started...

 3/15/2019 13:54:13 600 Information Provider "Function" is Started...

 3/15/2019 13:54:13 600 Information Provider "FileSystem" is Started...

 Page 18/22

 The `Get-WinEvent` cmdlet gets log information from the computer. The Path parameter specifies the directory and file

name.

 Example 13: Get a specific number of events from an archived event log

 Get-WinEvent -Path 'C:\Test\PowerShellCore Operational.evtx' -MaxEvents 100

 ProviderName: PowerShellCore

 TimeCreated Id LevelDisplayName Message

 ----------- -- ---------------- -------

 3/15/2019 09:54:54 4104 Warning Creating Scriptblock text (1 of 1):...

 3/15/2019 09:37:13 40962 Information PowerShell console is ready for user input

 3/15/2019 07:56:24 4104 Warning Creating Scriptblock text (1 of 1):...

 ...

 3/7/2019 10:53:22 40961 Information PowerShell console is starting up

 3/7/2019 10:53:22 8197 Verbose Runspace state changed to Opening

 3/7/2019 10:53:22 8195 Verbose Opening RunspacePool

 The `Get-WinEvent` cmdlet gets log information from the computer. The Path parameter specifies the directory and

filename. The MaxEvents parameter specifies that 100

 records are displayed, from newest to oldest.

 ------------ Example 14: Event Tracing for Windows ------------

 Get-WinEvent -Path 'C:\Tracing\TraceLog.etl' -Oldest |

 Sort-Object -Property TimeCreated -Descending |

 Select-Object -First 100

 The `Get-WinEvent` cmdlet gets log information from the archived file. The Path parameter specifies the directory and file

name. The Oldest parameter is used to

 output events in the order they are written, oldest to newest. The objects are sent down the pipeline to the `Sort-Object`

cmdlet `Sort-Object` sorts the objects in

 descending order by the value of the TimeCreated property. The objects are sent down the pipeline to the `Select-Object`

cmdlet that displays the 100 newest events. Page 19/22

 -------- Example 15: Get events from an event trace log --------

 Get-WinEvent -Path 'C:\Tracing\TraceLog.etl', 'C:\Test\Windows PowerShell.evtx' -Oldest |

 Where-Object { $_.Id -eq '403' }

 The `Get-WinEvent` cmdlet gets log information from the archived files. The Path parameter uses a comma-separated list

to specify each files directory and file name.

 The Oldest parameter is used to output events in the order they are written, oldest to newest. The objects are sent down

the pipeline to the `Where-Object` cmdlet.

 `Where-Object` uses a script block to find events with an Id of 403 . The `$_` variable represents the current object in the

pipeline and Id is the Event Id property.

 ------------- Example 16: Filter event log results -------------

 # Using the Where-Object cmdlet:

 $Yesterday = (Get-Date) - (New-TimeSpan -Day 1)

 Get-WinEvent -LogName 'Windows PowerShell' | Where-Object { $_.TimeCreated -ge $Yesterday }

 # Using the FilterHashtable parameter:

 $Yesterday = (Get-Date) - (New-TimeSpan -Day 1)

 Get-WinEvent -FilterHashtable @{ LogName='Windows PowerShell'; Level=3; StartTime=$Yesterday }

 # Using the FilterXML parameter:

 $xmlQuery = @'

 <QueryList>

 <Query Id="0" Path="Windows PowerShell">

 <Select Path="System">*[System[(Level=3) and

 TimeCreated[timediff(@SystemTime) <= 86400000]]]</Select>

 </Query>

 </QueryList>

 '@

 Get-WinEvent -FilterXML $xmlQuery

 # Using the FilterXPath parameter: Page 20/22

 $XPath = '*[System[Level=3 and TimeCreated[timediff(@SystemTime) <= 86400000]]]'

 Get-WinEvent -LogName 'Windows PowerShell' -FilterXPath $XPath

 Example 17: Use FilterHashtable to get events from the Application log

 $Date = (Get-Date).AddDays(-2)

 Get-WinEvent -FilterHashtable @{ LogName='Application'; StartTime=$Date; Id='1003' }

 The `Get-Date` cmdlet uses the AddDays method to get a date that is two days before the current date. The date object is

stored in the `$Date` variable.

 The `Get-WinEvent` cmdlet gets log information. The FilterHashtable parameter is used to filter the output. The LogName

key specifies the value as the Application

 log. The StartTime key uses the value stored in the `$Date` variable. The Id key uses an Event Id value, 1003 .

 -- Example 18: Use FilterHashtable to get application errors --

 $StartTime = (Get-Date).AddDays(-7)

 Get-WinEvent -FilterHashtable @{

 Logname='Application'

 ProviderName='Application Error'

 Data='iexplore.exe'

 StartTime=$StartTime

 }

 The `Get-Date` cmdlet uses the AddDays method to get a date that is seven days before the current date. The date

object is stored in the `$StartTime` variable.

 The `Get-WinEvent` cmdlet gets log information. The FilterHashtable parameter is used to filter the output. The LogName

key specifies the value as the Application

 log. The ProviderName key uses the value, Application Error , which is the event's Source . The Data key uses the value

iexplore.exe The StartTime key uses the value

 stored in `$StartTime` variable. Page 21/22

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.diagnostics/get-winevent?view=powershell-5.1&WT.mc

_id=ps-gethelp

 about_Automatic_Variables

 about_Foreach

 about_Hash_Tables

 Creating Get-WinEvent queries with FilterHashtable

 Format-Table

 Group-Object

 Sort-Object

 Where-Object

Page 22/22

