
Windows PowerShell Get-Help on Cmdlet 'Import-Clixml'

PS:\>Get-HELP Import-Clixml -Full

NAME

 Import-Clixml

SYNOPSIS

 Imports a CLIXML file and creates corresponding objects in PowerShell.

SYNTAX

 Import-Clixml [-First <System.UInt64>] [-IncludeTotalCount] -LiteralPath <System.String[]> [-Skip <System.UInt64>]

[<CommonParameters>]

 Import-Clixml [-Path] <System.String[]> [-First <System.UInt64>] [-IncludeTotalCount] [-Skip <System.UInt64>]

[<CommonParameters>]

DESCRIPTION

 The `Import-Clixml` cmdlet imports objects that have been serialized into a Common Language Infrastructure (CLI) XML

file. A valuable use of `Import-Clixml` on

 Windows computers is to import credentials and secure strings that were exported as secure XML using `Export-Clixml`.

Example #2 Page 1/7

 (#example-2-import-a-secure-credential-object)shows how to use `Import-Clixml` to import a secure credential object.

 The CLIXML data is deserialized back into PowerShell objects. However, the deserialized objects aren't a live objects.

They are a snapshot of the objects at the time

 of serialization. The deserialized objects include properties but no methods.

 The TypeNames property contains the original type name prefixed with `Deserialized`. Example #3

 (#example-3-inspect-the-typenames-property-of-a-deserialized-object)show the TypeNames property of a deserialized

object.

 `Import-Clixml` uses the byte-order-mark (BOM) to detect the encoding format of the file. If the file has no BOM, it

assumes the encoding is UTF8.

 For more information about CLI, see Language independence (/dotnet/standard/language-independence).

PARAMETERS

 -First <System.UInt64>

 Gets only the specified number of objects. Enter the number of objects to get.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -IncludeTotalCount <System.Management.Automation.SwitchParameter>

 Reports the total number of objects in the data set followed by the selected objects. If the cmdlet can't determine the

total count, it displays Unknown total

 count . The integer has an Accuracy property that indicates the reliability of the total count value. The value of

Accuracy ranges from `0.0` to `1.0` where `0.0`

 means that the cmdlet couldn't count the objects, `1.0` means that the count is exact, and a value between `0.0` and

`1.0` indicates an increasingly reliable Page 2/7

 estimate.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -LiteralPath <System.String[]>

 Specifies the path to the XML files. Unlike Path , the value of the LiteralPath parameter is used exactly as it's typed. No

characters are interpreted as

 wildcards. If the path includes escape characters, enclose it in single quotation marks. Single quotation marks tell

PowerShell not to interpret any characters as

 escape sequences.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -Path <System.String[]>

 Specifies the path to the XML files.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName, ByValue)

 Accept wildcard characters? false

 -Skip <System.UInt64>

 Ignores the specified number of objects and then gets the remaining objects. Enter the number of objects to skip.

 Page 3/7

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.String

 You can pipe a string containing a path to this cmdlet.

OUTPUTS

 System.Management.Automation.PSObject

 This cmdlet returns objects that were deserialized from the stored XML files.

NOTES

 When specifying multiple values for a parameter, use commas to separate the values. For example,

`<parameter-name> <value1>, <value2>`.

 -- Example 1: Import a serialized file and recreate an object --

 Get-Process | Export-Clixml -Path .\pi.xml

 $Processes = Import-Clixml -Path .\pi.xml

 Page 4/7

 --------- Example 2: Import a secure credential object ---------

 $Credxmlpath = Join-Path (Split-Path $Profile) TestScript.ps1.credential

 $Credential | Export-Clixml $Credxmlpath

 $Credxmlpath = Join-Path (Split-Path $Profile) TestScript.ps1.credential

 $Credential = Import-Clixml $Credxmlpath

 The `Export-Clixml` cmdlet encrypts credential objects by using the Windows Data Protection API

(/previous-versions/windows/apps/hh464970(v=win.10)). The encryption

 ensures that only your user account can decrypt the contents of the credential object. The exported `CLIXML` file can't be

used on a different computer or by a

 different user.

 In the example, the file in which the credential is stored is represented by `TestScript.ps1.credential`. Replace TestScript

with the name of the script with which

 you're loading the credential.

 You send the credential object down the pipeline to `Export-Clixml`, and save it to the path, `$Credxmlpath`, that you

specified in the first command.

 To import the credential automatically into your script, run the final two commands. Run `Import-Clixml` to import the

secured credential object into your script.

 This import eliminates the risk of exposing plain-text passwords in your script.

 Example 3: Inspect the TypeNames property of a deserialized object

 $original = [pscustomobject] @{

 Timestamp = Get-Date

 Label = 'Meeting event'

 }

 $original | Add-Member -MemberType ScriptMethod -Name GetDisplay -Value {

 '{0:yyyy-MM-dd HH:mm} {1}' -f $this.Timestamp, $this.Label

 } Page 5/7

 $original | Get-Member -MemberType ScriptMethod

 TypeName: System.Management.Automation.PSCustomObject

 Name MemberType Definition

 ---- ---------- ----------

 Equals Method bool Equals(System.Object obj)

 GetHashCode Method int GetHashCode()

 GetType Method type GetType()

 ToString Method string ToString()

 Label NoteProperty string Label=Meeting event

 Timestamp NoteProperty System.DateTime Timestamp=1/31/2024 2:27:59 PM

 GetDisplay ScriptMethod System.Object GetDisplay();

 $original | Export-Clixml -Path event.clixml

 $deserialized = Import-CliXml -Path event.clixml

 $deserialized | Get-Member

 TypeName: Deserialized.System.Management.Automation.PSCustomObject

 Name MemberType Definition

 ---- ---------- ----------

 Equals Method bool Equals(System.Object obj)

 GetHashCode Method int GetHashCode()

 GetType Method type GetType()

 ToString Method string ToString()

 Label NoteProperty string Label=Meeting event

 Timestamp NoteProperty System.DateTime Timestamp=1/31/2024 2:27:59 PM

 Note that the type of the object in `$original` is System.Management.Automation.PSCustomObject , but the type of the

object in `$deserialized` is

 Deserialized.System.Management.Automation.PSCustomObject . Also, the `GetDisplay()` method is missing from the

deserialized object. Page 6/7

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/import-clixml?view=powershell-5.1&WT.mc_id=ps-

gethelp

 Export-Clixml

 Introducing XML Serialization

 Join-Path

 Securely Store Credentials on Disk https://powershellcookbook.com/recipe/PukO/securely-store-credentials-on-disk

 Use PowerShell to Pass Credentials to Legacy Systems

https://devblogs.microsoft.com/scripting/use-powershell-to-pass-credentials-to-legacy-systems/

Page 7/7

