
Windows PowerShell Get-Help on Cmdlet 'Import-LocalizedData'

PS:\>Get-HELP Import-LocalizedData -Full

NAME

 Import-LocalizedData

SYNOPSIS

 Imports language-specific data into scripts and functions based on the UI culture that's selected for the operating system.

SYNTAX

 Import-LocalizedData [[-BindingVariable] <System.String>] [[-UICulture] <System.String>] [-BaseDirectory

<System.String>] [-FileName <System.String>]

 [-SupportedCommand <System.String[]>] [<CommonParameters>]

DESCRIPTION

 The `Import-LocalizedData` cmdlet dynamically retrieves strings from a subdirectory whose name matches the UI

language set for the current user of the operating

 system. It's designed to enable scripts to display user messages in the UI language selected by the current user.

 `Import-LocalizedData` imports data from `.psd1` files in language-specific subdirectories of the script directory and saves

them in a local variable that's specified Page 1/11

 in the command. The cmdlet selects the subdirectory and file based on the value of the `$PSUICulture` automatic

variable. When you use the local variable in the

 script to display a user message, the message appears in the user's UI language.

 You can use the parameters of `Import-LocalizedData` to specify an alternate UI culture, path, and filename, to add

supported commands, and to suppress the error

 message that appears if the `.psd1` files aren't found.

 The `Import-LocalizedData` cmdlet supports the script internationalization initiative that was introduced in Windows

PowerShell 2.0. This initiative aims to better

 serve users worldwide by making it easy for scripts to display user messages in the UI language of the current user. For

more information about this and about the

 format of the `.psd1` files, see about_Script_Internationalization

(../Microsoft.PowerShell.Core/About/about_Script_Internationalization.md).

PARAMETERS

 -BaseDirectory <System.String>

 Specifies the base directory where the `.psd1` files are located. The default is the directory where the script is located.

`Import-LocalizedData` searches for

 the `.psd1` file for the script in a language-specific subdirectory of the base directory.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -BindingVariable <System.String>

 Specifies the variable into which the text strings are imported. Enter a variable name without a dollar sign (`$`).

 In Windows PowerShell 2.0, this parameter is required. In Windows PowerShell 3.0, this parameter is optional. If you

omit this parameter, `Import-LocalizedData` Page 2/11

 returns a hashtable of the text strings. The hashtable is passed down the pipeline or displayed at the command line.

 When using `Import-LocalizedData` to replace default text strings specified in the DATA section of a script, assign the

DATA section to a variable and enter the

 name of the DATA section variable in the value of the BindingVariable parameter. Then, when `Import-LocalizedData`

saves the imported content in the

 BindingVariable , the imported data will replace the default text strings. If you aren't specifying default text strings, you

can select any variable name.

 Required? false

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -FileName <System.String>

 Specifies the name of the data file (`.psd1)` to be imported. Enter a filename. You can specify a filename that doesn't

include its `.psd1` filename extension, or

 you can specify the filename including the `.psd1` filename extension. Data files should be saved as Unicode or UTF-8.

 The FileName parameter is required when `Import-LocalizedData` isn't used in a script. Otherwise, the parameter is

optional and the default value is the base name

 of the script. You can use this parameter to direct `Import-LocalizedData` to search for a different `.psd1` file.

 For example, if the FileName is omitted and the script name is `FindFiles.ps1`, `Import-LocalizedData` searches for the

`FindFiles.psd1` data file.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 Page 3/11

 -SupportedCommand <System.String[]>

 Specifies cmdlets and functions that generate only data.

 Use this parameter to include cmdlets and functions that you have written or tested. For more information, see

about_Script_Internationalization

 (../Microsoft.PowerShell.Core/About/about_Script_Internationalization.md).

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -UICulture <System.String>

 Specifies an alternate UI culture. The default is the value of the `$PsUICulture` automatic variable. Enter a UI culture in

`<language>-<region>` format, such as

 `en-US`, `de-DE`, or `ar-SA`.

 The value of the UICulture parameter determines the language-specific subdirectory (within the base directory) from

which `Import-LocalizedData` gets the `.psd1`

 file for the script.

 The cmdlet searches for a subdirectory with the same name as the value of the UICulture parameter or the

`$PsUICulture` automatic variable, such as `de-DE` or

 `ar-SA`. If it can't find the directory, or the directory doesn't contain a `.psd1` file for the script, it searches for a

subdirectory with the name of the

 language code, such as de or ar. If it can't find the subdirectory or `.psd1` file, the command fails and the data is

displayed in the default language specified

 in the script.

 Required? false

 Position? 1

 Default value None Page 4/11

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 None

 You can't pipe objects to this cmdlet.

OUTPUTS

 System.Collections.Hashtable

 This cmdlet saves the hashtable in the variable specified by the value of the BindingVariable parameter.

NOTES

 - Before using `Import-LocalizedData`, localize your user messages. Format the messages for each locale (UI culture)

in a hashtable of key-value pairs, and save

 the hashtable in a file with the same name as the script and a `.psd1` filename extension. Create a directory under the

script directory for each supported UI

 culture, and then save the `.psd1` file for each UI culture in the directory with the UI culture name.

 For example, localize your user messages for the de-DE locale and format them in a hashtable. Save the hashtable in

a `<ScriptName>.psd1` file. Then create a

 `de-DE` subdirectory under the script directory, and save the German `<ScriptName>.psd1` file in the `de-DE`

subdirectory. Repeat this method for each locale

 that you support. Page 5/11

 - `Import-LocalizedData` performs a structured search for the localized user messages for a script.

 `Import-LocalizedData` begins the search in the directory where the script file is located (or the value of the

BaseDirectory parameter). It then searches

 within the base directory for a subdirectory with the same name as the value of the `$PsUICulture` variable (or the

value of the UICulture parameter), such as

 `de-DE` or `ar-SA`. Then, it searches in that subdirectory for a `.psd1` file with the same name as the script (or the

value of the FileName parameter).

 If `Import-LocalizedData` can't find a subdirectory with the name of the UI culture, or the subdirectory doesn't contain

a `.psd1` file for the script, it

 searches for a `.psd1` file for the script in a subdirectory with the name of the language code, such as de or ar. If it

can't find the subdirectory or

 `.psd1` file, the command fails, the data is displayed in the default language in the script, and an error message is

displayed explaining that the data could

 not be imported. To suppress the message and fail gracefully, use the ErrorAction common parameter with a value

of SilentlyContinue.

 If `Import-LocalizedData` finds the subdirectory and the `.psd1` file, it imports the hashtable of user messages into the

value of the BindingVariable parameter

 in the command. Then, when you display a message from the hashtable in the variable, the localized message is

displayed.

 For more information, see about_Script_Internationalization

(../Microsoft.Powershell.Core/About/about_Script_Internationalization.md).

 ---------------- Example 1: Import text strings ----------------

 Import-LocalizedData -BindingVariable "Messages"

 If the command is included in the Archives.ps1 script in the `C:\Test` directory, and the value of the `$PsUICulture`

automatic variable is zh-CN, Page 6/11

 `Import-LocalizedData` imports the `Archives.psd1` file in the `C:\test\zh-CN` directory into the `$Messages` variable.

 ----------- Example 2: Import localized data strings -----------

 Import-LocalizedData -FileName "Test.psd1" -UICulture "en-US"

 Name Value

 ---- -----

 Msg3 "Use $_ to represent the object that's being processed."

 Msg2 "This command requires the credentials of a member of the Administrators group on the...

 Msg1 "The Name parameter is missing from the command."

 `Import-LocalizedData` returns a hashtable that contains the localized data strings.

 ------------- Example 3: Import UI culture strings -------------

 Import-LocalizedData -BindingVariable "MsgTbl" -UICulture "ar-SA" -FileName "Simple" -BaseDirectory

"C:\Data\Localized"

 This command imports text strings into the `$MsgTbl` variable of a script.

 It uses the UICulture parameter to direct the cmdlet to import data from the `Simple.psd1` file in the `ar-SA` subdirectory

of `C:\Data\Localized`.

 -------- Example 4: Import localized data into a script --------

 PS C:\> # In C:\Test\en-US\Test.psd1:

 ConvertFrom-StringData @'

 # English strings

 Msg1 = "The Name parameter is missing from the command."

 Msg2 = "This command requires the credentials of a member of the Administrators group on the computer."

 Msg3 = "Use $_ to represent the object that's being processed."

 '@ Page 7/11

 # In C:\Test\Test.ps1

 Import-LocalizedData -BindingVariable "Messages"

 Write-Host $Messages.Msg2

 # In Windows PowerShell

 PS C:\> .\Test.ps1

 This command requires the credentials of a member of the Administrators group on the computer.

 The first part of the example shows the contents of the `Test.psd1` file. It contains a `ConvertFrom-StringData` command

that converts a series of named text strings

 into a hashtable. The `Test.psd1` file is located in the en-US subdirectory of the `C:\Test` directory that contains the

script.

 The second part of the example shows the contents of the `Test.ps1` script. It contains an `Import-LocalizedData`

command that imports the data from the matching

 `.psd1` file into the `$Messages` variable and a `Write-Host` command that writes one of the messages in the

`$Messages` variable to the host program.

 The last part of the example runs the script. The output shows that it displays the correct user message in the UI

language set for the current user of the operating

 system.

 ----- Example 5: Replace default text strings in a script -----

 PS C:\> # In TestScript.ps1

 $UserMessages = DATA

 { ConvertFrom-StringData @'

 # English strings Page 8/11

 Msg1 = "Enter a name."

 Msg2 = "Enter your employee ID."

 Msg3 = "Enter your building number."

 '@

 }

 Import-LocalizedData -BindingVariable "UserMessages"

 $UserMessages.Msg1...

 In this example, the DATA section of the TestScript.ps1 script contains a `ConvertFrom-StringData` command that

converts the contents of the DATA section to a

 hashtable and stores in the value of the `$UserMessages` variable.

 The script also includes an `Import-LocalizedData` command, which imports a hashtable of translated text strings from

the TestScript.psd1 file in the subdirectory

 specified by the value of the `$PsUICulture` variable. If the command finds the `.psd1` file, it saves the translated strings

from the file in the value of the same

 `$UserMessages` variable, overwriting the hashtable saved by the DATA section logic.

 The third command displays the first message in the `$UserMessages` variable.

 If the `Import-LocalizedData` command finds a `.psd1` file for the `$PsUICulture` language, the value of the

`$UserMessages` variable contains the translated text

 strings. If the command fails for any reason, the command displays the default text strings defined in the DATA section of

the script.

 Example 6: Suppress error messages if the UI culture isn't found

 PS C:\> # In Day1.ps1

 Import-LocalizedData -BindingVariable "Day"

 # In Day2.ps1 Page 9/11

 Import-LocalizedData -BindingVariable "Day" -ErrorAction:SilentlyContinue

 PS C:\> .\Day1.ps1

 Import-LocalizedData : Can't find PowerShell data file 'Day1.psd1' in directory 'C:\ps-test\fr-BE\'

 or any parent culture directories.

 At C:\ps-test\Day1.ps1:17 char:21+ Import-LocalizedData <<<< Day

 Today is Tuesday

 PS C:\> .\Day2.ps1

 Today is Tuesday

 You can use the ErrorAction common parameter with a value of SilentlyContinue to suppress the error message. This is

especially useful when you have provided user

 messages in a default or fallback language, and no error message is needed.

 This example compares two scripts, `Day1.ps1` and Day2.ps1, that include an `Import-LocalizedData` command. The

scripts are identical, except that Day2 uses the

 ErrorAction common parameter with a value of `SilentlyContinue`.

 The sample output shows the results of running both scripts when the UI culture is set to `fr-BE` and there are no

matching files or directories for that UI culture.

 `Day1.ps1` displays an error message and English output. `Day2.ps1` just displays the English output.

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/import-localizeddata?view=powershell-5.1&WT.m

c_id=ps-gethelp

 Write-Host

 Import-PowerShellDataFile

 about_Data_Files

Page 10/11

Page 11/11

