
Windows PowerShell Get-Help on Cmdlet 'Import-PSSession'

PS:\>Get-HELP Import-PSSession -Full

NAME

 Import-PSSession

SYNOPSIS

 Imports commands from another session into the current session.

SYNTAX

 Import-PSSession [-Session] <System.Management.Automation.Runspaces.PSSession> [[-CommandName]

<System.String[]>] [[-FormatTypeName] <System.String[]>]

 [-AllowClobber] [-ArgumentList <System.Object[]>] [-Certificate

<System.Security.Cryptography.X509Certificates.X509Certificate2>] [-CommandType {Alias | Function |

 Filter | Cmdlet | ExternalScript | Application | Script | Workflow | Configuration | All}] [-DisableNameChecking]

[-FullyQualifiedModule

 <Microsoft.PowerShell.Commands.ModuleSpecification[]>] [-Module <System.String[]>] [-Prefix <System.String>]

[<CommonParameters>]

DESCRIPTION

 The `Import-PSSession` cmdlet imports commands , such as cmdlets, functions, and aliases, from a PSSession on aPage 1/18

local or remote computer into the current session. You

 can import any command that the `Get-Command` cmdlet can find in the PSSession.

 Use an `Import-PSSession` command to import commands from a customized shell, such as a Microsoft Exchange

Server shell, or from a session that includes Windows

 PowerShell modules and snap-ins or other elements that are not in the current session.

 To import commands, first use the `New-PSSession` cmdlet to create a PSSession. Then, use the `Import-PSSession`

cmdlet to import the commands. By default,

 `Import-PSSession` imports all commands except for commands that have the same names as commands in the current

session. To import all the commands, use the

 AllowClobber parameter.

 You can use imported commands just as you would use any command in the session. When you use an imported

command, the imported part of the command runs implicitly in

 the session from which it was imported. However, the remote operations are handled entirely by Windows PowerShell.

You need not even be aware of them, except that you

 must keep the connection to the other session (PSSession) open. If you close it, the imported commands are no longer

available.

 Because imported commands might take longer to run than local commands, `Import-PSSession` adds an AsJob

parameter to every imported command. This parameter allows

 you to run the command as a Windows PowerShell background job. For more information, see about_Jobs

(../Microsoft.PowerShell.Core/about/about_Jobs.md).

 When you use `Import-PSSession`, Windows PowerShell adds the imported commands to a temporary module that

exists only in your session and returns an object that

 represents the module. To create a persistent module that you can use in future sessions, use the `Export-PSSession`

cmdlet.

 The `Import-PSSession` cmdlet uses the implicit remoting feature of Windows PowerShell. When you import commands

into the current session, they run implicitly in the

 original session or in a similar session on the originating computer. Page 2/18

 Beginning in Windows PowerShell 3.0, you can use the `Import-Module` cmdlet to import modules from a remote session

into the current session. This feature uses

 implicit remoting. It is equivalent to using `Import-PSSession` to import selected modules from a remote session into the

current session.

PARAMETERS

 -AllowClobber <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet imports the specified commands, even if they have the same names as commands in the

current session.

 If you import a command with the same name as a command in the current session, the imported command hides or

replaces the original commands. For more

 information, see about_Command_Precedence

(../Microsoft.PowerShell.Core/about/about_Command_Precedence.md).

 By default, `Import-PSSession` does not import commands that have the same name as commands in the current

session.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -ArgumentList <System.Object[]>

 Specifies an array of commands that results from using the specified arguments (parameter values).

 For instance, to import the variant of the `Get-Item` command in the certificate (Cert:) drive in the PSSession in `$S`,

type `Import-PSSession -Session $S

 -Command Get-Item -ArgumentList cert:`.

 Page 3/18

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Certificate <System.Security.Cryptography.X509Certificates.X509Certificate2>

 Specifies the client certificate that is used to sign the format files (*.Format.ps1xml) or script module files (.psm1) in the

temporary module that

 `Import-PSSession` creates.

 Enter a variable that contains a certificate or a command or expression that gets the certificate.

 To find a certificate, use the `Get-PfxCertificate` cmdlet or use the `Get-ChildItem` cmdlet in the Certificate (Cert:) drive.

If the certificate is not valid or

 does not have sufficient authority, the command fails.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -CommandName <System.String[]>

 Specifies commands with the specified names or name patterns. Wildcards are permitted. Use CommandName or its

alias, Name .

 By default, `Import-PSSession` imports all commands from the session, except for commands that have the same

names as commands in the current session. This

 prevents imported commands from hiding or replacing commands in the session. To import all commands, even those

that hide or replace other commands, use the

 AllowClobber parameter.

 Page 4/18

 If you use the CommandName parameter, the formatting files for the commands are not imported unless you use the

FormatTypeName parameter. Similarly, if you use

 the FormatTypeName parameter, no commands are imported unless you use the CommandName parameter.

 Required? false

 Position? 2

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -CommandType <System.Management.Automation.CommandTypes>

 Specifies the type of command objects. The default value is Cmdlet. Use CommandType or its alias, Type . The

acceptable values for this parameter are:

 - `Alias`: The Windows PowerShell aliases in the remote session.

 - `All`: The cmdlets and functions in the remote session.

 - `Application`: All the files other than Windows-PowerShell files in the paths that are listed in

 the Path environment variable (`$env:path`) in the remote session, including .txt, .exe, and .dll files. - `Cmdlet`: The

cmdlets in the remote session. "Cmdlet"

 is the default.

 - `ExternalScript`: The .ps1 files in the paths listed in the Path environment variable

 (`$env:path`) in the remote session. - `Filter` and `Function`: The Windows PowerShell functions in the remote session.

 - `Script`: The script blocks in the remote session.

 These values are defined as a flag-based enumeration. You can combine multiple values together to set multiple flags

using this parameter. The values can be Page 5/18

 passed to the CommandType parameter as an array of values or as a comma-separated string of those values. The

cmdlet will combine the values using a binary-OR

 operation. Passing values as an array is the simplest option and also allows you to use tab-completion on the values.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -DisableNameChecking <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet suppresses the message that warns you when you import a cmdlet or function whose name

includes an unapproved verb or a prohibited

 character.

 By default, when a module that you import exports cmdlets or functions that have unapproved verbs in their names, the

Windows PowerShell displays the following

 warning message:

 "WARNING: Some imported command names include unapproved verbs which might make them less discoverable.

Use the Verbose parameter for more detail or type

 `Get-Verb` to see the list of approved verbs."

 This message is only a warning. The complete module is still imported, including the non-conforming commands.

Although the message is displayed to module users,

 the naming problem should be fixed by the module author.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false Page 6/18

 -FormatTypeName <System.String[]>

 Specifies formatting instructions for the specified Microsoft .NET Framework types. Enter the type names. Wildcards

are permitted.

 The value of this parameter must be the name of a type that is returned by a `Get-FormatData` command in the

session from which the commands are being imported.

 To get all of the formatting data in the remote session, type `*`.

 If the command does not include either the CommandName or FormatTypeName parameter, `Import-PSSession`

imports formatting instructions for all .NET Framework

 types returned by a `Get-FormatData` command in the remote session.

 If you use the FormatTypeName parameter, no commands are imported unless you use the CommandName

parameter.

 Similarly, if you use the CommandName parameter, the formatting files for the commands are not imported unless you

use the FormatTypeName parameter.

 Required? false

 Position? 3

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -FullyQualifiedModule <Microsoft.PowerShell.Commands.ModuleSpecification[]>

 The value can be a module name, a full module specification, or a path to a module file.

 When the value is a path, the path can be fully qualified or relative. A relative path is resolved relative to the script that

contains the using statement.

 When the value is a name or module specification, PowerShell searches the PSModulePath for the specified module.

 Page 7/18

 A module specification is a hashtable that has the following keys.

 - `ModuleName` - Required Specifies the module name. - `GUID` - Optional Specifies the GUID of the module. - It's

also Required to specify at least one of the

 three below keys. - `ModuleVersion` - Specifies a minimum acceptable version of the module. - `MaximumVersion` -

Specifies the maximum acceptable version of

 the module. - `RequiredVersion` - Specifies an exact, required version of the module. This can't be used with the

other Version keys.

 You can't specify the FullyQualifiedModule parameter in the same command as a Module parameter. The two

parameters are mutually exclusive.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Module <System.String[]>

 Specifies and array of commands in the Windows PowerShell snap-ins and modules. Enter the snap-in and module

names. Wildcards are not permitted.

 `Import-PSSession` cannot import providers from a snap-in.

 For more information, see about_PSSnapins (../Microsoft.PowerShell.Core/About/about_PSSnapins.md)and

about_Modules

 (../Microsoft.PowerShell.Core/About/about_Modules.md).

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false Page 8/18

 -Prefix <System.String>

 Specifies a prefix to the nouns in the names of imported commands.

 Use this parameter to avoid name conflicts that might occur when different commands in the session have the same

name.

 For instance, if you specify the prefix Remote and then import a `Get-Date` cmdlet, the cmdlet is known in the session

as `Get-RemoteDate`, and it is not confused

 with the original `Get-Date` cmdlet.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Session <System.Management.Automation.Runspaces.PSSession>

 Specifies the PSSession from which the cmdlets are imported. Enter a variable that contains a session object or a

command that gets a session object, such as a

 `New-PSSession` or `Get-PSSession` command. You can specify only one session. This parameter is required.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216). Page 9/18

INPUTS

 None

 You can't pipe objects to this cmdlet.

OUTPUTS

 System.Management.Automation.PSModuleInfo

 This cmdlet returns the same module object that `New-Module` and `Get-Module` cmdlets return. However, the

imported module is temporary and exists only in the

 current session. To create a permanent module on disk, use the `Export-PSSession` cmdlet.

NOTES

 Windows PowerShell includes the following aliases for `Import-PSSession`:

 - `ipsn`

 - `Import-PSSession` relies on the PowerShell remoting infrastructure. To use this cmdlet, the computer must be

configured for WS-Management remoting. For more

 information, see about_Remote (../Microsoft.PowerShell.Core/about/about_Remote.md)and

about_Remote_Requirements

 (../Microsoft.PowerShell.Core/about/about_Remote_Requirements.md). - `Import-PSSession` does not import

variables or PowerShell providers.

 - When you import commands that have the same names as commands in the current session, the imported

 commands can hide aliases, functions, and cmdlets in the session and they can replace functions and variables in the

session. To prevent name conflicts, use the

 Prefix parameter. For more information, see about_Command_Precedence

(../Microsoft.PowerShell.Core/about/about_Command_Precedence.md). - `Import-PSSession` Page 10/18

 converts all commands into functions before it imports them. As a result, imported commands behave a bit differently

than they would if they retained their

 original command type. For example, if you import a cmdlet from a PSSession and then import a cmdlet with the

same name from a module or snap-in, the cmdlet

 that is imported from the PSSession always runs by default because functions take precedence over cmdlets.

Conversely, if you import an alias into a session

 that has an alias with the same name, the original alias is always used, because aliases take precedence over

functions. For more information, see

 about_Command_Precedence (../Microsoft.PowerShell.Core/about/about_Command_Precedence.md). -

`Import-PSSession` uses the `Write-Progress` cmdlet to display the

 progress of the command. You might see the progress bar while the command is running. - To find the commands to

import, `Import-PSSession` uses the

 `Invoke-Command` cmdlet to run a `Get-Command` command in the PSSession. To get formatting data for the

commands, it uses the `Get-FormatData` cmdlet. You

 might see error messages from these cmdlets when you run an `Import-PSSession` command. Also,

`Import-PSSession` cannot import commands from a PSSession that

 does not include the `Get-Command`, `Get-FormatData`, `Select-Object`, and `Get-Help` cmdlets. - Imported

commands have the same limitations as other remote

 commands, including the inability to start a program with a user interface, such as Notepad. - Because Windows

PowerShell profiles are not run in PSSessions,

 the commands that a profile adds to a session are not available to `Import-PSSession`. To import commands from a

profile, use an `Invoke-Command` command to

 run the profile in the PSSession manually before importing commands. - The temporary module that

`Import-PSSession` creates might include a formatting file, even

 if the command does not import formatting data. If the command does not import formatting data, any formatting files

that are created will not contain

 formatting data. - To use `Import-PSSession`, the execution policy in the current session cannot be Restricted or

AllSigned, because the temporary module that

 `Import-PSSession` creates contains unsigned script files that are prohibited by these policies. To use

`Import-PSSession` without changing the execution

 policy for the local computer, use the Scope parameter of `Set-ExecutionPolicy` to set a less restrictive execution

policy for a single process. - In Windows

 PowerShell 2.0, help topics for commands that are imported from another session do not include the prefix that youPage 11/18

assign by using the Prefix parameter. To get

 help for an imported command in Windows PowerShell 2.0, use the original (non-prefixed) command name.

 ------- Example 1: Import all commands from a PSSession -------

 $S = New-PSSession -ComputerName Server01

 Import-PSSession -Session $S

 This command imports all commands from a PSSession on the Server01 computer into the current session, except for

commands that have the same names as commands in the

 current session.

 Because this command does not use the CommandName parameter, it also imports all of the formatting data required for

the imported commands.

 -- Example 2: Import commands that end with a specific string --

 $S = New-PSSession https://ps.testlabs.com/powershell

 Import-PSSession -Session $S -CommandName *-test -FormatTypeName *

 New-Test -Name Test1

 Get-Test test1 | Run-Test

 These commands import the commands with names that end in "-test" from a PSSession into the local session, and then

they show how to use an imported cmdlet.

 The first command uses the `New-PSSession` cmdlet to create a PSSession. It saves the PSSession in the `$S` variable.

 The second command uses the `Import-PSSession` cmdlet to import commands from the PSSession in `$S` into the

current session. It uses the CommandName parameter to

 specify commands with the Test noun and the FormatTypeName parameter to import the formatting data for the Test

commands.

 The third and fourth commands use the imported commands in the current session. Because imported commands are

actually added to the current session, you use the local Page 12/18

 syntax to run them. You do not need to use the `Invoke-Command` cmdlet to run an imported command.

 ---------- Example 3: Import cmdlets from a PSSession ----------

 $S1 = New-PSSession -ComputerName s1

 $S2 = New-PSSession -ComputerName s2

 Import-PSSession -Session s1 -Type cmdlet -Name New-Test, Get-Test -FormatTypeName *

 Import-PSSession -Session s2 -Type Cmdlet -Name Set-Test -FormatTypeName *

 New-Test Test1 | Set-Test -RunType Full

 This example shows that you can use imported cmdlets just as you would use local cmdlets.

 These commands import the `New-Test` and `Get-Test` cmdlets from a PSSession on the Server01 computer and the

`Set-Test` cmdlet from a PSSession on the Server02

 computer.

 Even though the cmdlets were imported from different PSSessions, you can pipe an object from one cmdlet to another

without error.

 ---- Example 4: Run an imported command as a background job ----

 $S = New-PSSession -ComputerName Server01

 Import-PSSession -Session $S -CommandName *-test* -FormatTypeName *

 $batch = New-Test -Name Batch -AsJob

 Receive-Job $batch

 This example shows how to run an imported command as a background job.

 Because imported commands might take longer to run than local commands, `Import-PSSession` adds an AsJob

parameter to every imported command. The AsJob parameter lets

 you run the command as a background job.

 The first command creates a PSSession on the Server01 computer and saves the PSSession object in the `$S` variable.

 The second command uses `Import-PSSession` to import the Test cmdlets from the PSSession in `$S` into the currentPage 13/18

session.

 The third command uses the AsJob parameter of the imported `New-Test` cmdlet to run a `New-Test` command as a

background job. The command saves the job object that

 `New-Test` returns in the `$batch` variable.

 The fourth command uses the `Receive-Job` cmdlet to get the results of the job in the `$batch` variable.

 Example 5: Import cmdlets and functions from a Windows PowerShell module

 $S = New-PSSession -ComputerName Server01

 Invoke-Command -Session $S {Import-Module TestManagement}

 Import-PSSession -Session $S -Module TestManagement

 This example shows how to import the cmdlets and functions from a Windows PowerShell module on a remote computer

into the current session.

 The first command creates a PSSession on the Server01 computer and saves it in the `$S` variable.

 The second command uses the `Invoke-Command` cmdlet to run an `Import-Module` command in the PSSession in `$S`.

 Typically, the module would be added to all sessions by an `Import-Module` command in a Windows PowerShell profile,

but profiles are not run in PSSessions.

 The third command uses the Module parameter of `Import-PSSession` to import the cmdlets and functions in the module

into the current session.

 -------- Example 6: Create a module in a temporary file --------

 PS C:\> Import-PSSession $S -CommandName Get-Date, SearchHelp -FormatTypeName * -AllowClobber

 Name : tmp_79468106-4e1d-4d90-af97-1154f9317239_tcw1zunz.ttf

 Path : C:\Users\User01\AppData\Local\Temp\tmp_79468106-4e1d-4d90-af97-1154f9317239_tcw1

 zunz.ttf\tmp_79468106-4e1d-4d90-af97-1154f9317239_

 tcw1zunz.ttf.psm1 Page 14/18

 Description : Implicit remoting for http://server01.corp.fabrikam.com/wsman

 Guid : 79468106-4e1d-4d90-af97-1154f9317239

 Version : 1.0

 ModuleBase : C:\Users\User01\AppData\Local\Temp\tmp_79468106-4e1d-4d90-af97-1154f9317239_tcw1

 zunz.ttf

 ModuleType : Script

 PrivateData : {ImplicitRemoting}

 AccessMode : ReadWrite

 ExportedAliases : {}

 ExportedCmdlets : {}

 ExportedFunctions : {[Get-Date, Get-Date], [SearchHelp, SearchHelp]}

 ExportedVariables : {}

 NestedModules : {}

 This example shows that `Import-PSSession` creates a module in a temporary file on disk. It also shows that all

commands are converted into functions before they are

 imported into the current session.

 The command uses the `Import-PSSession` cmdlet to import a `Get-Date` cmdlet and a SearchHelp function into the

current session.

 The `Import-PSSession` cmdlet returns a PSModuleInfo object that represents the temporary module. The value of the

Path property shows that `Import-PSSession` created

 a script module (.psm1) file in a temporary location. The ExportedFunctions property shows that the `Get-Date` cmdlet

and the SearchHelp function were both imported

 as functions.

 Example 7: Run a command that is hidden by an imported command

 PS C:\> Import-PSSession $S -CommandName Get-Date -FormatTypeName * -AllowClobber

 PS C:\> Get-Command Get-Date -All

 CommandType Name Definition Page 15/18

 ----------- ---- ----------

 Function Get-Date ...

 Cmdlet Get-Date Get-Date [[-Date] <DateTime>] [-Year <Int32>] [-Month <Int32>]

 PS C:\> Get-Date

 09074

 PS C:\> (Get-Command -Type Cmdlet -Name Get-Date).PSSnapin.Name

 Microsoft.PowerShell.Utility

 PS C:\> Microsoft.PowerShell.Utility\Get-Date

 Sunday, March 15, 2009 2:08:26 PM

 This example shows how to run a command that is hidden by an imported command.

 The first command imports a `Get-Date` cmdlet from the PSSession in the `$S` variable. Because the current session

includes a `Get-Date` cmdlet, the AllowClobber

 parameter is required in the command.

 The second command uses the All parameter of the `Get-Command` cmdlet to get all `Get-Date` commands in the

current session. The output shows that the session

 includes the original `Get-Date` cmdlet and a `Get-Date` function. The `Get-Date` function runs the imported `Get-Date`

cmdlet in the PSSession in `$S`.

 The third command runs a `Get-Date` command. Because functions take precedence over cmdlets, Windows PowerShell

runs the imported `Get-Date` function, which returns a

 Julian date.

 The fourth and fifth commands show how to use a qualified name to run a command that is hidden by an imported

command.

 The fourth command gets the name of the Windows PowerShell snap-in that added the original `Get-Date` cmdlet to the

current session. Page 16/18

 The fifth command uses the snap-in-qualified name of the `Get-Date` cmdlet to run a `Get-Date` command.

 For more information about command precedence and hidden commands, see about_Command_Precedence

(../Microsoft.PowerShell.Core/about/about_Command_Precedence.md).

 Example 8: Import commands that have a specific string in their names

 PS C:\> Import-PSSession -Session $S -CommandName **Item** -AllowClobber

 This command imports commands whose names include Item from the PSSession in `$S`. Because the command

includes the CommandName parameter but not the FormatTypeData

 parameter, only the command is imported.

 Use this command when you are using `Import-PSSession` to run a command on a remote computer and you already

have the formatting data for the command in the current

 session.

 Example 9: Use the Module parameter to discover which commands were imported into the session

 PS C:\> $M = Import-PSSession -Session $S -CommandName *bits* -FormatTypeName *bits*

 PS C:\> Get-Command -Module $M

 CommandType Name

 ----------- ----

 Function Add-BitsFile

 Function Complete-BitsTransfer

 Function Get-BitsTransfer

 Function Remove-BitsTransfer

 Function Resume-BitsTransfer

 Function Set-BitsTransfer

 Function Start-BitsTransfer

 Function Suspend-BitsTransfer

 This command shows how to use the Module parameter of `Get-Command` to find out which commands were imported

into the session by an `Import-PSSession` command. Page 17/18

 The first command uses the `Import-PSSession` cmdlet to import commands whose names include "bits" from the

PSSession in the `$S` variable. The `Import-PSSession`

 command returns a temporary module, and the command saves the module in the `$m` variable.

 The second command uses the `Get-Command` cmdlet to get the commands that are exported by the module in the `$M`

variable.

 The Module parameter takes a string value, which is designed for the module name. However, when you submit a

module object, Windows PowerShell uses the ToString

 method on the module object, which returns the module name.

 The `Get-Command` command is the equivalent of `Get-Command $M.Name`".

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/import-pssession?view=powershell-5.1&WT.mc_id

=ps-gethelp

 Export-PSSession

Page 18/18

