
Windows PowerShell Get-Help on Cmdlet 'Invoke-Command'

PS:\>Get-HELP Invoke-Command -Full

NAME

 Invoke-Command

SYNOPSIS

 Runs commands on local and remote computers.

SYNTAX

 Invoke-Command [[-ConnectionUri] <System.Uri[]>] [-ScriptBlock] <System.Management.Automation.ScriptBlock>

[-AllowRedirection] [-ArgumentList <System.Object[]>]

 [-AsJob] [-Authentication {Default | Basic | Negotiate | NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

[-CertificateThumbprint <System.String>]

 [-ConfigurationName <System.String>] [-Credential <System.Management.Automation.PSCredential>]

[-EnableNetworkAccess] [-HideComputerName] [-InDisconnectedSession]

 [-InputObject <System.Management.Automation.PSObject>] [-JobName <System.String>] [-SessionOption

<System.Management.Automation.Remoting.PSSessionOption>]

 [-ThrottleLimit <System.Int32>] [<CommonParameters>]

 Invoke-Command [[-ConnectionUri] <System.Uri[]>] [-FilePath] <System.String> [-AllowRedirection] [-ArgumentList

<System.Object[]>] [-AsJob] [-Authentication {Default Page 1/35

 | Basic | Negotiate | NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}] [-ConfigurationName

<System.String>] [-Credential

 <System.Management.Automation.PSCredential>] [-EnableNetworkAccess] [-HideComputerName]

[-InDisconnectedSession] [-InputObject

 <System.Management.Automation.PSObject>] [-JobName <System.String>] [-SessionOption

<System.Management.Automation.Remoting.PSSessionOption>] [-ThrottleLimit

 <System.Int32>] [<CommonParameters>]

 Invoke-Command [[-ComputerName] <System.String[]>] [-FilePath] <System.String> [-ApplicationName <System.String>]

[-ArgumentList <System.Object[]>] [-AsJob]

 [-Authentication {Default | Basic | Negotiate | NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

[-ConfigurationName <System.String>] [-Credential

 <System.Management.Automation.PSCredential>] [-EnableNetworkAccess] [-HideComputerName]

[-InDisconnectedSession] [-InputObject

 <System.Management.Automation.PSObject>] [-JobName <System.String>] [-Port <System.Int32>] [-SessionName

<System.String[]>] [-SessionOption

 <System.Management.Automation.Remoting.PSSessionOption>] [-ThrottleLimit <System.Int32>] [-UseSSL]

[<CommonParameters>]

 Invoke-Command [[-ComputerName] <System.String[]>] [-ScriptBlock] <System.Management.Automation.ScriptBlock>

[-ApplicationName <System.String>] [-ArgumentList

 <System.Object[]>] [-AsJob] [-Authentication {Default | Basic | Negotiate | NegotiateWithImplicitCredential | Credssp |

Digest | Kerberos}] [-CertificateThumbprint

 <System.String>] [-ConfigurationName <System.String>] [-Credential <System.Management.Automation.PSCredential>]

[-EnableNetworkAccess] [-HideComputerName]

 [-InDisconnectedSession] [-InputObject <System.Management.Automation.PSObject>] [-JobName <System.String>]

[-Port <System.Int32>] [-SessionName <System.String[]>]

 [-SessionOption <System.Management.Automation.Remoting.PSSessionOption>] [-ThrottleLimit <System.Int32>]

[-UseSSL] [<CommonParameters>]

 Invoke-Command [-ScriptBlock] <System.Management.Automation.ScriptBlock> [[-Session]

<System.Management.Automation.Runspaces.PSSession[]>] [-ArgumentList

 <System.Object[]>] [-AsJob] [-HideComputerName] [-InputObject <System.Management.Automation.PSObject>]Page 2/35

[-JobName <System.String>] [-ThrottleLimit <System.Int32>]

 [<CommonParameters>]

 Invoke-Command [[-Session] <System.Management.Automation.Runspaces.PSSession[]>] [-FilePath] <System.String>

[-ArgumentList <System.Object[]>] [-AsJob]

 [-HideComputerName] [-InputObject <System.Management.Automation.PSObject>] [-JobName <System.String>]

[-ThrottleLimit <System.Int32>] [<CommonParameters>]

 Invoke-Command [-ScriptBlock] <System.Management.Automation.ScriptBlock> [-VMId] <System.Guid[]> [-ArgumentList

<System.Object[]>] [-AsJob] [-ConfigurationName

 <System.String>] [-Credential <System.Management.Automation.PSCredential>] [-HideComputerName] [-InputObject

<System.Management.Automation.PSObject>] [-ThrottleLimit

 <System.Int32>] [<CommonParameters>]

 Invoke-Command [-ScriptBlock] <System.Management.Automation.ScriptBlock> [-ArgumentList <System.Object[]>]

[-AsJob] [-ConfigurationName <System.String>] [-Credential

 <System.Management.Automation.PSCredential>] [-HideComputerName] [-InputObject

<System.Management.Automation.PSObject>] [-ThrottleLimit <System.Int32>] -VMName

 <System.String[]> [<CommonParameters>]

 Invoke-Command [-VMId] <System.Guid[]> [-FilePath] <System.String> [-ArgumentList <System.Object[]>] [-AsJob]

[-ConfigurationName <System.String>] [-Credential

 <System.Management.Automation.PSCredential>] [-HideComputerName] [-InputObject

<System.Management.Automation.PSObject>] [-ThrottleLimit <System.Int32>]

 [<CommonParameters>]

 Invoke-Command [-FilePath] <System.String> [-ArgumentList <System.Object[]>] [-AsJob] [-ConfigurationName

<System.String>] [-Credential

 <System.Management.Automation.PSCredential>] [-HideComputerName] [-InputObject

<System.Management.Automation.PSObject>] [-ThrottleLimit <System.Int32>] -VMName

 <System.String[]> [<CommonParameters>]

 Invoke-Command [-ScriptBlock] <System.Management.Automation.ScriptBlock> [-ArgumentList <System.Object[]>]Page 3/35

[-AsJob] [-ConfigurationName <System.String>] -ContainerId

 <System.String[]> [-HideComputerName] [-InputObject <System.Management.Automation.PSObject>] [-JobName

<System.String>] [-RunAsAdministrator] [-ThrottleLimit

 <System.Int32>] [<CommonParameters>]

 Invoke-Command [-FilePath] <System.String> [-ArgumentList <System.Object[]>] [-AsJob] [-ConfigurationName

<System.String>] -ContainerId <System.String[]>

 [-HideComputerName] [-InputObject <System.Management.Automation.PSObject>] [-JobName <System.String>]

[-RunAsAdministrator] [-ThrottleLimit <System.Int32>]

 [<CommonParameters>]

 Invoke-Command [-ScriptBlock] <System.Management.Automation.ScriptBlock> [-ArgumentList <System.Object[]>]

[-InputObject <System.Management.Automation.PSObject>]

 [-NoNewScope] [<CommonParameters>]

DESCRIPTION

 The `Invoke-Command` cmdlet runs commands on a local or remote computer and returns all output from the commands,

including errors. Using a single `Invoke-Command`

 command, you can run commands on multiple computers.

 To run a single command on a remote computer, use the ComputerName parameter. To run a series of related

commands that share data, use the `New-PSSession` cmdlet to

 create a PSSession (a persistent connection) on the remote computer, and then use the Session parameter of

`Invoke-Command` to run the command in the PSSession . To

 run a command in a disconnected session, use the InDisconnectedSession parameter. To run a command in a

background job, use the AsJob parameter.

 You can also use `Invoke-Command` on a local computer to a run script block as a command. PowerShell runs the script

block immediately in a child scope of the current

 scope.

 Before using `Invoke-Command` to run commands on a remote computer, read about_RemotePage 4/35

(./About/about_Remote.md).

 Some code samples use splatting to reduce the line length. For more information, see about_Splatting

(./About/about_Splatting.md).

PARAMETERS

 -AllowRedirection <System.Management.Automation.SwitchParameter>

 Allows redirection of this connection to an alternate Uniform Resource Identifier (URI).

 When you use the ConnectionURI parameter, the remote destination can return an instruction to redirect to a different

URI. By default, PowerShell doesn't redirect

 connections, but you can use this parameter to allow it to redirect the connection.

 You can also limit the number of times the connection is redirected by changing the

MaximumConnectionRedirectionCount session option value. Use the

 MaximumRedirection parameter of the `New-PSSessionOption` cmdlet or set the

MaximumConnectionRedirectionCount property of the `$PSSessionOption` preference

 variable. The default value is 5.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -ApplicationName <System.String>

 Specifies the application name segment of the connection URI. Use this parameter to specify the application name

when you aren't using the ConnectionURI parameter

 in the command.

 The default value is the value of the `$PSSessionApplicationName` preference variable on the local computer. If this

preference variable isn't defined, the Page 5/35

 default value is WSMAN. This value is appropriate for most uses. For more information, see

about_Preference_Variables (./About/about_Preference_Variables.md).

 The WinRM service uses the application name to select a listener to service the connection request. The value of this

parameter should match the value of the

 URLPrefix property of a listener on the remote computer.

 Required? false

 Position? named

 Default value $PSSessionApplicationName if set on the local computer, otherwise WSMAN

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -ArgumentList <System.Object[]>

 Supplies the values of parameters for the scriptblock. The parameters in the script block are passed by position from

the array value supplied to ArgumentList .

 This is known as array splatting. For more information about the behavior of ArgumentList , see about_Splatting

(about/about_Splatting.md#splatting-with-arrays).

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -AsJob <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet runs the command as a background job on a remote computer. Use this parameter to run

commands that take an extensive time to finish.

 When you use the AsJob parameter, the command returns an object that represents the job, and then displays the

command prompt. You can continue to work in the

 session while the job finishes. To manage the job, use the `*-Job` cmdlets. To get the job results, use the

`Receive-Job` cmdlet. Page 6/35

 The AsJob parameter resembles using the `Invoke-Command` cmdlet to run a `Start-Job` cmdlet remotely. However,

with AsJob , the job is created on the local

 computer, even though the job runs on a remote computer. The results of the remote job are automatically returned to

the local computer.

 For more information about PowerShell background jobs, see about_Jobs (About/about_Jobs.md) and

[about_Remote_Jobs](About/about_Remote_Jobs.md).

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Authentication <System.Management.Automation.Runspaces.AuthenticationMechanism>

 Specifies the mechanism that's used to authenticate the user's credentials. CredSSP authentication is available only in

Windows Vista, Windows Server 2008, and

 later versions of the Windows operating system.

 The acceptable values for this parameter are as follows:

 - Default

 - Basic

 - Credssp

 - Digest

 - Kerberos

 - Negotiate Page 7/35

 - NegotiateWithImplicitCredential

 The default value is Default.

 For more information about the values of this parameter, see AuthenticationMechanism Enumeration

 (/dotnet/api/system.management.automation.runspaces.authenticationmechanism).

 > [!CAUTION] > Credential Security Support Provider (CredSSP) authentication, in which the user's credentials are >

passed to a remote computer to be

 authenticated, is designed for commands that require > authentication on more than one resource, such as accessing

a remote network share. This mechanism >

 increases the security risk of the remote operation. If the remote computer is compromised, the > credentials that are

passed to it can be used to control the

 network session. For more > information, see > Credential Security Support Provider

(/windows/win32/secauthn/credential-security-support-provider).

 Required? false

 Position? named

 Default value Default

 Accept pipeline input? False

 Accept wildcard characters? false

 -CertificateThumbprint <System.String>

 Specifies the digital public key certificate (X509) of a user account that has permission to connect to the disconnected

session. Enter the certificate thumbprint

 of the certificate.

 Certificates are used in client certificate-based authentication. They can be mapped only to local user accounts and

they don't work with domain accounts.

 To get a certificate thumbprint, use a `Get-Item` or `Get-ChildItem` command in the PowerShell Cert: drive. Page 8/35

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -ComputerName <System.String[]>

 Specifies the computers on which the command runs. The default is the local computer.

 When you use the ComputerName parameter, PowerShell creates a temporary connection that's used only to run the

specified command and is then closed. If you need a

 persistent connection, use the Session parameter.

 Type the NETBIOS name, IP address, or fully qualified domain name of one or more computers in a comma-separated

list. To specify the local computer, type the

 computer name, localhost, or a dot (`.`).

 To use an IP address in the value of ComputerName , the command must include the Credential parameter. The

computer must be configured for the HTTPS transport or

 the IP address of the remote computer must be included in the local computer's WinRM TrustedHosts list. For

instructions to add a computer name to the

 TrustedHosts list, see [How to Add a Computer to the Trusted Host

List](./about/about_remote_troubleshooting.md#how-to-add-a-computer-to-the-trusted-hosts-list).

 On Windows Vista and later versions of the Windows operating system, to include the local computer in the value of

ComputerName , you must run PowerShell using

 the Run as administrator option.

 Required? false

 Position? 0

 Default value Local computer

 Accept pipeline input? False Page 9/35

 Accept wildcard characters? false

 -ConfigurationName <System.String>

 Specifies the session configuration that is used for the new PSSession .

 Enter a configuration name or the fully qualified resource URI for a session configuration. If you specify only the

configuration name, the following schema URI

 is prepended: `http://schemas.microsoft.com/PowerShell`.

 The session configuration for a session is located on the remote computer. If the specified session configuration

doesn't exist on the remote computer, the

 command fails.

 The default value is the value of the `$PSSessionConfigurationName` preference variable on the local computer. If this

preference variable isn't set, the default

 is Microsoft.PowerShell . For more information, see about_Preference_Variables

(about/about_Preference_Variables.md).

 Required? false

 Position? named

 Default value $PSSessionConfigurationName if set on the local computer, otherwise Microsoft.PowerShell

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -ConnectionUri <System.Uri[]>

 Specifies a Uniform Resource Identifier (URI) that defines the connection endpoint of the session. The URI must be

fully qualified.

 The format of this string is as follows:

 `<Transport>://<ComputerName>:<Port>/<ApplicationName>`

 The default value is as follows: Page 10/35

 `http://localhost:5985/WSMAN`

 If you don't specify a connection URI, you can use the UseSSL and Port parameters to specify the connection URI

values.

 Valid values for the Transport segment of the URI are HTTP and HTTPS. If you specify a connection URI with a

Transport segment, but don't specify a port, the

 session is created with the standards ports: 80 for HTTP and 443 for HTTPS. To use the default ports for PowerShell

remoting, specify port 5985 for HTTP or 5986

 for HTTPS.

 If the destination computer redirects the connection to a different URI, PowerShell prevents the redirection unless you

use the AllowRedirection parameter in the

 command.

 Required? false

 Position? 0

 Default value http://localhost:5985/WSMAN

 Accept pipeline input? False

 Accept wildcard characters? false

 -ContainerId <System.String[]>

 Specifies an array of container IDs.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -Credential <System.Management.Automation.PSCredential>

 Specifies a user account that has permission to perform this action. The default is the current user. Page 11/35

 Type a user name, such as User01 or Domain01\User01 , or enter a PSCredential object generated by the

`Get-Credential` cmdlet. If you type a user name, you're

 prompted to enter the password.

 Credentials are stored in a PSCredential (/dotnet/api/system.management.automation.pscredential)object and the

password is stored as a SecureString

 (/dotnet/api/system.security.securestring).

 > [!NOTE] > For more information about SecureString data protection, see > How secure is SecureString?

 (/dotnet/api/system.security.securestring#how-secure-is-securestring).

 Required? false

 Position? named

 Default value Current user

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -EnableNetworkAccess <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet adds an interactive security token to loopback sessions. The interactive token lets you run

commands in the loopback session that get

 data from other computers. For example, you can run a command in the session that copies XML files from a remote

computer to the local computer.

 A loopback session is a PSSession that originates and ends on the same computer. To create a loopback session,

omit the ComputerName parameter or set its value to

 dot (`.`), localhost, or the name of the local computer.

 By default, loopback sessions are created using a network token, which might not provide sufficient permission to

authenticate to remote computers.

 The EnableNetworkAccess parameter is effective only in loopback sessions. If you use EnableNetworkAccess when

you create a session on a remote computer, the Page 12/35

 command succeeds, but the parameter is ignored.

 You can allow remote access in a loopback session using the CredSSP value of the Authentication parameter, which

delegates the session credentials to other

 computers.

 To protect the computer from malicious access, disconnected loopback sessions that have interactive tokens, which

are those created using EnableNetworkAccess ,

 can be reconnected only from the computer on which the session was created. Disconnected sessions that use

CredSSP authentication can be reconnected from other

 computers. For more information, see `Disconnect-PSSession`.

 This parameter was introduced in PowerShell 3.0.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -FilePath <System.String>

 Specifies a local script that this cmdlet runs on one or more remote computers. Enter the path and filename of the

script, or pipe a script path to

 `Invoke-Command`. The script must exist on the local computer or in a directory that the local computer can access.

Use ArgumentList to specify the values of

 parameters in the script.

 When you use this parameter, PowerShell converts the contents of the specified script file to a script block, transmits

the script block to the remote computer,

 and runs it on the remote computer.

 Required? true

 Position? 1 Page 13/35

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -HideComputerName <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet omits the computer name of each object from the output display. By default, the name of the

computer that generated the object appears

 in the display.

 This parameter affects only the output display. It doesn't change the object.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -InDisconnectedSession <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet runs a command or script in a disconnected session.

 When you use the InDisconnectedSession parameter, `Invoke-Command` creates a persistent session on each remote

computer, starts the command specified by the

 ScriptBlock or FilePath parameter, and then disconnects from the session. The commands continue to run in the

disconnected sessions. InDisconnectedSession enables

 you to run commands without maintaining a connection to the remote sessions. And, because the session is

disconnected before any results are returned,

 InDisconnectedSession makes sure that all command results are returned to the reconnected session, instead of being

split between sessions.

 You can't use InDisconnectedSession with the Session parameter or the AsJob parameter.

 Commands that use InDisconnectedSession return a PSSession object that represents the disconnected session.

They don't return the command output. To connect to Page 14/35

 the disconnected session, use the `Connect-PSSession` or `Receive-PSSession` cmdlets. To get the results of

commands that ran in the session, use the

 `Receive-PSSession` cmdlet. To run commands that generate output in a disconnected session, set the value of the

OutputBufferingMode session option to Drop . If

 you intend to connect to the disconnected session, set the idle time-out in the session so that it provides sufficient time

for you to connect before deleting the

 session.

 You can set the output buffering mode and idle time-out in the SessionOption parameter or in the `$PSSessionOption`

preference variable. For more information

 about session options, see `New-PSSessionOption` and about_Preference_Variables

(./about/about_preference_variables.md).

 For more information about the Disconnected Sessions feature, see about_Remote_Disconnected_Sessions

(about/about_Remote_Disconnected_Sessions.md).

 This parameter was introduced in PowerShell 3.0.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -InputObject <System.Management.Automation.PSObject>

 Specifies input to the command. Enter a variable that contains the objects or type a command or expression that gets

the objects.

 When using the InputObject parameter, use the `$Input` automatic variable in the value of the ScriptBlock parameter to

represent the input objects.

 Required? false

 Position? named Page 15/35

 Default value None

 Accept pipeline input? True (ByValue)

 Accept wildcard characters? false

 -JobName <System.String>

 Specifies a friendly name for the background job. By default, jobs are named `Job<n>`, where `<n>` is an ordinal

number.

 If you use the JobName parameter in a command, the command is run as a job, and `Invoke-Command` returns a job

object, even if you don't include AsJob in the

 command.

 For more information about PowerShell background jobs, see about_Jobs (./About/about_Jobs.md).

 Required? false

 Position? named

 Default value Job<n>

 Accept pipeline input? False

 Accept wildcard characters? false

 -NoNewScope <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet runs the specified command in the current scope. By default, `Invoke-Command` runs

commands in their own scope.

 This parameter is valid only in commands that are run in the current session, that is, commands that omit both the

ComputerName and Session parameters.

 This parameter was introduced in PowerShell 3.0.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False Page 16/35

 Accept wildcard characters? false

 -Port <System.Int32>

 Specifies the network port on the remote computer that is used for this command. To connect to a remote computer,

the remote computer must be listening on the

 port that the connection uses. The default ports are 5985 (WinRM port for HTTP) and 5986 (WinRM port for HTTPS).

 Before using an alternate port, configure the WinRM listener on the remote computer to listen at that port. To configure

the listener, type the following two

 commands at the PowerShell prompt:

 `Remove-Item -Path WSMan:\Localhost\listener\listener* -Recurse`

 `New-Item -Path WSMan:\Localhost\listener -Transport http -Address * -Port <port-number>`

 Don't use the Port parameter unless you must. The port that is set in the command applies to all computers or sessions

on which the command runs. An alternate

 port setting might prevent the command from running on all computers.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -RunAsAdministrator <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet invokes a command as an Administrator.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false Page 17/35

 -ScriptBlock <System.Management.Automation.ScriptBlock>

 Specifies the commands to run. Enclose the commands in braces (`{ }`) to create a script block. When using

`Invoke-Command` to run a command remotely, any

 variables in the command are evaluated on the remote computer.

 > [!NOTE] > Parameters for the scriptblock can only be passed in from ArgumentList by position. Switch > parameters

cannot be passed by position. If you need a

 parameter that behaves like a > SwitchParameter type, use a Boolean type instead.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Session <System.Management.Automation.Runspaces.PSSession[]>

 Specifies an array of sessions in which this cmdlet runs the command. Enter a variable that contains PSSession

objects or a command that creates or gets the

 PSSession objects, such as a `New-PSSession` or `Get-PSSession` command.

 When you create a PSSession , PowerShell establishes a persistent connection to the remote computer. Use a

PSSession to run a series of related commands that

 share data. To run a single command or a series of unrelated commands, use the ComputerName parameter. For

more information, see about_PSSessions

 (./About/about_PSSessions.md).

 Required? false

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 Page 18/35

 -SessionName <System.String[]>

 Specifies a friendly name for a disconnected session. You can use the name to refer to the session in subsequent

commands, such as a `Get-PSSession` command. This

 parameter is valid only with the InDisconnectedSession parameter.

 This parameter was introduced in PowerShell 3.0.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -SessionOption <System.Management.Automation.Remoting.PSSessionOption>

 Specifies advanced options for the session. Enter a SessionOption object, such as one that you create using the

`New-PSSessionOption` cmdlet, or a hash table in

 which the keys are session option names and the values are session option values.

 > [!NOTE] > If you specify a hashtable for SessionOption , PowerShell converts the hashtable into a >

System.Management.Autiomation.Remoting.PSSessionOption

 object. The values for keys specified > in the hashtable are cast to the matching property of the object. This behaves

differently from > calling

 `New-PSSessionOption`. For example, the System.TimeSpan values for the timeout > properties, like IdleTimeout ,

convert an integer value into ticks instead of

 milliseconds. > For more information on the PSSessionOption object and its properties, see > PSSessionOption

 (/dotnet/api/system.management.automation.remoting.pssessionoption)The default values for the options are

determined by the value of the `$PSSessionOption`

 preference variable, if it's set. Otherwise, the default values are established by options set in the session configuration.

 The session option values take precedence over default values for sessions set in the `$PSSessionOption` preference

variable and in the session configuration.

 However, they don't take precedence over maximum values, quotas, or limits set in the session configuration.

 Page 19/35

 For a description of the session options that includes the default values, see `New-PSSessionOption`. For information

about the `$PSSessionOption` preference

 variable, see about_Preference_Variables (About/about_Preference_Variables.md). For more information about

session configurations, see

 about_Session_Configurations (About/about_Session_Configurations.md).

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -ThrottleLimit <System.Int32>

 Specifies the maximum number of concurrent connections that can be established to run this command. If you omit this

parameter or enter a value of 0, the default

 value, 32, is used.

 The throttle limit applies only to the current command, not to the session or to the computer.

 Required? false

 Position? named

 Default value 32

 Accept pipeline input? False

 Accept wildcard characters? false

 -UseSSL <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet uses the Secure Sockets Layer (SSL) protocol to establish a connection to the remote

computer. By default, SSL isn't used.

 WS-Management encrypts all PowerShell content transmitted over the network. The UseSSL parameter is an

additional protection that sends the data across an HTTPS,

 instead of HTTP.

 Page 20/35

 If you use this parameter, but SSL isn't available on the port that's used for the command, the command fails.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -VMId <System.Guid[]>

 Specifies an array of IDs of virtual machines.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -VMName <System.String[]>

 Specifies an array of names of virtual machines.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS Page 21/35

 System.Management.Automation.ScriptBlock

 You can pipe a command in a script block to `Invoke-Command`. Use the `$Input` automatic variable to represent the

input objects in the command.

OUTPUTS

 System.Management.Automation.PSRemotingJob

 If you use the AsJob parameter, this cmdlet returns a job object.

 System.Management.Automation.Runspaces.PSSession

 If you use the InDisconnectedSession parameter, this cmdlet returns a PSSession object.

 System.Object

 By default, this cmdlet returns the output of the invoked command, which is the value of the ScriptBlock parameter.

NOTES

 Windows PowerShell includes the following aliases for `Invoke-Command`:

 - `icm`

 On Windows Vista, and later versions of the Windows operating system, to use the ComputerName parameter of

`Invoke-Command` to run a command on the local

 computer, you must run PowerShell using the Run as administrator option.

 When you run commands on multiple computers, PowerShell connects to the computers in the order in which they

appear in the list. However, the command output is

 displayed in the order that it's received from the remote computers, which might be different.

 Errors that result from the command that `Invoke-Command` runs are included in the command results. Errors that

would be terminating errors in a local command are Page 22/35

 treated as non-terminating errors in a remote command. This strategy makes sure that terminating errors on one

computer don't close the command on all computers

 on which it's run. This practice is used even when a remote command is run on a single computer.

 If the remote computer isn't in a domain that the local computer trusts, the computer might not be able to authenticate

the user's credentials. To add the remote

 computer to the list of trusted hosts in WS-Management, use the following command in the `WSMAN` provider, where

`<Remote-Computer-Name>` is the name of the

 remote computer:

 `Set-Item -Path WSMan:\Localhost\Client\TrustedHosts -Value <Remote-Computer-Name>`

 When you disconnect a PSSession using the InDisconnectedSession parameter, the session state is Disconnected

and the availability is None . The value of the State

 property is relative to the current session. A value of Disconnected means that the PSSession isn't connected to the

current session. However, it doesn't mean

 that the PSSession is disconnected from all sessions. It might be connected to a different session. To determine

whether you can connect or reconnect to the

 session, use the Availability property.

 An Availability value of None indicates that you can connect to the session. A value of Busy indicates that you can't

connect to the PSSession because it's

 connected to another session. For more information about the values of the State property of sessions, see

RunspaceState

 (/dotnet/api/system.management.automation.runspaces.runspacestate). For more information about the values of the

Availability property of sessions, see

 RunspaceAvailability (/dotnet/api/system.management.automation.runspaces.runspaceavailability).

 ------------- Example 1: Run a script on a server -------------

 Invoke-Command -FilePath c:\scripts\test.ps1 -ComputerName Server01

 The FilePath parameter specifies a script that is located on the local computer. The script runs on the remote computerPage 23/35

and the results are returned to the local

 computer.

 --------- Example 2: Run a command on a remote server ---------

 Invoke-Command -ComputerName Server01 -Credential Domain01\User01 -ScriptBlock {

 Get-Culture

 }

 The ComputerName parameter specifies the name of the remote computer. The Credential parameter is used to run the

command in the security context of Domain01\User01,

 a user who has permission to run commands. The ScriptBlock parameter specifies the command to be run on the remote

computer.

 In response, PowerShell requests the password and an authentication method for the User01 account. It then runs the

command on the Server01 computer and returns the

 result.

 ----- Example 3: Run a command in a persistent connection -----

 $s = New-PSSession -ComputerName Server02 -Credential Domain01\User01

 Invoke-Command -Session $s -ScriptBlock { Get-Culture }

 The `New-PSSession` cmdlet creates a session on the Server02 remote computer and saves it in the `$s` variable.

Typically, you create a session only when you run a

 series of commands on the remote computer.

 The `Invoke-Command` cmdlet runs the `Get-Culture` command on Server02. The Session parameter specifies the

session saved in the `$s` variable.

 In response, PowerShell runs the command in the session on the Server02 computer.

 Example 4: Use a session to run a series of commands that share data

 Invoke-Command -ComputerName Server02 -ScriptBlock { $p = Get-Process PowerShell }

 Invoke-Command -ComputerName Server02 -ScriptBlock { $p.VirtualMemorySize } Page 24/35

 $s = New-PSSession -ComputerName Server02

 Invoke-Command -Session $s -ScriptBlock { $p = Get-Process PowerShell }

 Invoke-Command -Session $s -ScriptBlock { $p.VirtualMemorySize }

 17930240

 The first two commands use the ComputerName parameter of `Invoke-Command` to run commands on the Server02

remote computer. The first command uses the `Get-Process`

 cmdlet to get the PowerShell process on the remote computer and to save it in the `$p` variable. The second command

gets the value of the VirtualMemorySize property

 of the PowerShell process.

 When you use the ComputerName parameter, PowerShell creates a new session to run the command. The session is

closed when the command completes. The `$p` variable was

 created in one connection, but it doesn't exist in the connection created for the second command.

 The problem is solved by creating a persistent session on the remote computer, then running both of the commands in

the same session.

 The `New-PSSession` cmdlet creates a persistent session on the computer Server02 and saves the session in the `$s`

variable. The `Invoke-Command` lines that follow

 use the Session parameter to run both of the commands in the same session. Since both commands run in the same

session, the `$p` value remains active.

 Example 5: Invoke a command with a script block stored in a variable

 $command = {

 Get-EventLog -LogName 'Windows PowerShell' |

 Where-Object { $_.Message -like '*certificate*' }

 }

 Invoke-Command -ComputerName S1, S2 -ScriptBlock $command

 The `$command` variable stores the `Get-EventLog` command that's formatted as a script block. The `Invoke-Command`

runs the command stored in `$command` on the S1 and Page 25/35

 S2 remote computers.

 ----- Example 6: Run a single command on several computers -----

 $parameters = @{

 ComputerName = 'Server01', 'Server02', 'TST-0143', 'localhost'

 ConfigurationName = 'MySession.PowerShell'

 ScriptBlock = { Get-EventLog 'Windows PowerShell' }

 }

 Invoke-Command @parameters

 The ComputerName parameter specifies a comma-separated list of computer names. The list of computers includes the

localhost value, which represents the local

 computer. The ConfigurationName parameter specifies an alternate session configuration. The ScriptBlock parameter

runs `Get-EventLog` to get the Windows PowerShell

 event logs from each computer.

 Example 7: Get the version of the host program on multiple computers

 $version = Invoke-Command -ComputerName (Get-Content Machines.txt) -ScriptBlock {

 (Get-Host).Version

 }

 Because only one command is run, you don't have to create persistent connections to each of the computers. Instead, the

command uses the ComputerName parameter to

 indicate the computers. To specify the computers, it uses the `Get-Content` cmdlet to get the contents of the Machine.txt

file, a file of computer names.

 The `Invoke-Command` cmdlet runs a `Get-Host` command on the remote computers. It uses dot notation to get the

Version property of the PowerShell host.

 These commands run one at a time. When the commands complete, the output of the commands from all of the

computers is saved in the `$version` variable. The output

 includes the name of the computer from which the data originated.

 - Example 8: Run a background job on several remote computers - Page 26/35

 $s = New-PSSession -ComputerName Server01, Server02

 Invoke-Command -Session $s -ScriptBlock { Get-EventLog system } -AsJob

 Id Name State HasMoreData Location Command

 --- ---- ----- ----- ----------- ---------------

 1 Job1 Running True Server01,Server02 Get-EventLog system

 $j = Get-Job

 $j | Format-List -Property *

 HasMoreData : True

 StatusMessage :

 Location : Server01,Server02

 Command : Get-EventLog system

 JobStateInfo : Running

 Finished : System.Threading.ManualResetEvent

 InstanceId : e124bb59-8cb2-498b-a0d2-2e07d4e030ca

 Id : 1

 Name : Job1

 ChildJobs : {Job2, Job3}

 Output : {}

 Error : {}

 Progress : {}

 Verbose : {}

 Debug : {}

 Warning : {}

 StateChanged :

 $results = $j | Receive-Job

 The `New-PSSession` cmdlet creates sessions on the Server01 and Server02 remote computers. The

`Invoke-Command` cmdlet runs a background job in each of the sessions. Page 27/35

 The command uses the AsJob parameter to run the command as a background job. This command returns a job object

that contains two child job objects, one for each of

 the jobs run on the two remote computers.

 The `Get-Job` command saves the job object in the `$j` variable. The `$j` variable is then piped to the `Format-List`

cmdlet to display all properties of the job

 object in a list. The last command gets the results of the jobs. It pipes the job object in `$j` to the `Receive-Job` cmdlet

and stores the results in the `$results`

 variable.

 Example 9: Include local variables in a command run on a remote computer

 $Log = 'Windows PowerShell'

 Invoke-Command -ComputerName Server01 -ScriptBlock {

 Get-EventLog -LogName $Using:Log -Newest 10

 }

 The `$Log` variable stores the name of the event log, Windows PowerShell. The `Invoke-Command` cmdlet runs

`Get-EventLog` on Server01 to get the ten newest events

 from the event log. The value of the LogName parameter is the `$Log` variable, which is prefixed by the `Using` scope

modifier to indicate that it was created in the

 local session, not in the remote session.

 -------------- Example 10: Hide the computer name --------------

 Invoke-Command -ComputerName S1, S2 -ScriptBlock { Get-Process PowerShell }

 PSComputerName Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

 -------------- ------- ------ ----- ----- ----- ------ -- -----------

 S1 575 15 45100 40988 200 4.68 1392 PowerShell

 S2 777 14 35100 30988 150 3.68 67 PowerShell

 Invoke-Command -ComputerName S1, S2 -HideComputerName -ScriptBlock {

 Get-Process PowerShell

 } Page 28/35

 Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

 ------- ------ ----- ----- ----- ------ -- -----------

 575 15 45100 40988 200 4.68 1392 PowerShell

 777 14 35100 30988 150 3.68 67 PowerShell

 The first two commands use `Invoke-Command` to run a `Get-Process` command for the PowerShell process. The output

of the first command includes the PsComputerName

 property, which contains the name of the computer on which the command ran. The output of the second command,

which uses HideComputerName , doesn't include the

 PsComputerName column.

 ----- Example 11: Use the Param keyword in a script block -----

 $parameters = @{

 ComputerName = 'Server01'

 ScriptBlock = {

 Param ($param1, $param2)

 Get-ChildItem -Name $param1 -Include $param2

 }

 ArgumentList = 'a*', '*.pdf'

 }

 Invoke-Command @parameters

 aa.pdf

 ab.pdf

 ac.pdf

 az.pdf

 `Invoke-Command` uses the ScriptBlock parameter that defines two variables, `$param1` and `$param2`. `Get-ChildItem`

uses the named parameters, Name and Include with

 the variable names. The ArgumentList passes the values to the variables.

 Example 12: Use the $args automatic variable in a script block

 Page 29/35

 $parameters = @{

 ComputerName = 'Server01'

 ScriptBlock = { Get-ChildItem $args[0] $args[1] }

 ArgumentList = 'C:\Test', '*.txt*'

 }

 Invoke-Command @parameters

 Directory: C:\Test

 Mode LastWriteTime Length Name

 ---- ------------- ------ ----

 -a--- 6/12/2019 15:15 128 alog.txt

 -a--- 7/27/2019 15:16 256 blog.txt

 -a--- 9/28/2019 17:10 64 zlog.txt

 `Invoke-Command` uses a ScriptBlock parameter and `Get-ChildItem` specifies the `$args[0]` and `$args[1]` array values.

The ArgumentList passes the `$args` array

 values to the `Get-ChildItem` parameter positions for Path and Filter .

 Example 13: Run a script on all the computers listed in a text file

 $parameters = @{

 ComputerName = (Get-Content Servers.txt)

 FilePath = 'C:\Scripts\Sample.ps1'

 ArgumentList = 'Process', 'Service'

 }

 Invoke-Command @parameters

 When you submit the command, the content of the `Sample.ps1` file is copied into a script block and the script block is

run on each of the remote computers. This

 procedure is equivalent to using the ScriptBlock parameter to submit the contents of the script.

 -- Example 14: Run a command on a remote computer using a URI --

 $LiveCred = Get-Credential Page 30/35

 $parameters = @{

 ConfigurationName = 'Microsoft.Exchange'

 ConnectionUri = 'https://ps.exchangelabs.com/PowerShell'

 Credential = $LiveCred

 Authentication = 'Basic'

 ScriptBlock = { Set-Mailbox Dan -DisplayName 'Dan Park' }

 }

 Invoke-Command @parameters

 The first line uses the `Get-Credential` cmdlet to store Windows Live ID credentials in the `$LiveCred` variable.

PowerShell prompts the user to enter Windows Live ID

 credentials.

 The `$parameters` variable is a hash table containing the parameters to be passed to the `Invoke-Command` cmdlet. The

`Invoke-Command` cmdlet runs a `Set-Mailbox`

 command using the Microsoft.Exchange session configuration. The ConnectionURI parameter specifies the URL of the

Exchange server endpoint. The Credential parameter

 specifies the credentials stored in the `$LiveCred` variable. The AuthenticationMechanism parameter specifies the use of

basic authentication. The ScriptBlock

 parameter specifies a script block that contains the command.

 --------------- Example 15: Use a session option ---------------

 $so = New-PSSessionOption -SkipCACheck -SkipCNCheck -SkipRevocationCheck

 $parameters = @{

 ComputerName = 'server01'

 UseSSL = $true

 ScriptBlock = { Get-HotFix }

 SessionOption = $so

 Credential = 'server01\user01'

 }

 Invoke-Command @parameters

 The `New-PSSessionOption` cmdlet creates a session option object that causes the remote end not to verify thePage 31/35

Certificate Authority, Canonical Name, and Revocation

 Lists while evaluating the incoming HTTPS connection. The SessionOption object is saved in the `$so` variable.

 > [!NOTE] > Disabling these checks is convenient for troubleshooting, but obviously not secure.

 The `Invoke-Command` cmdlet runs a `Get-HotFix` command remotely. The SessionOption parameter is given the `$so`

variable.

 ---- Example 16: Manage URI redirection in a remote command ----

 $max = New-PSSessionOption -MaximumRedirection 1

 $parameters = @{

 ConnectionUri = 'https://ps.exchangelabs.com/PowerShell'

 ScriptBlock = { Get-Mailbox dan }

 AllowRedirection = $true

 SessionOption = $max

 }

 Invoke-Command @parameters

 The `New-PSSessionOption` cmdlet creates a PSSessionOption object that is saved in the `$max` variable. The

command uses the MaximumRedirection parameter to set the

 MaximumConnectionRedirectionCount property of the PSSessionOption object to 1.

 The `Invoke-Command` cmdlet runs a `Get-Mailbox` command on a remote Microsoft Exchange Server. The

AllowRedirection parameter provides explicit permission to

 redirect the connection to an alternate endpoint. The SessionOption parameter uses the session object stored in the

`$max` variable.

 As a result, if the remote computer specified by ConnectionURI returns a redirection message, PowerShell redirects the

connection, but if the new destination returns

 another redirection message, the redirection count value of 1 is exceeded, and `Invoke-Command` returns a

non-terminating error.

 ---- Example 17: Access a network share in a remote session ----

 Page 32/35

 Enable-WSManCredSSP -Role Client -DelegateComputer Server02

 $s = New-PSSession Server02

 Invoke-Command -Session $s -ScriptBlock { Enable-WSManCredSSP -Role Server -Force }

 $parameters = @{

 Session = $s

 ScriptBlock = { Get-Item \\Net03\Scripts\LogFiles.ps1 }

 Authentication = 'CredSSP'

 Credential = 'Domain01\Admin01'

 }

 Invoke-Command @parameters

 The `Enable-WSManCredSSP` cmdlet enables CredSSP delegation from the Server01 local computer to the Server02

remote computer. The Role parameter specifies Client to

 configure the CredSSP client setting on the local computer.

 `New-PSSession` creates a PSSession object for Server02 and stores the object in the `$s` variable.

 The `Invoke-Command` cmdlet uses the `$s` variable to connect to the remote computer, Server02. The ScriptBlock

parameter runs `Enable-WSManCredSSP` on the remote

 computer. The Role parameter specifies Server to configure the CredSSP server setting on the remote computer.

 The `$parameters` variable contains the parameter values to connect to the network share. The `Invoke-Command`

cmdlet runs a `Get-Item` command in the session in

 `$s`. This command gets a script from the `\Net03\Scripts` network share. The command uses the Authentication

parameter with a value of CredSSP and the Credential

 parameter with a value of Domain01\Admin01 .

 ------ Example 18: Start scripts on many remote computers ------

 $parameters = @{

 ComputerName = (Get-Content -Path C:\Test\Servers.txt)

 InDisconnectedSession = $true

 FilePath = '\\Scripts\Public\ConfigInventory.ps1'

 SessionOption = @{ Page 33/35

 OutputBufferingMode = 'Drop'

 IdleTimeout = [timespan]::FromHours(12)

 }

 }

 Invoke-Command @parameters

 The command uses `Invoke-Command` to run the script. The value of the ComputerName parameter is a `Get-Content`

command that gets the names of the remote computers

 from a text file. The InDisconnectedSession parameter disconnects the sessions as soon as it starts the command. The

value of the FilePath parameter is the script

 that `Invoke-Command` runs on each computer.

 The value of SessionOption is a hash table. The OutputBufferingMode value is set to `Drop` and the IdleTimeout value is

set to 12 hours.

 To get the results of commands and scripts that run in disconnected sessions, use the `Receive-PSSession` cmdlet.

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/invoke-command?view=powershell-5.1&WT.mc_id

=ps-gethelp

 about_PSSessions

 about_Remote

 about_Remote_Disconnected_Sessions

 about_Remote_Troubleshooting

 about_Remote_Variables

 about_Scopes

 Enter-PSSession

 Exit-PSSession

 Get-PSSession

 Invoke-Item

 New-PSSession

 Remove-PSSession Page 34/35

 WSMan Provider

Page 35/35

