
Windows PowerShell Get-Help on Cmdlet 'Invoke-Pester'

PS:\>Get-HELP Invoke-Pester -Full

NAME

 Invoke-Pester

SYNOPSIS

 Invokes Pester to run all tests (files containing *.Tests.ps1) recursively under the Path

SYNTAX

 Invoke-Pester [[-Script] <Object[]>] [[-TestName] <String[]>] [[-EnableExit]] [[-OutputXml] <String>] [[-Tag] <String[]>]

[-ExcludeTag <String[]>] [-PassThru]

 [-CodeCoverage <Object[]>] [-Strict] [-Quiet] [-PesterOption <Object>] [<CommonParameters>]

 Invoke-Pester [[-Script] <Object[]>] [[-TestName] <String[]>] [[-EnableExit]] [[-Tag] <String[]>] [-ExcludeTag <String[]>]

[-PassThru] [-CodeCoverage <Object[]>]

 [-Strict] -OutputFile <String> -OutputFormat <String> [-Quiet] [-PesterOption <Object>] [<CommonParameters>]

DESCRIPTION

 Upon calling Invoke-Pester, all files that have a name containing

 "*.Tests.ps1" will have the tests defined in their Describe blocks Page 1/10

 executed. Invoke-Pester begins at the location of Path and

 runs recursively through each sub directory looking for

 "*.Tests.ps1" files containing tests. If a TestName is provided,

 Invoke-Pester will only run tests that have a describe block with a

 matching name. By default, Invoke-Pester will end the test run with a

 simple report of the number of tests passed and failed output to the

 console. One may want pester to "fail a build" in the event that any

 tests fail. To accomodate this, Invoke-Pester will return an exit

 code equal to the number of failed tests if the EnableExit switch is

 set. Invoke-Pester will also write a NUnit style log of test results

 if the OutputXml parameter is provided. In these cases, Invoke-Pester

 will write the result log to the path provided in the OutputXml

 parameter.

 Optionally, Pester can generate a report of how much code is covered

 by the tests, and information about any commands which were not

 executed.

PARAMETERS

 -Script <Object[]>

 This parameter indicates which test scripts should be run.

 This parameter may be passed simple strings (wildcards are allowed), or hashtables containing Path, Arguments and

Parameters keys.

 If hashtables are used, the Parameters key must refer to a hashtable, and the Arguments key must refer to an array;

these will be splatted to the test script(s)

 indicated in the Path key.

 Note: If the path contains any wildcards, or if it refers to a directory, then Pester will search for and execute all test

scripts named *.Tests.ps1 in the

 target path; the search is recursive. If the path contains no wildcards and refers to a file, Pester will just try to execute

that file regardless of its name.

 Page 2/10

 Aliased to 'Path' and 'relative_path' for backwards compatibility.

 Required? false

 Position? 1

 Default value .

 Accept pipeline input? false

 Accept wildcard characters? false

 -TestName <String[]>

 Informs Invoke-Pester to only run Describe blocks that match this name.

 Required? false

 Position? 2

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 -EnableExit [<SwitchParameter>]

 Will cause Invoke-Pester to exit with a exit code equal to the number of failed tests once all tests have been run. Use

this to "fail" a build when any tests fail.

 Required? false

 Position? 3

 Default value False

 Accept pipeline input? false

 Accept wildcard characters? false

 -OutputXml <String>

 The path where Invoke-Pester will save a NUnit formatted test results log file. If this path is not provided, no log will be

generated.

 Required? false

 Position? 4 Page 3/10

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 -Tag <String[]>

 Informs Invoke-Pester to only run Describe blocks tagged with the tags specified. Aliased 'Tags' for backwards

compatibility.

 Required? false

 Position? 5

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 -ExcludeTag <String[]>

 Informs Invoke-Pester to not run blocks tagged with the tags specified.

 Required? false

 Position? named

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 -PassThru [<SwitchParameter>]

 Returns a Pester result object containing the information about the whole test run, and each test.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? false

 Accept wildcard characters? false

 -CodeCoverage <Object[]> Page 4/10

 Instructs Pester to generate a code coverage report in addition to running tests. You may pass either hashtables or

strings to this parameter.

 If strings are used, they must be paths (wildcards allowed) to source files, and all commands in the files are analyzed

for code coverage.

 By passing hashtables instead, you can limit the analysis to specific lines or functions within a file.

 Hashtables must contain a Path key (which can be abbreviated to just "P"), and may contain Function (or "F"),

StartLine (or "S"), and EndLine ("E") keys to narrow

 down the commands to be analyzed.

 If Function is specified, StartLine and EndLine are ignored.

 If only StartLine is defined, the entire script file starting with StartLine is analyzed.

 If only EndLine is present, all lines in the script file up to and including EndLine are analyzed.

 Both Function and Path (as well as simple strings passed instead of hashtables) may contain wildcards.

 Required? false

 Position? named

 Default value @()

 Accept pipeline input? false

 Accept wildcard characters? false

 -Strict [<SwitchParameter>]

 Makes Pending and Skipped tests to Failed tests. Useful for continuous integration where you need to make sure all

tests passed.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? false

 Accept wildcard characters? false

 -OutputFile <String>

 Required? true

 Position? named Page 5/10

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 -OutputFormat <String>

 Required? true

 Position? named

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 -Quiet [<SwitchParameter>]

 Disables the output Pester writes to screen. No other output is generated unless you specify PassThru, or one of the

Output parameters.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? false

 Accept wildcard characters? false

 -PesterOption <Object>

 Sets advanced options for the test execution. Enter a PesterOption object, such as one that you create by using the

New-PesterOption cmdlet, or a hash table in

 which the keys are option names and the values are option values.

 For more information on the options available, see the help for New-PesterOption.

 Required? false

 Position? named

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false Page 6/10

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

OUTPUTS

 -------------------------- EXAMPLE 1 --------------------------

 PS C:\>Invoke-Pester

 This will find all *.Tests.ps1 files and run their tests. No exit code will be returned and no log file will be saved.

 -------------------------- EXAMPLE 2 --------------------------

 PS C:\>Invoke-Pester -Script ./tests/Utils*

 This will run all tests in files under ./Tests that begin with Utils and alsocontains .Tests.

 -------------------------- EXAMPLE 3 --------------------------

 PS C:\>Invoke-Pester -Script @{ Path = './tests/Utils*'; Parameters = @{ NamedParameter = 'Passed By Name' };

Arguments = @('Passed by position') } Page 7/10

 Executes the same tests as in Example 1, but will run them with the equivalent of the following command line: &

$testScriptPath -NamedParameter 'Passed By Name'

 'Passed by position'

 -------------------------- EXAMPLE 4 --------------------------

 PS C:\>Invoke-Pester -TestName "Add Numbers"

 This will only run the Describe block named "Add Numbers"

 -------------------------- EXAMPLE 5 --------------------------

 PS C:\>Invoke-Pester -EnableExit -OutputXml "./artifacts/TestResults.xml"

 This runs all tests from the current directory downwards and writes the results according to the NUnit schema to

artifacts/TestResults.xml just below the current

 directory. The test run will return an exit code equal to the number of test failures.

 -------------------------- EXAMPLE 6 --------------------------

 PS C:\>Invoke-Pester -EnableExit -OutputFile "./artifacts/TestResults.xml" -OutputFormat NUnitxml

 This runs all tests from the current directory downwards and writes the results to an output file and NUnitxml outputPage 8/10

format

 -------------------------- EXAMPLE 7 --------------------------

 PS C:\>Invoke-Pester -CodeCoverage 'ScriptUnderTest.ps1'

 Runs all *.Tests.ps1 scripts in the current directory, and generates a coverage report for all commands in the

"ScriptUnderTest.ps1" file.

 -------------------------- EXAMPLE 8 --------------------------

 PS C:\>Invoke-Pester -CodeCoverage @{ Path = 'ScriptUnderTest.ps1'; Function = 'FunctionUnderTest' }

 Runs all *.Tests.ps1 scripts in the current directory, and generates a coverage report for all commands in the

"FunctionUnderTest" function in the

 "ScriptUnderTest.ps1" file.

 -------------------------- EXAMPLE 9 --------------------------

 PS C:\>Invoke-Pester -CodeCoverage @{ Path = 'ScriptUnderTest.ps1'; StartLine = 10; EndLine = 20 }

 Runs all *.Tests.ps1 scripts in the current directory, and generates a coverage report for all commands on lines 10

through 20 in the "ScriptUnderTest.ps1" file.

 Page 9/10

RELATED LINKS

 Describe

 about_pester

 New-PesterOption

Page 10/10

