
Windows PowerShell Get-Help on Cmdlet 'Invoke-Sqlcmd'

PS:\>Get-HELP Invoke-Sqlcmd -Full

NAME

 Invoke-Sqlcmd

SYNOPSIS

 Runs a script containing statements supported by the SQL Server SQLCMD utility.

SYNTAX

 Invoke-Sqlcmd [[-Query] <String>] [-AbortOnError] [-AccessToken <String>] [-ApplicationIntent {ReadWrite | ReadOnly}]

[-ApplicationName <String>] [-ConnectionTimeout

 <Int32>] [-Credential <PSCredential>] [-Database <String>] [-DedicatedAdministratorConnection] [-DisableCommands]

[-DisableVariables] [-Encrypt {Mandatory | Optional

 | Strict}] [-EncryptConnection] [-ErrorLevel <Int32>] [-FailoverPartner <String>] [-HostName <String>]

[-HostNameInCertificate <String>] [-IgnoreProviderContext]

 [-IncludeSqlUserErrors] [-InputFile <String>] [-MaxBinaryLength <Int32>] [-MaxCharLength <Int32>]

[-MultiSubnetFailover] [-NewPassword <String>] [-OutputAs {DataSet |

 DataTables | DataRows}] [-OutputSqlErrors <Boolean>] [-Password <String>] [-ProgressAction <ActionPreference>]

[-QueryTimeout <Int32>] [-ServerInstance <PSObject>]

 [-SeverityLevel <Int32>] [-StatisticsVariable <String>] [-SuppressProviderContextWarning] [-TrustServerCertificate]

[-Username <String>] [-Variable <PSObject>] Page 1/28

 [<CommonParameters>]

 Invoke-Sqlcmd [[-Query] <String>] [-AbortOnError] [-AccessToken <String>] -ConnectionString <String>

[-DisableCommands] [-DisableVariables] [-ErrorLevel <Int32>]

 [-IncludeSqlUserErrors] [-InputFile <String>] [-KeyVaultAccessToken <String>] [-ManagedHsmAccessToken <String>]

[-MaxBinaryLength <Int32>] [-MaxCharLength <Int32>]

 [-OutputAs {DataSet | DataTables | DataRows}] [-OutputSqlErrors <Boolean>] [-ProgressAction <ActionPreference>]

[-QueryTimeout <Int32>] [-SeverityLevel <Int32>]

 [-StatisticsVariable <String>] [-Variable <PSObject>] [<CommonParameters>]

DESCRIPTION

 The Invoke-Sqlcmd cmdlet runs a script containing the languages and commands supported by the SQL Server

SQLCMD utility.

 The commands supported are Transact-SQL statements and the subset of the XQuery syntax that is supported by the

database engine.

 This cmdlet also accepts many of the commands supported natively by SQLCMD, such as GO and QUIT.

 This cmdlet also accepts the SQLCMD scripting variables, such as SQLCMDUSER. By default, this cmdlet does not set

SQLCMD scripting variables.

 This cmdlet does not support the use of commands that are primarily related to interactive script editing.

 The commands not supported include :!!, :connect, :error, :out, :ed, :list, :listvar, :reset, :perftrace, and :serverlist.

 When this cmdlet is run, the first result set that the script returns is displayed as a formatted table.

 If subsequent result sets contain different column lists than the first, those result sets are not displayed.

 If subsequent result sets after the first set have the same column list, their rows are appended to the formatted table that

contains the rows that were returned by Page 2/28

 the first result set.

 You can display SQL Server message output, such as those that result from the SQL PRINT statement, by specifying the

Verbose parameter.

PARAMETERS

 -AbortOnError [<SwitchParameter>]

 Indicates that this cmdlet stops the SQL Server command and returns an error level to the Windows PowerShell

ERRORLEVEL variable if this cmdlet encounters an

 error.

 The error level returned is 1 if the error has a severity higher than 10, and the error level is 0 if the error has a severity

of 10 or less.

 If the ErrorLevel parameter is also specified, this cmdlet returns 1 only if the error message severity is also equal to or

higher than the value specified for

 ErrorLevel.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -AccessToken <String>

 The access token used to authenticate to SQL Server, as an alternative to user/password or Windows Authentication.

 This can be used, for example, to connect to `SQL Azure DB` and `SQL Azure Managed Instance` using a `Service

Principal` or a `Managed Identity` (see references

 at the bottom of this page)

 In common scenarios, this parameter is obtained with something like `(Get-AzAccessToken -ResourceUrlPage 3/28

https://database.windows.net).Token` (requires the Az.Account

 module)

 Do not specify UserName , Password , or Credential when using this parameter.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -ApplicationIntent <ApplicationIntent>

 The application workload type when connecting to a database in an SQL Server Availability Group.

 Allowed values are: ReadOnly and ReadWrite.

 Required? false

 Position? named

 Default value ReadWrite

 Accept pipeline input? False

 Accept wildcard characters? false

 -ApplicationName <String>

 The name of the application associated with the connection.

 Required? false

 Position? named

 Default value .NET SqlClient Data Provider

 Accept pipeline input? False

 Accept wildcard characters? false

 -ConnectionString <String>

 Specifies a connection string to connect to the server. Page 4/28

 Required? true

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -ConnectionTimeout <Int32>

 Specifies the number of seconds when this cmdlet times out if it cannot successfully connect to an instance of the

Database Engine. The timeout value must be an

 integer value between 0 and 65534. If 0 is specified, connection attempts do not time out.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Credential <PSCredential>

 The PSCredential object whose Username and Password fields will be used to connect to the SQL instance.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Database <String>

 Specifies the name of a database. This cmdlet connects to this database in the instance that is specified in the

ServerInstance parameter.

 If the Database parameter is not specified, the database that is used depends on whether the current path specifies

both the SQLSERVER:\SQL folder and a database Page 5/28

 name. If the path specifies both the SQL folder and a database name, this cmdlet connects to the database that is

specified in the path. If the path is not based

 on the SQL folder, or the path does not contain a database name, this cmdlet connects to the default database for the

current login ID. If you specify the

 IgnoreProviderContext parameter switch, this cmdlet does not consider any database specified in the current path, and

connects to the database defined as the

 default for the current login ID.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -DedicatedAdministratorConnection [<SwitchParameter>]

 Indicates that this cmdlet uses a Dedicated Administrator Connection (DAC) to connect to an instance of the Database

Engine.

 DAC is used by system administrators for actions such as troubleshooting instances that will not accept new standard

connections.

 The instance must be configured to support DAC.

 If DAC is not enabled, this cmdlet reports an error and will not run.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -DisableCommands [<SwitchParameter>]

 Indicates that this cmdlet turns off some sqlcmd features that might compromise security when run in batch files.Page 6/28

 It prevents Windows PowerShell variables from being passed in to the Invoke-Sqlcmd script.

 The startup script specified in the SQLCMDINI scripting variable is not run.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -DisableVariables [<SwitchParameter>]

 Indicates that this cmdlet ignores sqlcmd scripting variables. This is useful when a script contains many INSERT

statements that may contain strings that have the

 same format as variables, such as $(variable_name).

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Encrypt <String>

 The encryption type to use when connecting to SQL Server.

 This value maps to the `Encrypt` property `SqlConnectionEncryptOption` on the SqlConnection object of the

Microsoft.Data.SqlClient driver.

 When not specified, the default value is `Mandatory`.

 > This parameter is new in v22 of the module. For more details, see `Strict Connection Encryption` under Related Links

(#related-links).

 Page 7/28

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -EncryptConnection [<SwitchParameter>]

 Indicates that this cmdlet uses Secure Sockets Layer (SSL/TLS) encryption for the connection to the instance of the

Database Engine specified in the

 ServerInstance parameter.

 > Starting in v22 of the module, this parameter is deprecated. Connections are encrypted by default. Please, consider

using the new -Encrypt parameter instead.

 For more details, see `Strict Connection Encryption` under Related Links (#related-links).

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -ErrorLevel <Int32>

 Specifies that this cmdlet display only error messages whose severity level is equal to or higher than the value

specified. All error messages are displayed if

 this parameter is not specified or set to 0. Database Engine error severities range from 1 to 24.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -FailoverPartner <String> Page 8/28

 The name or address of the partner server to connect to if the primary server is down.

 Required? false

 Position? named

 Default value ""

 Accept pipeline input? False

 Accept wildcard characters? false

 -HostName <String>

 Specifies a workstation name. The workstation name is reported by the sp_who system stored procedure and in the

hostname column of the sys.processes catalog view.

 If this parameter is not specified, the default is the name of the computer on which Invoke-Sqlcmd is run. This

parameter can be used to identify different

 Invoke-Sqlcmd sessions.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -HostNameInCertificate <String>

 The host name to be used in validating the SQL Server TLS/SSL certificate. You must pass this parameter if your SQL

Server instance is enabled for Force

 Encryption and you want to connect to an instance using hostname/shortname. If this parameter is omitted then

passing the Fully Qualified Domain Name (FQDN) to

 -ServerInstance is necessary to connect to a SQL Server instance enabled for Force Encryption.

 > This parameter is new in v22 of the module. For more details, see `Strict Connection Encryption` under Related Links

(#related-links).

 Required? false

 Position? named Page 9/28

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -IgnoreProviderContext [<SwitchParameter>]

 Indicates that this cmdlet ignores the database context that was established by the current SQLSERVER:\SQL path. If

the Database parameter is not specified, this

 cmdlet uses the default database for the current login ID or Windows account.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -IncludeSqlUserErrors [<SwitchParameter>]

 Indicates that this cmdlet returns SQL user script errors that are otherwise ignored by default. If this parameter is

specified, this cmdlet matches the default

 behavior of the sqlcmd utility.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -InputFile <String>

 Specifies a file to be used as the query input to this cmdlet. The file can contain Transact-SQL statements, XQuery

statements, and sqlcmd commands and scripting

 variables. Specify the full path to the file. Spaces are not allowed in the file path or file name. The file is expected to be

encoded using UTF-8.

 You should only run scripts from trusted sources. Ensure all input scripts are secured with the appropriate NTFSPage 10/28

permissions.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -KeyVaultAccessToken <String>

 Specifies an access token for key vaults in Azure Key Vault. Use this parameter if any column to be queried is

protected with Always Encrypted using a column

 master key stored in a key vault in Azure Key Vault. Alternatively, you can authenticate to Azure with

Add-SqlAzureAuthenticationContext before calling this

 cmdlet.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -ManagedHsmAccessToken <String>

 Specifies an access token for managed HSMs in Azure Key Vault. Use this parameter if any column to be queried is

protected with Always Encrypted using a column

 master key stored in a managed HSM in Azure Key Vault. Alternatively, you can authenticate to Azure with

Add-SqlAzureAuthenticationContext before calling this

 cmdlet.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false Page 11/28

 -MaxBinaryLength <Int32>

 Specifies the maximum number of bytes returned for columns with binary string data types, such as binary and

varbinary. The default value is 1,024 bytes.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -MaxCharLength <Int32>

 Specifies the maximum number of characters returned for columns with character or Unicode data types, such as char,

nchar, varchar, and nvarchar. The default

 value is 4,000 characters.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -MultiSubnetFailover [<SwitchParameter>]

 If your application is connecting to an AlwaysOn Availability Group (AG) on different subnets, passing this parameter

provides faster detection of and connection

 to the (currently) active server.

 Note: passing -MultiSubnetFailover isn't required with .NET Framework 4.6.1 or later versions.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False Page 12/28

 Accept wildcard characters? false

 -NewPassword <String>

 Specifies a new password for a SQL Server Authentication login ID. This cmdlet changes the password and then exits.

You must also specify the Username and

 Password parameters, with Password that specifies the current password for the login.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -OutputAs <OutputType>

 Specifies the type of the results this cmdlet gets.

 If you do not specify a value for this parameter, the cmdlet sets the value to DataRows.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -OutputSqlErrors <Boolean>

 Indicates that this cmdlet displays error messages in the Invoke-Sqlcmd output.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 Page 13/28

 -Password <String>

 Specifies the password for the SQL Server Authentication login ID that was specified in the Username parameter.

Passwords are case-sensitive. When possible, use

 Windows Authentication. Do not use a blank password, when possible use a strong password.

 If you specify the Password parameter followed by your password, the password is visible to anyone who can see your

monitor.

 If you code Password followed by your password in a .ps1 script, anyone reading the script file will see your password.

 Assign the appropriate NTFS permissions to the file to prevent other users from being able to read the file.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -ProgressAction <ActionPreference>

 Determines how PowerShell responds to progress updates generated by a script, cmdlet, or provider, such as the

progress bars generated by the Write-Progress

 cmdlet. The Write-Progress cmdlet creates progress bars that show a command's status.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Query <String>

 Specifies one or more queries that this cmdlet runs. The queries can be Transact-SQL or XQuery statements, or

sqlcmd commands. Multiple queries separated by a

 semicolon can be specified. Do not specify the sqlcmd GO separator. Escape any double quotation marks included inPage 14/28

the string. Consider using bracketed identifiers

 such as [MyTable] instead of quoted identifiers such as "MyTable".

 Required? false

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -QueryTimeout <Int32>

 Specifies the number of seconds before the queries time out. If a timeout value is not specified, the queries do not time

out. The timeout must be an integer

 value between 1 and 65535.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -ServerInstance <PSObject>

 Specifies a character string or SQL Server Management Objects (SMO) object that specifies the name of an instance

of the Database Engine. For default instances,

 only specify the computer name: MyComputer. For named instances, use the format ComputerName\InstanceName.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? True (ByValue)

 Accept wildcard characters? false

 -SeverityLevel <Int32>

 Specifies the lower limit for the error message severity level this cmdlet returns to the ERRORLEVEL WindowsPage 15/28

PowerShell variable.

 This cmdlet returns the highest severity level from the error messages generated by the queries it runs, provided that

severity is equal to or higher than

 specified in the SeverityLevel parameter.

 If SeverityLevel is not specified or set to 0, this cmdlet returns 0 to ERRORLEVEL.

 The severity levels of Database Engine error messages range from 1 to 24.

 This cmdlet does not report severities for informational messages that have a severity of 10

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -StatisticsVariable <String>

 Specify the name of a PowerShell variable that will be assigned the SQL Server run-time statistics when the cmdlet is

executed.

 Common use for this parameter is to capture the `ExecutionTime` (the cumulative amount of time (in milliseconds) that

the provider has spent processing the

 cmdlet), or `IduRows` (the total number of rows affected by INSERT, DELETE, and UPDATE statements).

 For more details, see Provider Statistics for SQL Server

(/dotnet/framework/data/adonet/sql/provider-statistics-for-sql-server).

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False Page 16/28

 Accept wildcard characters? false

 -SuppressProviderContextWarning [<SwitchParameter>]

 Indicates that this cmdlet suppresses the warning that this cmdlet has used in the database context from the current

SQLSERVER:\SQL path setting to establish the

 database context for the cmdlet.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -TrustServerCertificate [<SwitchParameter>]

 Indicates whether the channel will be encrypted while bypassing walking the certificate chain to validate trust.

 > This parameter is new in v22 of the module. For more details, see `Strict Connection Encryption` under Related Links

(#related-links).

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Username <String>

 Specifies the login ID for making a SQL Server Authentication connection to an instance of the Database Engine.

 The password must be specified through the Password parameter.

 If Username and Password are not specified, this cmdlet attempts a Windows Authentication connection using the

Windows account running the Windows PowerShell

 session. When possible, use Windows Authentication. Page 17/28

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Variable <PSObject>

 Specifies a set of sqlcmd scripting variables for use in the sqlcmd script, and sets a values for the variables.

 Use a Windows PowerShell array to specify multiple variables and their values; alternatively, use a `Hashtable` where

the key represent the variable name and the

 value the variable value.

 > When using an array, parameter values are trimmed. This behavior was kept in v22 of the module for backward

compatibility with v21. It is recommended not to

 rely on this behavior, which may change in a future major version of the module.

 > The parameter of type `Hashtable` is only available in v22+ of the module.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS Page 18/28

 System.Management.Automation.PSObject

OUTPUTS

 System.Object

NOTES

 --- Example 1: Connect to a named instance and run a script ---

 Invoke-Sqlcmd -Query "SELECT GETDATE() AS TimeOfQuery" -ServerInstance "MyComputer\MainInstance"

 TimeOfQuery

 9/21/2017 2:48:24 PM

 This command connects to a named instance of the SQL Database Engine on a computer and runs a basic

Transact-SQL script.

 Example 2: Invoke commands in a script file and save the output in a text file

 Invoke-Sqlcmd -InputFile "C:\ScriptFolder\TestSqlCmd.sql" | Out-File -FilePath "C:\ScriptFolder\TestSqlCmd.rpt"

 Output sent to TestSqlCmd.rpt.

 This command reads a file containing Transact-SQL statements and SQLCMD commands, runs the file, and writes the

output to another file.

 The output file may contain proprietary information, so you should secure the output files with the appropriate NTFSPage 19/28

permissions.

 Example 3: Invoke a script and pass in variable values from a string

 $StringArray = "MYVAR1='String1'", "MYVAR2='String2'"

 Invoke-Sqlcmd -Query "SELECT `$(MYVAR1) AS Var1, `$(MYVAR2) AS Var2" -Variable $StringArray

 Var1 Var2

 ---- ----

 String1 String2

 This command uses an array of character strings as input to the Variable parameter.

 The array defines multiple SQLCMD variables.

 The $ signs in the SELECT statement that identify the SQLCMD variables are escaped using the back-tick (`) character.

 Example 4: Invoke a script and pass in variables from the SQL database engine

 Set-Location "SQLSERVER:\SQL\MyComputer\MainInstance"

 PS SQLSERVER:\SQL\MyComputer\MainInstance> Invoke-Sqlcmd -Query "SELECT

SERVERPROPERTY('MachineName') AS ComputerName" -ServerInstance (Get-Item .)

 ComputerName

 MyComputer

 This command uses Set-Location to navigate to the SQL ServerWindows PowerShell provider path for an instance of the

SQL Database Engine.

 Then it calls Get-Item to retrieve a SQL Management Object Server object for use as the ServerInstance parameter of

Invoke-Sqlcmd.

 ------ Example 5: Run a query and display verbose output ------

 Set-Location "SQLSERVER:\SQL\MyComputer\MainInstance" Page 20/28

 Invoke-SqlCmd -Query "PRINT N'abc'" -Verbose

 VERBOSE: abc

 This command uses the Windows PowerShellVerbose parameter to return the message output of the SQL PRINT

command.

 Example 6: Invoke a command using a positional string as input

 Set-Location "SQLSERVER:\SQL\MyComputer\MainInstance\Databases\MyDatabase"

 PS SQLSERVER:\SQL\MyComputer\MainInstance> Invoke-Sqlcmd "SELECT DB_NAME() AS DatabaseName"

 WARNING: Using provider context. Server = MyComputer\MainInstance, Database = MyDatabase.

 DatabaseName

 MyDatabase

 This command uses a positional string to supply the input to the Query parameter.

 It also demonstrates how Invoke-Sqlcmd uses the current path to set the database context to MyDatabase.

 -------- Example 7: Capture data into a DataSet object --------

 $DS = Invoke-Sqlcmd -ServerInstance "MyComputer" -Query "SELECT ID, Item FROM MyDB.dbo.MyTable" -As

DataSet

 $DS.Tables[0].Rows | %{ echo "{ $($_['ID']), $($_['Item']) }" }

 { 10, AAA }

 { 20, BBB }

 { 30, CCC }

 This command uses the As DataSet parameter to capture the data into a .Net System.Data.DataSet object and stores the

result in the variable '$DS'. The object can be

 used for further processing.

 ------------- Example 8: Get specific column sets -------------

 Page 21/28

 $Tables = Invoke-Sqlcmd -ServerInstance "MyComputer" -Query "SELECT Item, id FROM MyDatabase.dbo.MyTable;

SELECT GETDATE() AS T" -As DataTables

 $Tables[0].Rows | %{ echo $_.ID }

 $Tables[1].Rows | %{ echo $_.T.DayOfWeek }

 10

 20

 30

 Monday

 The first command uses the As DataTables parameter to capture the data into a collection of .Net

System.Data.DataTable objects. The command gets two tables with

 different column sets.

 Each table can be processed individually, based on its own schema.

 --------- Example 9: Gain full control of a connection ---------

 Invoke-Sqlcmd -Query "SELECT COUNT(*) AS Count FROM MyTable" -ConnectionString "Data

Source=MYSERVER;Initial Catalog=MyDatabase;Integrated

 Security=True;ApplicationIntent=ReadOnly"

 Count

 127432

 This command users the -ConnectionString parameter to gain full control of the connection that this cmdlet establishes,

instead of the Invoke-Sqlcmd to build the

 connection string based on the parameters passed on the command line.

 This is useful for less-common properties that you may want to use.

 Example 10: Execute a stored procedure and capture the SQL errors

 $script_sp_with_errors = @' Page 22/28

 CREATE PROCEDURE [dbo].[TestProcedure3]

 AS

 BEGIN

 CREATE TABLE [dbo].[TestTable] (col INT NOT NULL);

 INSERT INTO [dbo].[TestTable] VALUES (NULL); -- will cause an error

 END

 GO

 '@

 # Create a test database

 Invoke-SqlCmd -ServerInstance MyServer -Query 'CREATE DATABASE TestDB'

 # ... adds a stored procedure that has errors in it...

 Invoke-SqlCmd -ServerInstance MyServer -Database 'TestDB' -Query $script_sp_with_errors

 # ... executes the SP and collected the errors

 Invoke-SqlCmd -ServerInstance MyServer -Database 'TestDB' -Query 'EXEC TestProcedure3' -OutputSqlErrors $true

 Here's the output:

 Invoke-SqlCmd : Cannot insert the value NULL into column 'col', table 'TestDB.dbo.TestTable'; column does not allow

nulls. INSERT fails.

 The statement has been terminated.

 Msg 515, Level 16, State 2, Procedure TestProcedure3, Line 5.

 At line:1 char:1

 ...

 This command users the -OutputSqlErrors parameter to report the errors to the user. Note that the error message in this

case provides extra information like the SP

 name and the line number where the error occurred.

 Example 11: Connect to Azure SQL Database (or Managed Instance) using an Access Token

 Import-Module SQLServer

 Import-Module Az.Accounts -MinimumVersion 2.2.0

 # Note: the sample assumes that you or your DBA configured the server to accept connections using Page 23/28

 # that Service Principal and has granted it access to the database (in this example at least

 # the SELECT permission).

 ### Obtain the Access Token: this will bring up the login dialog

 Connect-AzAccount

 $access_token = (Get-AzAccessToken -ResourceUrl https://database.windows.net).Token

 # Now that we have the token, we use it to connect to the database 'mydb' on server 'myserver'

 Invoke-Sqlcmd -ServerInstance myserver.database.windows.net -Database mydb -AccessToken $access_token`

 -query 'select * from Table1'

 Example 12: Connect to Azure SQL Database (or Managed Instance) using a Service Principal

 Import-Module SQLServer

 # Note: the sample assumes that you or your DBA configured the server to accept connections using

 # that Service Principal and has granted it access to the database (in this example at least

 # the SELECT permission).

 $clientid = "enter application id that corresponds to the Service Principal" # Do not confuse with its display name

 $tenantid = "enter the tenant ID of the Service Principal"

 $secret = "enter the secret associated with the Service Principal"

 $request = Invoke-RestMethod -Method POST `

 -Uri "https://login.microsoftonline.com/$tenantid/oauth2/token"`

 -Body @{ resource="https://database.windows.net/"; grant_type="client_credentials"; client_id=$clientid;

client_secret=$secret }`

 -ContentType "application/x-www-form-urlencoded"

 $access_token = $request.access_token

 # Now that we have the token, we use it to connect to the database 'mydb' on server 'myserver'

 Invoke-Sqlcmd -ServerInstance myserver.database.windows.net -Database mydb -AccessToken $access_token`Page 24/28

 -query 'select * from Table1'

 Example 13: Connect to Azure SQL Database (or Managed Instance) using a System Assigned Managed Identity (SAMI)

 Import-Module SQLServer

 # Note: the sample assumes that you or your DBA configured the server to accept connections using

 # that VM Identity you are running on and has granted it access to the database (in this

 # example at least the SELECT permission).

 Connect-AzAccount -Identity

 $access_token = (Get-AzAccessToken -ResourceUrl https://database.windows.net).Token

 # Now that we have the token, we use it to connect to the database 'mydb' on server 'myserver'

 Invoke-Sqlcmd -ServerInstance myserver.database.windows.net -Database mydb -AccessToken $access_token `

 -query 'select * from Table1'

 Example 14: Connect to Azure SQL Database (or Managed Instance) using a User Assigned Managed Identity (UAMI)

 Import-Module SQLServer

 # Note: the sample assumes that you or your DBA configured the server to accept connections using

 # that VM Identity you are running on and has granted it access to the database (in this

 # example at least the SELECT permission).

 Connect-AzAccount -Identity -AccountId '<your-user-assigned-managed-identity-client-id>'

 $access_token = (Get-AzAccessToken -ResourceUrl https://database.windows.net).Token

 # Now that we have the token, we use it to connect to the database 'mydb' on server 'myserver'

 Invoke-Sqlcmd -ServerInstance myserver.database.windows.net -Database mydb -AccessToken $access_token `

 -query 'select * from Table1' Page 25/28

 Example 15: Connect to an Availability Group configured for Read-Only Routing using -ApplicationIntent

 # In the following example:

 # - MT_2009250511 is a listener for an AG configured for Read-Only Routing (port 5555)

 # - AGDB_2_1 is the DB in the AG

 # - VLM00226138 is the primary replica configured to only allow ReadWrite connections

 # - VLM00226137 is the secondary replica

 #

 Invoke-Sqlcmd -ServerInstance "MT_2009250511,5555" -Database AGDB_2_1 `

 -HostName "PowershellBox1" -ApplicationName "ReadWrite" -ApplicationIntent ReadWrite `

 -Query "select HOST_NAME() AS HostName, APP_NAME() AS ApplicationIntent, @@SERVERNAME AS

ServerName"

 Invoke-Sqlcmd -ServerInstance "MT_2009250511,5555" -Database AGDB_2_1 `

 -HostName "PowershellBox2" -ApplicationName "ReadOnly" -ApplicationIntent ReadOnly `

 -Query "select HOST_NAME() AS HostName, APP_NAME() AS ApplicationIntent, @@SERVERNAME AS

ServerName"

 # When you run the 2 cmdlets above, the output is going to be something like this:

 #

 # HostName ApplicationIntent ServerName

 # -------- ----------------- ----------

 # PowershellBox1 ReadWrite VLM00226138

 #

 # HostName ApplicationIntent ServerName

 # -------- ----------------- ----------

 # PowershellBox2 ReadOnly VLM00226137

 which shows that, depending on the value of the `-ApplicationIntent` parameter, the connection is routed to a different

server in the AG. Incidentally, observe the

 uses of the `-ApplicationName` and `-HostName` parameters to visually differentiate the two results: this is a commonPage 26/28

technique that can be used to trace connections

 and their intents, beyond the -ApplicationIntent example illustrated here.

 Example 16: Capture connection statistics via -StatisticsVariable parameter

 Import-Module SQLServer

 Invoke-Sqlcmd -ServerInstance localhost -StatisticsVariable stats `

 -Query 'CREATE TABLE #Table (ID int); INSERT INTO #Table VALUES(1), (2); INSERT INTO #Table

VALUES(3); SELECT * FROM #Table'

 Write-Host "Number of rows affected......: $($stats.IduRows)"

 Write-Host "Number of insert statements..: $($stats.IduCount)"

 Write-Host "Number of select statements..: $($stats.SelectCount)"

 Write-Host "Total execution time.........: $($stats.ExecutionTime)ms"

 # When you run the code fragment above, is going to be something like this:

 #

 # Number of rows affected......: 3

 # Number of insert statements..: 2

 # Number of select statements..: 1

 # Total execution time.........: 5ms

 This example shows how to use the `-StatisticsVariable` parameter to capture informations about the connection, the

statements executed, and the execution time when

 running some T-SQL that creates a temporary table, insert some value, and finally issues a select to get all the inserted

rows.

 Note: when the same query is executed against multiple servers (e.g. by piping the server names thru the cmdlet), the

`StatisticsVariable` captures an array of

 statistics, one for each connection. Results can then be aggregated by using, for example, `($stats.IduRows |

Measure-Object -Sum).Sum`.

 Refer to Provider Statistics for SQL Server (/dotnet/framework/data/adonet/sql/provider-statistics-for-sql-server)for a more

information about the available Page 27/28

 statistics.

 Example 17: Run a query that decrypts data retrieved from columns encrypted using Always Encrypted. Assume the

column master key is stored in a key vault in Azure Key

 Vault.

 # Connect to Azure account.

 Import-Module Az.Accounts -MinimumVersion 2.2.0

 Connect-AzAccount

 #?Obtain?an?access?token for key vaults.

 $keyVaultAccessToken?=?(Get-AzAccessToken?-ResourceUrl?https://vault.azure.net).Token

 # Pass the token to the cmdlet, so that it can use it to authenticate to Azure when decrypting data protected with Always

Encrypted.

 $connString =

'Data?Source=MYSERVER;Initial?Catalog=MyDatabase;Integrated?Security=True;ApplicationIntent=ReadOnly;Column?En

cryption?Setting=Enabled'

 Invoke-Sqlcmd?-Query?'SELECT?COUNT(*)?AS?Count?FROM?MyTable' -ConnectionString?$connString

-KeyVaultAccessToken?$keyVaultAccessToken

RELATED LINKS

 Online Version: https://learn.microsoft.com/powershell/module/sqlserver/invoke-sqlcmd

 SQLServer_Cmdlets

 Service Principal

 Managed Identity

 High Availability

 Provider Statistics for SQL Server

 Strict Connection Encryption

Page 28/28

