
Windows PowerShell Get-Help on Cmdlet 'New-Variable'

PS:\>Get-HELP New-Variable -Full

NAME

    New-Variable

    

SYNOPSIS

    Creates a new variable.

    

    

SYNTAX

    New-Variable [-Name] <System.String> [[-Value] <System.Object>] [-Description <System.String>] [-Force] [-Option

{None | ReadOnly | Constant | Private | AllScope | 

    Unspecified}] [-PassThru] [-Scope <System.String>] [-Visibility {Public | Private}] [-Confirm] [-WhatIf]

[<CommonParameters>]

    

    

DESCRIPTION

    The `New-Variable` cmdlet creates a new variable in PowerShell. You can assign a value to the variable while creating it

or assign or change the value after it is 

    created.

    

    You can use the parameters of `New-Variable` to set the properties of the variable, set the scope of a variable, andPage 1/10



determine whether variables are public or private.

    

    Typically, you create a new variable by typing the variable name and its value, such as `$Var = 3`, but you can use the

`New-Variable` cmdlet to use its parameters.

    

PARAMETERS

    -Description <System.String>

        Specifies a description of the variable.

        

        Required?                    false

        Position?                    named

        Default value                None

        Accept pipeline input?       False

        Accept wildcard characters?  false

        

    -Force <System.Management.Automation.SwitchParameter>

        Indicates that the cmdlet creates a variable with the same name as an existing read-only variable.

        

        By default, you can overwrite a variable unless the variable has an option value of `ReadOnly` or `Constant`. For more

information, see the Option parameter.

        

        Required?                    false

        Position?                    named

        Default value                False

        Accept pipeline input?       False

        Accept wildcard characters?  false

        

    -Name <System.String>

        Specifies a name for the new variable.

        

        Required?                    true

        Position?                    0 Page 2/10



        Default value                None

        Accept pipeline input?       True (ByPropertyName)

        Accept wildcard characters?  false

        

    -Option <System.Management.Automation.ScopedItemOptions>

        Specifies the value of the Options property of the variable. The acceptable values for this parameter are:

        

        - `None` - Sets no options. `None` is the default.

        

        - `ReadOnly` - Can be deleted. Cannot be changed, except by using the Force parameter. - `Private` - The variable is

available only in the current scope.

        

        - `AllScope` - The variable is copied to any new scopes that are created.

        

        - `Constant` - Cannot be deleted or changed. `Constant` is valid only when you are creating a

        

        variable. You cannot change the options of an existing variable to `Constant`.

        

        These values are defined as a flag-based enumeration. You can combine multiple values together to set multiple flags

using this parameter. The values can be 

        passed to the Option parameter as an array of values or as a comma-separated string of those values. The cmdlet will

combine the values using a binary-OR 

        operation. Passing values as an array is the simplest option and also allows you to use tab-completion on the values.

        

        To see the Options property of all variables in the session, type `Get-Variable | Format-Table -Property name, options

-AutoSize`.

        

        Required?                    false

        Position?                    named

        Default value                None

        Accept pipeline input?       False

        Accept wildcard characters?  false

        Page 3/10



    -PassThru <System.Management.Automation.SwitchParameter>

        Returns an object representing the item with which you are working. By default, this cmdlet does not generate any

output.

        

        Required?                    false

        Position?                    named

        Default value                False

        Accept pipeline input?       False

        Accept wildcard characters?  false

        

    -Scope <System.String>

        Specifies the scope of the new variable. The acceptable values for this parameter are:

        

        - `Global` - Variables created in the global scope are accessible everywhere in a PowerShell   process. - `Local` - The

local scope refers to the current scope, 

        this can be any scope depending on the   context. `Local` is the default scope when the scope parameter is not

specified. - `Script` - Variables created in the 

        script scope are accessible only within the script file or   module they are created in. - A number relative to the current

scope (0 through the number of scopes, 

        where 0 is the current   scope, 1 is its parent, 2 the parent of the parent scope, and so on). Negative numbers cannot

be   used.

        

        > [!NOTE] > The parameter also accepts the value of `Private`. `Private` is not actually a scope but an > optional

setting for a variable. However, using the 

        `Private` value with this cmdlet does not > change the visibility of the variable. For more information, see >

about_Scopes 

        (../Microsoft.PowerShell.Core/About/about_Scopes.md).

        

        Required?                    false

        Position?                    named

        Default value                None

        Accept pipeline input?       False

        Accept wildcard characters?  false Page 4/10



        

    -Value <System.Object>

        Specifies the initial value of the variable.

        

        Required?                    false

        Position?                    1

        Default value                None

        Accept pipeline input?       True (ByPropertyName, ByValue)

        Accept wildcard characters?  false

        

    -Visibility <System.Management.Automation.SessionStateEntryVisibility>

        Determines whether the variable is visible outside of the session in which it was created. This parameter is designed

for use in scripts and commands that will be 

        delivered to other users. The acceptable values for this parameter are:

        

        - `Public` - The variable is visible. `Public` is the default.

        

        - `Private` - The variable is not visible.

        

        

        When a variable is private, it does not appear in lists of variables, such as those returned by `Get-Variable`, or in

displays of the `Variable:` drive. Commands 

        to read or change the value of a private variable return an error. However, the user can run commands that use a

private variable if the commands were written in 

        the session in which the variable was defined.

        

        

        Required?                    false

        Position?                    named

        Default value                None

        Accept pipeline input?       False

        Accept wildcard characters?  false

        Page 5/10



    -Confirm <System.Management.Automation.SwitchParameter>

        Prompts you for confirmation before running the cmdlet.

        

        Required?                    false

        Position?                    named

        Default value                False

        Accept pipeline input?       False

        Accept wildcard characters?  false

        

    -WhatIf <System.Management.Automation.SwitchParameter>

        Shows what would happen if the cmdlet runs. The cmdlet is not run.

        

        Required?                    false

        Position?                    named

        Default value                False

        Accept pipeline input?       False

        Accept wildcard characters?  false

        

    <CommonParameters>

        This cmdlet supports the common parameters: Verbose, Debug,

        ErrorAction, ErrorVariable, WarningAction, WarningVariable,

        OutBuffer, PipelineVariable, and OutVariable. For more information, see 

        about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216). 

    

INPUTS

    System.Object

        You can pipe any object to `New-Variable`.

    

    

OUTPUTS

    None

        By default, this cmdlet returns no output.

    Page 6/10



    System.Management.Automation.PSVariable

        When you use the PassThru parameter, this cmdlet returns a PSVariable object representing the new variable.

    

    

NOTES

    

    

        Windows PowerShell includes the following aliases for `New-Variable`:

        

        - `nv`

    

    ----------------- Example 1: Create a variable -----------------

    

    New-Variable days

    

    This command creates a new variable named days. You are not required to type the Name parameter.

    ------ Example 2: Create a variable and assign it a value ------

    

    New-Variable -Name "zipcode" -Value 98033

    

    This command creates a variable named zipcode and assigns it the value 98033.

    ---- Example 3: Create a variable with the ReadOnly option ----

    

    PS C:\> New-Variable -Name Max -Value 256 -Option ReadOnly

    PS C:\> New-Variable -Name max -Value 1024

    

    New-Variable : A variable with name 'max' already exists.

    At line:1 char:1

    + New-Variable -Name max -Value 1024

    + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        + CategoryInfo          : ResourceExists: (max:String) [New-Variable], SessionStateException

        + FullyQualifiedErrorId : VariableAlreadyExists,Microsoft.PowerShell.Commands.NewVariableCommand

    Page 7/10



    PS C:\> New-Variable -Name max -Value 1024 -Force

    

    This example shows how to use the `ReadOnly` option of `New-Variable` to protect a variable from being overwritten.

    

    The first command creates a new variable named Max and sets its value to 256. It uses the Option parameter with a

value of `ReadOnly`.

    

    The second command tries to create a second variable with the same name. This command returns an error, because

the read-only option is set on the variable.

    

    The third command uses the Force parameter to override the read-only protection on the variable. In this case, the

command to create a new variable with the same name 

    succeeds.

    ------- Example 4: Assign multiple options to a variable -------

    

    New-Variable -Name 'TestVariable' -Value 'Test Value' -Option AllScope,Constant

    

    This example creates a variable and assigns the `AllScope` and `Constant` options so the variable will be available in the

current scope and any new scopes created 

    and cannot be changed or deleted.

    ------------- Example 5: Create a private variable -------------

    

    PS C:\> New-Variable -Name counter -Visibility Private

    

    #Effect of private variable in a module.

    

    PS C:\> Get-Variable c*

    

    Name                           Value

    ----                           -----

    Culture                        en-US

    ConsoleFileName

    ConfirmPreference              High Page 8/10



    CommandLineParameters          {}

    

    PS C:\> $counter

    "Cannot access the variable '$counter' because it is a private variable"

    At line:1 char:1

    + $counter

    + ~~~~~~~~

        + CategoryInfo          : PermissionDenied: (counter:String) [], SessionStateException

        + FullyQualifiedErrorId : VariableIsPrivate

    

    PS C:\> Get-Counter

    Name         Value

    ----         -----

    Counter1     3.1415

    ...

    

    The sample output shows the behavior of a private variable. The user who has loaded the module cannot view or change

the value of the Counter variable, but the 

    Counter variable can be read and changed by the commands in the module.

    ---------- Example 6: Create a variable with a space ----------

    

    PS C:\> New-Variable -Name 'with space' -Value 'abc123xyz'

    

    PS C:\> Get-Variable -Name 'with space'

    

    Name                           Value

    ----                           -----

    with space                     abc123xyz

    

    PS C:\> ${with space}

    abc123xyz

    

    Page 9/10



    

RELATED LINKS

    Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/new-variable?view=powershell-5.1&WT.mc_id=ps

-gethelp

    Clear-Variable 

    Get-Variable 

    Remove-Variable 

    Set-Variable 

Page 10/10


