
Windows PowerShell Get-Help on Cmdlet 'Select-Object'

PS:\>Get-HELP Select-Object -Full

NAME

 Select-Object

SYNOPSIS

 Selects objects or object properties.

SYNTAX

 Select-Object [[-Property] <System.Object[]>] [-ExcludeProperty <System.String[]>] [-ExpandProperty <System.String>]

[-First <System.Int32>] [-InputObject

 <System.Management.Automation.PSObject>] [-Last <System.Int32>] [-Skip <System.Int32>] [-Unique] [-Wait]

[<CommonParameters>]

 Select-Object [[-Property] <System.Object[]>] [-ExcludeProperty <System.String[]>] [-ExpandProperty <System.String>]

[-InputObject

 <System.Management.Automation.PSObject>] [-SkipLast <System.Int32>] [-Unique] [<CommonParameters>]

 Select-Object [-Index <System.Int32[]>] [-InputObject <System.Management.Automation.PSObject>] [-Unique] [-Wait]

[<CommonParameters>]

 Page 1/13

DESCRIPTION

 The `Select-Object` cmdlet selects specified properties of an object or set of objects. It can also select unique objects, a

specified number of objects, or objects

 in a specified position in an array.

 To select objects from a collection, use the First , Last , Unique , Skip , and Index parameters. To select object properties,

use the Property parameter. When you

 select properties, `Select-Object` returns new objects that have only the specified properties.

 Beginning in Windows PowerShell 3.0, `Select-Object` includes an optimization feature that prevents commands from

creating and processing objects that aren't used.

 When you use `Select-Object` with the First or Index parameters in a command pipeline, PowerShell stops the command

that generates the objects as soon as the selected

 number of objects is reached. To turn off this optimizing behavior, use the Wait parameter.

PARAMETERS

 -ExcludeProperty <System.String[]>

 Specifies the properties that this cmdlet excludes from the operation. Wildcards are permitted. This parameter is

effective only when the command also includes

 the Property parameter.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? true

 -ExpandProperty <System.String>

 Specifies a property to select, and indicates that an attempt should be made to expand that property. If the input object

pipeline doesn't have the property Page 2/13

 named, `Select-Object` returns an error.

 - If the specified property is an array, each value of the array is included in the output.

 - If the specified property is an object, the objects properties are expanded for every InputObject In either case, the

output objects' Type matches the expanded

 property's Type .

 If the Property parameter is specified, `Select-Object` attempts to add each selected property as a NoteProperty to

every outputted object.

 > [!WARNING] > If you receive an error that a property can't be processed because a property with that name >

already exists, consider the following. Note that

 when using ExpandProperty , `Select-Object` > can't replace an existing property. This means: > > - If the expanded

object has a property of the same name, the

 command returns an error. > - If the Selected object has a property of the same name as an Expanded object's

property, the > command returns an error.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -First <System.Int32>

 Specifies the number of objects to select from the beginning of an array of input objects.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 Page 3/13

 -Index <System.Int32[]>

 Selects objects from an array based on their index values. Enter the indexes in a comma-separated list. Indexes in an

array begin with 0, where 0 represents the

 first value and (n-1) represents the last value.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -InputObject <System.Management.Automation.PSObject>

 Specifies objects to send to the cmdlet through the pipeline. This parameter enables you to pipe objects to

`Select-Object`.

 When you pass objects to the InputObject parameter, instead of using the pipeline, `Select-Object` treats the

InputObject as a single object, even if the value is

 a collection. It is recommended that you use the pipeline when passing collections to `Select-Object`.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? True (ByValue)

 Accept wildcard characters? false

 -Last <System.Int32>

 Specifies the number of objects to select from the end of an array of input objects.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false Page 4/13

 -Property <System.Object[]>

 Specifies the properties to select. These properties are added as NoteProperty members to the output objects.

Wildcards are permitted. If the input object doesn't

 have the property named, the value of the new NoteProperty is set to `$null`.

 The value of the Property parameter can be a new calculated property. To create a calculated, property, use a hash

table.

 Valid keys are:

 - Name (or Label) - `<string>`

 - Expression - `<string>` or `<script block>`

 For more information, see about_Calculated_Properties

(../Microsoft.PowerShell.Core/About/about_Calculated_Properties.md).

 Required? false

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? true

 -Skip <System.Int32>

 Skips (doesn't select) the specified number of items. By default, the Skip parameter counts from the beginning of the

collection of objects. If the command uses

 the Last parameter, it counts from the end of the collection.

 Unlike the Index parameter, which starts counting at 0, the Skip parameter begins at 1.

 Page 5/13

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -SkipLast <System.Int32>

 Skips (doesn't select) the specified number of items from the end of the list or array. Works in the same way as using

Skip together with Last parameter.

 Unlike the Index parameter, which starts counting at 0, the SkipLast parameter begins at 1.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Unique <System.Management.Automation.SwitchParameter>

 Specifies that if a subset of the input objects has identical properties and values, only a single member of the subset

should be selected. Unique selects values

 after other filtering parameters are applied.

 This parameter is case-sensitive. As a result, strings that differ only in character casing are considered to be unique.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Wait <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet turns off optimization. PowerShell runs commands in the order that they appear in thePage 6/13

command pipeline and lets them generate all

 objects. By default, if you include a `Select-Object` command with the First or Index parameters in a command

pipeline, PowerShell stops the command that

 generates the objects as soon as the selected number of objects is generated.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.Management.Automation.PSObject

 You can pipe objects to this cmdlet.

OUTPUTS

 System.Management.Automation.PSObject

 This cmdlet returns the input objects with only the selected properties.

NOTES

 Windows PowerShell includes the following aliases for `Select-Object`: Page 7/13

 - `select`

 The optimization feature of `Select-Object` is available only for commands that write objects to the pipeline as they're

processed. It has no effect on commands

 that buffer processed objects and write them as a collection. Writing objects immediately is a cmdlet design best

practice. For more information, see Write Single

 Records to the Pipeline in Strongly Encouraged Development Guidelines

(/powershell/scripting/developer/windows-powershell).

 ------------ Example 1: Select objects by property ------------

 Get-Process | Select-Object -Property ProcessName, Id, WS

 - Example 2: Select objects by property and format the results -

 Get-Process Explorer |

 Select-Object -Property ProcessName -ExpandProperty Modules |

 Format-List

 ProcessName : explorer

 ModuleName : explorer.exe

 FileName : C:\WINDOWS\explorer.exe

 BaseAddress : 140697278152704

 ModuleMemorySize : 3919872

 EntryPointAddress : 140697278841168

 FileVersionInfo : File: C:\WINDOWS\explorer.exe

 InternalName: explorer

 OriginalFilename: EXPLORER.EXE.MUI

 FileVersion: 10.0.17134.1 (WinBuild.160101.0800)

 FileDescription: Windows Explorer

 Product: Microsoft Windows Operating System Page 8/13

 ProductVersion: 10.0.17134.1

 ...

 ------ Example 3: Select processes using the most memory ------

 Get-Process | Sort-Object -Property WS | Select-Object -Last 5

 Handles NPM(K) PM(K) WS(K) VS(M) CPU(s) Id ProcessName

 ------- ------ ----- ----- ----- ------ -- -----------

 2866 320 33432 45764 203 222.41 1292 svchost

 577 17 23676 50516 265 50.58 4388 WINWORD

 826 11 75448 76712 188 19.77 3780 Ps

 1367 14 73152 88736 216 61.69 676 Ps

 1612 44 66080 92780 380 900.59 6132 INFOPATH

 ------ Example 4: Select unique characters from an array ------

 "a","b","c","a","a","a" | Select-Object -Unique

 a

 b

 c

 ------- Example 5: Using `-Unique` with other parameters -------

 "a","a","b","c" | Select-Object -First 2 -Unique

 a

 In this example, First selects `"a","a"` as the first 2 items in the array. Unique is applied to `"a","a"` and returns `a` as thePage 9/13

unique value.

 - Example 6: Select newest and oldest events in the event log -

 $a = Get-EventLog -LogName "Windows PowerShell"

 $a | Select-Object -Index 0, ($A.count - 1)

 ---------- Example 7: Select all but the first object ----------

 New-PSSession -ComputerName (Get-Content Servers.txt | Select-Object -Skip 1)

 ----- Example 8: Rename files and select several to review -----

 Get-ChildItem *.txt -ReadOnly |

 Rename-Item -NewName {$_.BaseName + "-ro.txt"} -PassThru |

 Select-Object -First 5 -Wait

 Example 9: Show the intricacies of the -ExpandProperty parameter

 # Create a custom object to use for the Select-Object example.

 $object = [pscustomobject]@{Name="CustomObject";Expand=@(1,2,3,4,5)}

 # Use the ExpandProperty parameter to Expand the property.

 $object | Select-Object -ExpandProperty Expand -Property Name

 1

 2

 3

 4

 5

 # The output did not contain the Name property, but it was added successfully. Page 10/13

 # Use Get-Member to confirm the Name property was added and populated.

 $object | Select-Object -ExpandProperty Expand -Property Name | Get-Member

 TypeName: System.Int32

 Name MemberType Definition

 ---- ---------- ----------

 CompareTo Method int CompareTo(System.Object value), int CompareTo(int value), ...

 Equals Method bool Equals(System.Object obj), bool Equals(int obj), bool IEq...

 GetHashCode Method int GetHashCode()

 GetType Method type GetType()

 GetTypeCode Method System.TypeCode GetTypeCode(), System.TypeCode IConvertible.Ge...

 ToBoolean Method bool IConvertible.ToBoolean(System.IFormatProvider provider)

 ToByte Method byte IConvertible.ToByte(System.IFormatProvider provider)

 ToChar Method char IConvertible.ToChar(System.IFormatProvider provider)

 ToDateTime Method datetime IConvertible.ToDateTime(System.IFormatProvider provider)

 ToDecimal Method decimal IConvertible.ToDecimal(System.IFormatProvider provider)

 ToDouble Method double IConvertible.ToDouble(System.IFormatProvider provider)

 ToInt16 Method int16 IConvertible.ToInt16(System.IFormatProvider provider)

 ToInt32 Method int IConvertible.ToInt32(System.IFormatProvider provider)

 ToInt64 Method long IConvertible.ToInt64(System.IFormatProvider provider)

 ToSByte Method sbyte IConvertible.ToSByte(System.IFormatProvider provider)

 ToSingle Method float IConvertible.ToSingle(System.IFormatProvider provider)

 ToString Method string ToString(), string ToString(string format), string ToS...

 ToType Method System.Object IConvertible.ToType(type conversionType, System...

 ToUInt16 Method uint16 IConvertible.ToUInt16(System.IFormatProvider provider)

 ToUInt32 Method uint32 IConvertible.ToUInt32(System.IFormatProvider provider)

 ToUInt64 Method uint64 IConvertible.ToUInt64(System.IFormatProvider provider)

 Name NoteProperty string Name=CustomObject

 ------- Example 10: Create custom properties on objects -------

 Page 11/13

 $customObject = 1 | Select-Object -Property MyCustomProperty

 $customObject.MyCustomProperty = "New Custom Property"

 $customObject

 MyCustomProperty

 New Custom Property

 Example 11: Create calculated properties for each InputObject

 # Create a calculated property called $_.StartTime.DayOfWeek

 Get-Process | Select-Object -Property ProcessName,{$_.StartTime.DayOfWeek}

 ProcessName $_.StartTime.DayOfWeek

 ---- ----------------------

 alg Wednesday

 ati2evxx Wednesday

 ati2evxx Thursday

 ...

 # Add a custom property to calculate the size in KiloBytes of each FileInfo

 # object you pass in. Use the pipeline variable to divide each file's length by

 # 1 KiloBytes

 $size = @{label="Size(KB)";expression={$_.length/1KB}}

 # Create an additional calculated property with the number of Days since the

 # file was last accessed. You can also shorten the key names to be 'l', and 'e',

 # or use Name instead of Label.

 $days = @{l="Days";e={((Get-Date) - $_.LastAccessTime).Days}}

 # You can also shorten the name of your label key to 'l' and your expression key

 # to 'e'.

 Get-ChildItem $PSHOME -File | Select-Object Name, $size, $days

 Page 12/13

 Name Size(KB) Days

 ---- -------- ----

 Certificate.format.ps1xml 12.5244140625 223

 Diagnostics.Format.ps1xml 4.955078125 223

 DotNetTypes.format.ps1xml 134.9833984375 223

 Example 12: Selecting the keys of a hashtable with calculated properties

 @{ name = 'a' ; weight = 7 } | Select-Object -Property @(

 @{ label = 'Name' ; expression = { $_.name } }

 @{ label = 'Weight' ; expression = { $_.weight } }

)

 Name Weight

 ---- ------

 a 7

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/select-object?view=powershell-5.1&WT.mc_id=ps-

gethelp

 about_Calculated_Properties

 Group-Object

 Sort-Object

 Where-Object

Page 13/13

