FPDF Library

PDF generator

PowerShell Get-Help cmdlet
PS C:\> Get-Help

Full credit is given to all the above companies including
the Operating System that this PDF file was generated!

Windows PowerShell Get-Help on Cmdlet 'Select-String'

PS:\>Get-HELP Select-String -Full

NAME

Select-String

SYNOPSIS

Finds text in strings and files.

SYNTAX
Select-String [-Pattern] <System.String[]> [-AllMatches] [-CaseSensitive] [-Context <System.Int32[]>] [-Encoding {ASCII |
BigEndianUnicode | Default | OEM | Unicode |
UTF7 | UTF8 | UTF32}] [-Exclude <System.String[]>] [-Include <System.String[]>] -InputObject
<System.Management.Automation.PSObject> [-List] [-NotMatch] [-Quiet]

[-SimpleMatch] [<CommonParameters>]

Select-String [-Pattern] <System.String[]> [-AllMatches] [-CaseSensitive] [-Context <System.Int32[]>] [-Encoding {ASCII |
BigEndianUnicode | Default | OEM | Unicode |

UTF7 | UTF8 | UTF32}] [-Exclude <System.String[]>] [-Include <System.String[]>] [-List] -LiteralPath <System.String[]>
[-NotMatch] [-Quiet] [-SimpleMatch]

[<CommonParameters>]

Page 1/18

Select-String [-Pattern] <System.String[]> [-Path] <System.String[]> [-AllMatches] [-CaseSensitive] [-Context
<System.Int32[]>] [-Encoding {ASCII | BigEndianUnicode |
Default | OEM | Unicode | UTF7 | UTF8 | UTF32}] [-Exclude <System.String[]>] [-Include <System.String[]>] [-List]
[-NotMatch] [-Quiet] [-SimpleMatch]

[<CommonParameters>]

DESCRIPTION
The “Select-String™ cmdlet uses regular expression matching to search for text patterns in input strings and files. You can
use "Select-String™ similar to "grep” in

UNIX or “findstr.exe™ in Windows.

“Select-String” is based on lines of text. By default, “Select-String™ finds the first match in each line and, for each match, it
displays the file name, line number,

and all text in the line containing the match. You can direct “Select-String™ to find multiple matches per line, display text
before and after the match, or display a

Boolean value (True or False) that indicates whether a match is found.

“Select-String” can display all the text matches or stop after the first match in each input file. “Select-String™ can be used
to display all text that doesn't match

the specified pattern.

You can also specify that “Select-String™ should expect a particular character encoding, such as when you're searching
files of Unicode text. “Select-String™ uses the

byte-order-mark (BOM) to detect the encoding format of the file. If the file has no BOM, it assumes the encoding is UTF8.

PARAMETERS
-AllMatches <System.Management.Automation.SwitchParameter>
Indicates that the cmdlet searches for more than one match in each line of text. Without this parameter, “Select-String”
finds only the first match in each line

of text.

Page 2/18

When “Select-String” finds more than one match in a line of text, it still emits only one Matchinfo object for the line, but
the Matches property of the object

contains all the matches.

> [INOTE] > This parameter is ignored when used in combination with the SimpleMatch parameter. If you wish > to

return all matches and the pattern that you are

searching for contains regular expression > characters, you must escape those characters rather than using

SimpleMatch . See > about_Regular_Expressions

(../Microsoft.PowerShell.Core/About/about_Regular_Expressions.md)for > more information about escaping regular

expressions.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-CaseSensitive <System.Management.Automation.SwitchParameter>

Indicates that the cmdlet matches are case-sensitive. By default, matches aren't case-sensitive.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Context <System.Int32[]>

Captures the specified number of lines before and after the line that matches the pattern.

If you enter one number as the value of this parameter, that number determines the number of lines captured before

and after the match. If you enter two numbers

as the value, the first number determines the number of lines before the match and the second number determines the

number of lines after the match. For example, Page 3/18

“-Context 2,3".

In the default display, lines with a match are indicated by a right angle bracket (">") (ASCII 62) in the first column of the
display. Unmarked lines are the

context.

The Context parameter doesn't change the number of objects generated by “Select-String™. “Select-String™ generates
one Matchinfo
(/dotnet/api/microsoft.powershell.commands.matchinfo)object for each match. The context is stored as an array of

strings in the Context property of the object.

When the output of a “Select-String™ command is sent down the pipeline to another “Select-String" command, the
receiving command searches only the text in the

matched line. The matched line is the value of the Line property of the Matchinfo object, not the text in the context
lines. As a result, the Context parameter

isn't valid on the receiving “Select-String" command.

When the context includes a match, the Matchinfo object for each match includes all the context lines, but the

overlapping lines appear only once in the display.

Required? false
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-Encoding <System.String>

Specifies the type of encoding for the target file. The default value is “default’.

The acceptable values for this parameter are as follows:

- "ascii’ Uses ASCII (7-bit) character set.

Page 4/18

- “bigendianunicode™ Uses UTF-16 with the big-endian byte order.

- “default” Uses the encoding that corresponds to the system's active code page (usually ANSI).

- “oem’ Uses the encoding that corresponds to the system's current OEM code page.

- “unicode” Uses UTF-16 with the little-endian byte order.

- utf7” Uses UTF-7.

- 'utf8” Uses UTF-8.

- "utf32" Uses UTF-32 with the little-endian byte order.

Required? false
Position? named
Default value Default

Accept pipeline input? False

Accept wildcard characters? false

-Exclude <System.String[]>
Exclude the specified items. The value of this parameter qualifies the Path parameter. Enter a path element or pattern,

such as “*.txt". Wildcards are permitted.

Required? false
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? true

-Include <System.String[]>
Includes the specified items. The value of this parameter qualifies the Path parameter. Enter a path element or pattern,

such as “*.txt". Wildcards are permitted. Page 5/18

Required? false
Position? named
Default value None
Accept pipeline input? False

Accept wildcard characters? true

-InputObject <System.Management.Automation.PSObject>

Specifies the text to be searched. Enter a variable that contains the text, or type a command or expression that gets

the text.

Using the InputObject parameter isn't the same as sending strings down the pipeline to “Select-String".

When you pipe more than one string to the "Select-String™ cmdlet, it searches for the specified text in each string and
returns each string that contains the

search text.

When you use the InputObject parameter to submit a collection of strings, “Select-String™ treats the collection as a

single combined string. "Select-String

returns the strings as a unit if it finds the search text in any string.

Required? true
Position? named
Default value None

Accept pipeline input? True (ByValue)

Accept wildcard characters? false

-List <System.Management.Automation.SwitchParameter>

Only the first instance of matching text is returned from each input file. This is the most efficient way to retrieve a list of

files that have contents matching

the regular expression.

By default, "Select-String” returns a Matchinfo object for each match it finds. Page 6/18

Required? false
Position? named
Default value False
Accept pipeline input? False

Accept wildcard characters? false

-LiteralPath <System.String[]>

Specifies the path to the files to be searched. The value of the LiteralPath parameter is used exactly as it's typed. No

characters are interpreted as wildcards.

If the path includes escape characters, enclose it in single quotation marks. Single quotation marks tell PowerShell not

to interpret any characters as escape

sequences. For more information, see about_Quoting_Rules

(../Microsoft.Powershell.Core/About/about_Quoting_Rules.md).

Required? true
Position? named
Default value None

Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? false

-NotMatch <System.Management.Automation.SwitchParameter>

The NotMatch parameter finds text that doesn't match the specified pattern.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Path <System.String[]>

Specifies the path to the files to search. Wildcards are permitted. The default location is the local directory.

Page 7/18

Specify files in the directory, such as “logl.txt’, * .doc’, or * .*". If you specify only a directory, the command fails.

Required? true
Position? 1
Default value Local directory

Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? true

-Pattern <System.String[]>

Specifies the text to find on each line. The pattern value is treated as a regular expression.

To learn about regular expressions, see about_Regular_Expressions

(../Microsoft.PowerShell.Core/About/about_Regular_Expressions.md).

Required? true
Position? 0
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-Quiet <System.Management.Automation.SwitchParameter>

Indicates that the cmdlet returns a Boolean value (True or False), instead of a Matchinfo object. The value is True if the

pattern is found; otherwise the value

is False.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-SimpleMatch <System.Management.Automation.SwitchParameter>

Indicates that the cmdlet uses a simple match rather than a regular expression match. In a sinffa@engatéh,

“Select-String” searches the input for the text in the

Pattern parameter. It doesn't interpret the value of the Pattern parameter as a regular expression statement.

Also, when SimpleMatch is used, the Matches property of the MatchInfo object returned is empty.

> [INOTE] > When this parameter is used with the AllMatches parameter, the AllMatches is ignored.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

<CommonParameters>
This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see

about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS
System.Management.Automation.PSObject

You can pipe any object that has a "ToString()" method to this cmdlet.

OUTPUTS
Microsoft.PowerShell. Commands.Matchinfo

By default, this cmdlet returns a Matchinfo object for each match found.

System.Boolean

When you use the Quiet parameter, this cmdlet returns a Boolean value indicating whether the pattern was found.

NOTES Page 9/18

Windows PowerShell includes the following aliases for “Select-String':

-sls
“Select-String” is similar to “grep” in UNIX or “findstr.exe™ in Windows.

> [INOTE] > According to > Approved Verbs for PowerShell Commands

(/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands), > the

official alias prefix for “Select-*" cmdlets is “sc’, not “sI. Therefore, the proper alias > for “Select-String™ should be “scs”,

not “sis’. This is an exception

to this rule.
When piping objects to “Select-String:

- FileInfo objects are treated as a path to a file. When file paths are specified, “Select-String" searches the contents of

the file, not the “ToString()’

representation of the object. - The "ToString()" result of the piped object isn't the same rich string representation
produced by PowerShell's formatting

system. So, you may need to pipe the objects to "Out-String” first. For more information, see Example 10.

To use "Select-String’, type the text that you want to find as the value of the Pattern parameter. To specify the text to

be searched, use the following criteria:
- Type the text in a quoted string, and then pipe it to "Select-String.

- Store a text string in a variable, and then specify the variable as the value of the InputObject parameter. - If the text is

stored in files, use the Path

parameter to specify the path to the files.

By default, “Select-String” interprets the value of the Pattern parameter as a regular expression. For more information,

see about_Regular_Expressions Page 10/18

(../Microsoft.PowerShell.Core/About/about_Regular_Expressions.md). You can use the SimpleMatch parameter to
override the regular expression matching. The

SimpleMatch parameter finds instances of the value of the Pattern parameter in the input.

The default output of “Select-String” is a Matchinfo object, which includes detailed information about the matches. The
information in the object is useful when

you're searching for text in files, because Matchinfo objects have properties such as Filename and Line . When the
input isn't from the file, the value of these

parameters is InputStream .
If you don't need the information in the Matchinfo object, use the Quiet parameter. The Quiet parameter returns a
Boolean value (True or False) to indicate

whether it found a match, instead of a Matchinfo object.

When matching phrases, “Select-String™ uses the current culture that is set for the system. To find the current culture,

use the "Get-Culture” cmdlet.

To find the properties of a Matchinfo object, type the following command:

“Select-String -Path test.txt -Pattern 'test' | Get-Member | Format-List -Property **

'Hello', 'HELLO' | Select-String -Pattern 'HELLO' -CaseSensitive -SimpleMatch

The text strings Hello and HELLO are sent down the pipeline to the “Select-String” cmdlet. "Select-String™ uses the
Pattern parameter to specify HELLO . The

CaseSensitive parameter specifies that the case must match only the upper-case pattern. SimpleMatch is an optional
parameter and specifies that the string in the

pattern isn't interpreted as a regular expression. “Select-String” displays HELLO in the PowerShell console.

Get-Alias | Out-File -FilePath .\Alias.txt Page 11/18

Get-Command | Out-File -FilePath \Command.txt

Select-String -Path *.txt -Pattern 'Get-'

Alias.txt:8:Alias cat -> Get-Content
Alias.txt:28:Alias dir -> Get-Childitem
Alias.txt:43:Alias gal -> Get-Alias

Command.txt:966:Cmdlet Get-Acl

Command.txt:967:Cmdlet Get-Alias

In this example, "Get-Alias™ and "Get-Command™ are used with the "Out-File” cmdlet to create two text files in the current

directory, Alias.txt and Command.txt .

“Select-String” uses the Path parameter with the asterisk (***) wildcard to search all files in the current directory with the
file name extension ".txt". The Pattern

parameter specifies the text to match Get- . "Select-String™ displays the output in the PowerShell console. The file name
and line number precede each line of content

that contains a match for the Pattern parameter.

Select-String -Path "$PSHOME\en-US*.txt" -Pattern \?'

C:\Program Files\PowerShell\6\en-US\default.help.txt:27: beginning at https://go.microsoft.com/fwlink/?LinkID=108518.

C:\Program Files\PowerShell\6\en-US\default.help.txt:50: or go to: https://go.microsoft.com/fwlink/?LinklID=210614

The "Select-String” cmdlet uses two parameters, Path and Pattern . The Path parameter uses the variable "“$PSHOME"
that specifies the PowerShell directory. The
remainder of the path includes the subdirectory en-US and specifies each “*.txt™ file in the directory. The Pattern
parameter specifies to match a question mark ("?°)
in each file. A backslash (*°) is used as an escape character and is necessary because the question mark ("?°) is a
regular expression quantifier. “Select-String
displays the output in the PowerShell console. The file name and line number precede each line of content that contains a
match for the Pattern parameter.

—————————— Example 4: Use Select-String in a function ---------- Page 12/18

function Search-Help
{
$PSHelp = "$PSHOME\en-US*.txt"

Select-String -Path $PSHelp -Pattern 'About_'

Search-Help

C:\Windows\System32\WindowsPowerShell\v1.0\en-US\about_ActivityCommonParameters.help.txt:2:
about_ActivityCommonParameters
C:\Windows\System32\WindowsPowerShell\v1.0\en-US\about_ActivityCommonParameters.help.txt:31: see
about_WorkflowCommonParameters.
C:\Windows\System32\WindowsPowerShell\v1.0\en-US\about_ActivityCommonParameters.help.txt:33:

about_CommonParameters.

The function is created on the PowerShell command line. The "Function command uses the name “Search-Help'. Press
Enter to begin adding statements to the function.
From the ">>" prompt, add each statement and press Enter as shown in the example. After the closing bracket is added,

you're returned to a PowerShell prompt.

The function contains two commands. The "$PSHelp" variable stores the path to the PowerShell help files. "$PSHOME is
the PowerShell installation directory with the

subdirectory en-US that specifies each “*.txt" file in the directory.

The “Select-String™ command in the function uses the Path and Pattern parameters. The Path parameter uses the
"$PSHelp" variable to get the path. The Pattern

parameter uses the string About_ as the search criteria.

To run the function, type “Search-Help'. The function's “Select-String™ command displays the output in the PowerShell
console.

---- Example 5: Search for a string in a Windows event log ----

Page 13/18

$Events = Get-WinEvent -LogName Application -MaxEvents 50

$Events | Select-String -InputObject {$_.message} -Pattern 'Failed'

The "Get-WinEvent' cmdlet uses the LogName parameter to specify the Application log. The MaxEvents parameter gets
the 50 most recent events from the log. The log

content is stored in the variable named "$Events’.

The "$Events’ variable is sent down the pipeline to the "Select-String" cmdlet. “Select-String™ uses the InputObject
parameter. The "$_" variable represents the
current object and "message’ is a property of the event. The Pattern parameter species the string Failed and searches for
matches in "$_.message’. “Select-String

displays the output in the PowerShell console.

Get-Childlitem -Path C:\Windows\System32*.txt -Recurse | Select-String -Pattern 'Microsoft' -CaseSensitive

“Get-Childitem™ uses the Path parameter to specify C:\Windows\System32*.txt . The Recurse parameter includes the
subdirectories. The objects are sent down the

pipeline to “Select-String".

“Select-String” uses the Pattern parameter and specifies the string Microsoft . The CaseSensitive parameter is used to
match the exact case of the string.

“Select-String” displays the output in the PowerShell console.

> [INOTE] > Dependent upon your permissions, you might see Access denied messages in the output.

Get-Command | Out-File -FilePath \Command.txt

Select-String -Path \Command.txt -Pattern 'Get', 'Set' -NotMatch

The "Get-Command™ cmdlet sends objects down the pipeline to the "Out-File® to create the Command.txt file in the

current directory. “Select-String” uses the Path

parameter to specify the Command.txt file. The Pattern parameter specifies Get and Set as the search g/ ¥8e

NotMatch parameter excludes Get and Set from the

results. “Select-String™ displays the output in the PowerShell console that doesn't include Get or Set .

Get-Command | Out-File -FilePath \Command.txt

Select-String -Path \Command.txt -Pattern 'Get-Computer' -Context 2, 3

Command.txt:1186:Cmdlet Get-CmsMessage 3.0.0.0 Microsoft.PowerShell.Security
Command.txt:1187:Cmdlet Get-Command 3.0.0.0 Microsoft.PowerShell.Core

> Command.txt:1188:Cmdlet Get-Computerinfo 3.1.0.0 Microsoft.PowerShell.Management

> Command.txt;:1189:Cmdlet Get-ComputerRestorePoint 3.1.0.0 Microsoft.PowerShell. Management
Command.txt:1190:Cmdlet Get-Content 3.1.0.0 Microsoft.PowerShell.Management
Command.txt:1191:Cmdlet Get-ControlPanelltem 3.1.0.0 Microsoft.PowerShell. Management
Command.txt:1192:Cmdlet Get-Counter 3.0.0.0 Microsoft.PowerShell.Diagnostics

The "Get-Command” cmdlet sends objects down the pipeline to the "Out-File™ to create the Command.txt file in the
current directory. “Select-String™ uses the Path

parameter to specify the Command.txt file. The Pattern parameter specifies "Get-Computer™ as the search pattern. The
Context parameter uses two values, before and

after, and marks pattern matches in the output with an angle bracket (">"). The Context parameter outputs the two lines
before the first pattern match and three lines

after the last pattern match.

$A = Get-Childltem -Path "$PSHOME\en-US*.txt" | Select-String -Pattern 'PowerShell’

$A

C:\Windows\System32\WindowsPowerShell\v1.0\en-US\about_ActivityCommonParameters.help.txt:5: Describes the
parameters that Windows PowerShell
C:\Windows\System32\WindowsPowerShell\v1.0\en-US\about_ActivityCommonParameters.help.txt:9: Windows

PowerShell Workflow adds the activity common

$A.Matches Page 15/18

Groups : {0}
Success : True
Name :0
Captures : {0}
Index :4
Length : 10

Value : PowerShell

$A.Matches.Length

2073

$B = Get-Childltem -Path "$PSHOME\en-US*.txt" | Select-String -Pattern 'PowerShell' -AllMatches

$B.Matches.Length

2200

The "Get-Childltem™ cmdlet uses the Path parameter. The Path parameter uses the variable "$PSHOME" that specifies
the PowerShell directory. The remainder of the path

includes the subdirectory en-US and specifies each “*.txt" file in the directory. The “Get-Childltem™ objects are stored in
the "$A” variable. The "$A" variable is

sent down the pipeline to the “Select-String” cmdlet. “Select-String™ uses the Pattern parameter to search each file for the

string PowerShell .

From the PowerShell command line, the "$A" variable contents are displayed. There's a line that contains two

occurrences of the string PowerShell .

The "$A.Matches™ property lists the first occurrence of the pattern PowerShell on each line.

The "$A.Matches.Length™ property counts the first occurrence of the pattern PowerShell on each line.

The "$B’ variable uses the same “Get-Childitem™ and “Select-String’ cmdlets, but adds the AllMatche53uga66:8r.

AllMatches finds each occurrence of the pattern

PowerShell on each line. The objects stored in the "$A™ and "$B" variables are identical.

The "$B.Matches.Length® property increases because for each line, every occurrence of the pattern PowerShell is
counted.

Example 10 - Convert pipeline objects to strings using “Out-String

PS> $hash = @{
Name = 'foo’

Category = 'bar'

1 NO output, due to .ToString() conversion

$hash | Select-String -Pattern 'foo'

Out-String converts the output to a single multi-line string object

PS> $hash | Out-String | Select-String -Pattern ‘foo’

Name Value
Name foo
Category bar

Out-String -Stream converts the output to a multiple single-line string objects

PS> $hash | Out-String -Stream | Select-String -Pattern 'foo’

Name foo

Piping to "Out-String -Stream™ converts the formatted output into a multiple single-line string objects. This means that

when “Select-String” finds a match it outputs

only the matching line.

RELATED LINKS Page 17/18

Online Version:
https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/select-string?view=powershell-5.1&WT.mc_id=ps-
gethelp

about_Automatic_Variables
about_Comparison_Operators
about_Functions
about_Quoting_Rules
about_Regular_Expressions
Get-Alias

Get-Childltem

Get-Command

Get-Member

Get-WinEvent

Out-File

Page 18/18

