
Windows PowerShell Get-Help on Cmdlet 'Set-Acl'

PS:\>Get-HELP Set-Acl -Full

NAME

 Set-Acl

SYNOPSIS

 Changes the security descriptor of a specified item, such as a file or a registry key.

SYNTAX

 Set-Acl [-Path] <System.String[]> [-AclObject] <System.Object> [[-CentralAccessPolicy] <System.String>]

[-ClearCentralAccessPolicy] [-Exclude <System.String[]>]

 [-Filter <System.String>] [-Include <System.String[]>] [-Passthru] [-UseTransaction] [-Confirm] [-WhatIf]

[<CommonParameters>]

 Set-Acl [-AclObject] <System.Object> [[-CentralAccessPolicy] <System.String>] [-ClearCentralAccessPolicy] [-Exclude

<System.String[]>] [-Filter <System.String>]

 [-Include <System.String[]>] -LiteralPath <System.String[]> [-Passthru] [-UseTransaction] [-Confirm] [-WhatIf]

[<CommonParameters>]

 Set-Acl [-InputObject] <System.Management.Automation.PSObject> [-AclObject] <System.Object> [-Exclude

<System.String[]>] [-Filter <System.String>] [-Include Page 1/12

 <System.String[]>] [-Passthru] [-UseTransaction] [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Set-Acl` cmdlet changes the security descriptor of a specified item, such as a file or a registry key, to match the

values in a security descriptor that you

 supply.

 To use `Set-Acl`, use the Path or InputObject parameter to identify the item whose security descriptor you want to

change. Then, use the AclObject or

 SecurityDescriptor parameters to supply a security descriptor that has the values you want to apply. `Set-Acl` applies the

security descriptor that is supplied. It

 uses the value of the AclObject parameter as a model and changes the values in the item's security descriptor to match

the values in the AclObject parameter.

PARAMETERS

 -AclObject <System.Object>

 Specifies an ACL with the desired property values. `Set-Acl` changes the ACL of item specified by the Path or

InputObject parameter to match the values in the

 specified security object.

 You can save the output of a `Get-Acl` command in a variable and then use the AclObject parameter to pass the

variable, or type a `Get-Acl` command.

 Required? true

 Position? 1

 Default value None

 Accept pipeline input? True (ByValue)

 Accept wildcard characters? false

 -CentralAccessPolicy <System.String>

 Establishes or changes the central access policy of the item. Enter the CAP ID or friendly name of a central accessPage 2/12

policy on the computer.

 Beginning in Windows Server 2012, administrators can use Active Directory and Group Policy to set central access

policies for users and groups. For more

 information, see Dynamic Access Control: Scenario Overview

(/windows-server/identity/solution-guides/dynamic-access-control--scenario-overview).

 This parameter was introduced in Windows PowerShell 3.0.

 Required? false

 Position? 2

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -ClearCentralAccessPolicy <System.Management.Automation.SwitchParameter>

 Removes the central access policy from the specified item.

 Beginning in Windows Server 2012, administrators can use Active Directory and Group Policy to set central access

policies for users and groups. For more

 information, see Dynamic Access Control: Scenario Overview

(/windows-server/identity/solution-guides/dynamic-access-control--scenario-overview).

 This parameter was introduced in Windows PowerShell 3.0.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Exclude <System.String[]>

 Omits the specified items. The value of this parameter qualifies the Path parameter. Enter a path element or pattern,Page 3/12

such as `*.txt`. Wildcards are permitted.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? true

 -Filter <System.String>

 Specifies a filter in the provider's format or language. The value of this parameter qualifies the Path parameter. The

syntax of the filter, including the use of

 wildcards, depends on the provider. Filters are more efficient than other parameters, because the provider applies

them when retrieving the objects, rather than

 having PowerShell filter the objects after they are retrieved.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? true

 -Include <System.String[]>

 Changes only the specified items. The value of this parameter qualifies the Path parameter. Enter a path element or

pattern, such as `*.txt`. Wildcards are

 permitted.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? true

 -InputObject <System.Management.Automation.PSObject> Page 4/12

 Changes the security descriptor of the specified object. Enter a variable that contains the object or a command that

gets the object.

 You cannot pipe the object to be changed to `Set-Acl`. Instead, use the InputObject parameter explicitly in the

command.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -LiteralPath <System.String[]>

 Changes the security descriptor of the specified item. Unlike Path , the value of the LiteralPath parameter is used

exactly as it is typed. No characters are

 interpreted as wildcards. If the path includes escape characters, enclose it in single quotation marks (`'`). Single

quotation marks tell PowerShell not to

 interpret any characters as escape sequences.

 This parameter was introduced in Windows PowerShell 3.0.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -Passthru <System.Management.Automation.SwitchParameter>

 Returns an object that represents the security descriptor that was changed. By default, this cmdlet does not generate

any output.

 Page 5/12

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Path <System.String[]>

 Changes the security descriptor of the specified item. Enter the path to an item, such as a path to a file or registry key.

Wildcards are permitted.

 If you pass a security object to `Set-Acl` (either by using the AclObject or SecurityDescriptor parameters or by passing

a security object from Get-Acl to

 `Set-Acl`), and you omit the Path parameter (name and value), `Set-Acl` uses the path that is included in the security

object.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? true

 -UseTransaction <System.Management.Automation.SwitchParameter>

 Includes the command in the active transaction. This parameter is valid only when a transaction is in progress. For

more information, see about_Transactions

 (../Microsoft.PowerShell.Core/About/about_Transactions.md).

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -Confirm <System.Management.Automation.SwitchParameter> Page 6/12

 Prompts you for confirmation before running the cmdlet.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet is not run.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.Security.AccessControl.ObjectSecurity

 You can pipe an ACL object to this cmdlet.

 System.Security.AccessControl.CommonSecurityDescriptor

 You can pipe a security descriptor to this cmdlet.

OUTPUTS

 None Page 7/12

 By default, this cmdlet returns no output.

 System.Security.AccessControl.FileSecurity

 When you use the PassThru parameter, this cmdlet returns a security object. The type of the security object depends

on the type of the item.

NOTES

 The `Set-Acl` cmdlet is supported by the PowerShell file system and registry providers. As such, you can use it to

change the security descriptors of files,

 directories, and registry keys.

 Example 1: Copy a security descriptor from one file to another

 $DogACL = Get-Acl -Path "C:\Dog.txt"

 Set-Acl -Path "C:\Cat.txt" -AclObject $DogACL

 These commands copy the values from the security descriptor of the Dog.txt file to the security descriptor of the Cat.txt

file. When the commands complete, the

 security descriptors of the Dog.txt and Cat.txt files are identical.

 The first command uses the `Get-Acl` cmdlet to get the security descriptor of the Dog.txt file. The assignment operator

(`=`) stores the security descriptor in the

 value of the $DogACL variable.

 The second command uses `Set-Acl` to change the values in the ACL of Cat.txt to the values in `$DogACL`.

 The value of the Path parameter is the path to the Cat.txt file. The value of the AclObject parameter is the model ACL, in

this case, the ACL of Dog.txt as saved in

 the `$DogACL` variable.

 -- Example 2: Use the pipeline operator to pass a descriptor -- Page 8/12

 Get-Acl -Path "C:\Dog.txt" | Set-Acl -Path "C:\Cat.txt"

 This command is almost the same as the command in the previous example, except that it uses a pipeline operator (`|`) to

send the security descriptor from a `Get-Acl`

 command to a `Set-Acl` command.

 The first command uses the `Get-Acl` cmdlet to get the security descriptor of the Dog.txt file. The pipeline operator (`|`)

passes an object that represents the

 Dog.txt security descriptor to the `Set-Acl` cmdlet.

 The second command uses `Set-Acl` to apply the security descriptor of Dog.txt to Cat.txt. When the command completes,

the ACLs of the Dog.txt and Cat.txt files are

 identical.

 --- Example 3: Apply a security descriptor to multiple files ---

 $NewAcl = Get-Acl File0.txt

 Get-ChildItem -Path "C:\temp" -Recurse -Include "*.txt" -Force | Set-Acl -AclObject $NewAcl

 These commands apply the security descriptors in the File0.txt file to all text files in the `C:\Temp` directory and all of its

subdirectories.

 The first command gets the security descriptor of the File0.txt file in the current directory and uses the assignment

operator (`=`) to store it in the `$NewACL`

 variable.

 The first command in the pipeline uses the Get-ChildItem cmdlet to get all of the text files in the `C:\Temp` directory. The

Recurse parameter extends the command to

 all subdirectories of `C:\temp`. The Include parameter limits the files retrieved to those with the `.txt` file name extension.

The Force parameter gets hidden files,

 which would otherwise be excluded. (You cannot use `c:\temp\ .txt`, because the Recurse * parameter works on

directories, not on files.)

 Page 9/12

 The pipeline operator (`|`) sends the objects representing the retrieved files to the `Set-Acl` cmdlet, which applies the

security descriptor in the AclObject

 parameter to all of the files in the pipeline.

 In practice, it is best to use the WhatIf parameter with all `Set-Acl` commands that can affect more than one item. In this

case, the second command in the pipeline

 would be `Set-Acl -AclObject $NewAcl -WhatIf`. This command lists the files that would be affected by the command.

After reviewing the result, you can run the command

 again without the WhatIf parameter.

 Example 4: Disable inheritance and preserve inherited access rules

 $NewAcl = Get-Acl -Path "C:\Pets\Dog.txt"

 $isProtected = $true

 $preserveInheritance = $true

 $NewAcl.SetAccessRuleProtection($isProtected, $preserveInheritance)

 Set-Acl -Path "C:\Pets\Dog.txt" -AclObject $NewAcl

 These commands disable access inheritance from parent folders, while still preserving the existing inherited access rules.

 The first command uses the `Get-Acl` cmdlet to get the security descriptor of the Dog.txt file.

 Next, variables are created to convert the inherited access rules to explicit access rules. To protect the access rules

associated with this from inheritance, set the

 `$isProtected` variable to `$true`. To allow inheritance, set `$isProtected` to `$false`. For more information, see set

access rule protection

 (/dotnet/api/system.security.accesscontrol.objectsecurity.setaccessruleprotection).

 Set the `$preserveInheritance` variable to `$true` to preserve inherited access rules or `$false` to remove inherited

access rules. Then the access rule protection is

 updated using the SetAccessRuleProtection() method.

 The last command uses `Set-Acl` to apply the security descriptor of to Dog.txt. When the command completes, the ACLs

of the Dog.txt that were inherited from the Pets Page 10/12

 folder will be applied directly to Dog.txt, and new access policies added to Pets will not change the access to Dog.txt.

 --- Example 5: Grant Administrators Full Control of the file ---

 $NewAcl = Get-Acl -Path "C:\Pets\Dog.txt"

 # Set properties

 $identity = "BUILTIN\Administrators"

 $fileSystemRights = "FullControl"

 $type = "Allow"

 # Create new rule

 $fileSystemAccessRuleArgumentList = $identity, $fileSystemRights, $type

 $fileSystemAccessRule = New-Object -TypeName System.Security.AccessControl.FileSystemAccessRule -ArgumentList

$fileSystemAccessRuleArgumentList

 # Apply new rule

 $NewAcl.SetAccessRule($fileSystemAccessRule)

 Set-Acl -Path "C:\Pets\Dog.txt" -AclObject $NewAcl

 This command will grant the BUILTIN\Administrators group Full control of the Dog.txt file.

 The first command uses the `Get-Acl` cmdlet to get the security descriptor of the Dog.txt file.

 Next variables are created to grant the BUILTIN\Administrators group full control of the Dog.txt file. The `$identity`

variable set to the name of a user account

 (/dotnet/api/system.security.accesscontrol.filesystemaccessrule.-ctor). The `$fileSystemRights` variable set to FullControl,

and can be any one of the

 FileSystemRights (/dotnet/api/system.security.accesscontrol.filesystemrights)values that specifies the type of operation

associated with the access rule. The `$type`

 variable set to "Allow" to specifies whether to allow or deny the operation. The `$fileSystemAccessRuleArgumentList`

variable is an argument list is to be passed when

 making the new FileSystemAccessRule object. Then a new FileSystemAccessRule object is created, and the

FileSystemAccessRule object is passed to the SetAccessRule()

 method, adds the new access rule.

 The last command uses `Set-Acl` to apply the security descriptor of to Dog.txt. When the command completes, thePage 11/12

BUILTIN\Administrators group will have full control of

 the Dog.txt.

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.security/set-acl?view=powershell-5.1&WT.mc_id=ps-get

help

 Get-Acl

 FileSystemAccessRule

 ObjectSecurity.SetAccessRuleProtection

 FileSystemRights

Page 12/12

