
Windows PowerShell Get-Help on Cmdlet 'Set-AuthenticodeSignature'

PS:\>Get-HELP Set-AuthenticodeSignature -Full

NAME

 Set-AuthenticodeSignature

SYNOPSIS

 Adds an Authenticode (/windows-hardware/drivers/install/authenticode)signature to a PowerShell script or other file.

SYNTAX

 Set-AuthenticodeSignature [-Certificate] <System.Security.Cryptography.X509Certificates.X509Certificate2> -Content

<System.Byte[]> [-Force] [-HashAlgorithm

 <System.String>] [-IncludeChain <System.String>] -SourcePathOrExtension <System.String[]> [-TimestampServer

<System.String>] [-Confirm] [-WhatIf] [<CommonParameters>]

 Set-AuthenticodeSignature [-Certificate] <System.Security.Cryptography.X509Certificates.X509Certificate2> [-FilePath]

<System.String[]> [-Force] [-HashAlgorithm

 <System.String>] [-IncludeChain <System.String>] [-TimestampServer <System.String>] [-Confirm] [-WhatIf]

[<CommonParameters>]

 Set-AuthenticodeSignature [-Certificate] <System.Security.Cryptography.X509Certificates.X509Certificate2> [-Force]

[-HashAlgorithm <System.String>] [-IncludeChain Page 1/9

 <System.String>] -LiteralPath <System.String[]> [-TimestampServer <System.String>] [-Confirm] [-WhatIf]

[<CommonParameters>]

DESCRIPTION

 The `Set-AuthenticodeSignature` cmdlet adds an Authenticode signature to any file that supports Subject Interface

Package (SIP).

 In a PowerShell script file, the signature takes the form of a block of text that indicates the end of the instructions that are

executed in the script. If there is a

 signature in the file when this cmdlet runs, that signature is removed.

PARAMETERS

 -Certificate <System.Security.Cryptography.X509Certificates.X509Certificate2>

 Specifies the certificate that will be used to sign the script or file. Enter a variable that stores an object representing the

certificate or an expression that

 gets the certificate.

 To find a certificate, use `Get-PfxCertificate` or use the `Get-ChildItem` cmdlet in the Certificate `Cert:` drive. If the

certificate is not valid or does not

 have `code-signing` authority, the command fails.

 Required? true

 Position? 1

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Content <System.Byte[]>

 This parameter appears in the syntax listing because it is defined in the base class that `Set-AuthenticodeSignature` is

derived from. However, support for this

 parameter is not implemented in `Set-AuthenticodeSignature`. Page 2/9

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -FilePath <System.String[]>

 Specifies the path to a file that is being signed.

 Required? true

 Position? 1

 Default value None

 Accept pipeline input? True (ByPropertyName, ByValue)

 Accept wildcard characters? false

 -Force <System.Management.Automation.SwitchParameter>

 Allows the cmdlet to append a signature to a read-only file. Even using the Force parameter, the cmdlet cannot

override security restrictions.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -HashAlgorithm <System.String>

 Specifies the hashing algorithm that Windows uses to compute the digital signature for the file.

 The default is SHA1. Files that are signed with a different hashing algorithm might not be recognized on other systems.

Which algorithms are supported depends on

 the version of the operating system.

 Page 3/9

 For a list of possible values, see HashAlgorithmName Struct

(/dotnet/api/system.security.cryptography.hashalgorithmname?view=netframework-4.7.2#properties).

 Required? false

 Position? named

 Default value Null

 Accept pipeline input? False

 Accept wildcard characters? false

 -IncludeChain <System.String>

 Determines which certificates in the certificate trust chain are included in the digital signature. NotRoot is the default.

 Valid values are:

 - Signer: Includes only the signer's certificate.

 - NotRoot: Includes all of the certificates in the certificate chain, except for the root authority.

 - All: Includes all the certificates in the certificate chain.

 Required? false

 Position? named

 Default value NotRoot

 Accept pipeline input? False

 Accept wildcard characters? false

 -LiteralPath <System.String[]>

 Specifies the path to a file that is being signed. Unlike FilePath , the value of the LiteralPath parameter is used exactly

as it is typed. No characters are

 interpreted as wildcards. If the path includes escape characters, enclose it in single quotation marks. Single quotation

marks tell PowerShell not to interpret

 any characters as escape sequences.

 Page 4/9

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -SourcePathOrExtension <System.String[]>

 This parameter appears in the syntax listing because it is defined in the base class that `Set-AuthenticodeSignature` is

derived from. However, support for this

 parameter is not implemented in `Set-AuthenticodeSignature`.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? True (ByPropertyName, ByValue)

 Accept wildcard characters? false

 -TimestampServer <System.String>

 Uses the specified time stamp server to add a time stamp to the signature. Type the URL of the time stamp server as a

string.

 The time stamp represents the exact time that the certificate was added to the file. A time stamp prevents the script

from failing if the certificate expires

 because users and programs can verify that the certificate was valid at the time of signing.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet. Page 5/9

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet is not run.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.String

 You can pipe a string that contains the file path to this cmdlet.

OUTPUTS

 System.Management.Automation.Signature

 This cmdlet returns a Signature object representing the value it set.

NOTES Page 6/9

 Example 1 - Sign a script using a certificate from the local certificate store

 $cert=Get-ChildItem -Path Cert:\CurrentUser\My -CodeSigningCert

 $signingParameters = @{

 FilePath = 'PsTestInternet2.ps1'

 Certificate = $cert

 HashAlgorithm = 'SHA256'

 }

 Set-AuthenticodeSignature @signingParameters

 The first command uses the `Get-ChildItem` cmdlet and the PowerShell certificate provider to get the certificates in the

`Cert:\CurrentUser\My` subdirectory of the

 certificate store. The `Cert:` drive is the drive exposed by the certificate provider. The CodeSigningCert parameter, which

is supported only by the certificate

 provider, limits the certificates retrieved to those with code-signing authority. The command stores the result in the `$cert`

variable.

 The second command defines the `$signingParameters` variable as a HashTable with the parameters for the

`Set-AuthenticodeSignature` cmdlet to sign the

 `PSTestInternet2.ps1` script. It uses the FilePath parameter to specify the name of the script, the Certificate parameter to

specify that the certificate is stored in

 the `$cert` variable, and the HashAlgorithm parameter to set the hashing algorithm to SHA256.

 The third command signs the script by splatting the parameters defined in `$signingParameters`.

 > [!NOTE] > Using the CodeSigningCert parameter with `Get-ChildItem` only returns certificates that have > code-signing

authority and contain a private key. If there

 is no private key, the certificates > cannot be used for signing.

 Example 2 - Sign a script using a certificate from a PFX file Page 7/9

 $cert = Get-PfxCertificate -FilePath C:\Test\Mysign.pfx

 $signingParameters = @{

 FilePath = 'ServerProps.ps1'

 Certificate = $cert

 HashAlgorithm = 'SHA256'

 }

 Set-AuthenticodeSignature @signingParameters

 The first command uses the `Get-PfxCertificate` cmdlet to load the C:\Test\MySign.pfx certificate into the `$cert` variable.

 The second command defines the `$signingParameters` variable as a HashTable with the parameters for the

`Set-AuthenticodeSignature` cmdlet to sign the

 `ServerProps.ps1` script. It uses the FilePath parameter to specify the name of the script, the Certificate parameter to

specify that the certificate is stored in the

 `$cert` variable, and the HashAlgorithm parameter to set the hashing algorithm to SHA256.

 The third command signs the script by splatting the parameters defined in `$signingParameters`.

 If the certificate file is password protected, PowerShell prompts you for the password.

 - Example 3 - Add a signature that includes the root authority -

 $signingParameters = @{

 FilePath = 'C:\scripts\Remodel.ps1'

 Certificate = $cert

 HashAlgorithm = 'SHA256'

 IncludeChain = 'All'

 TimestampServer = 'http://timestamp.fabrikam.com/scripts/timstamper.dll'

 }

 Set-AuthenticodeSignature @signingParameters

 The first command defines the `$signingParameters` variable as a HashTable with the parameters for the

`Set-AuthenticodeSignature` cmdlet to sign the script. It uses Page 8/9

 the FilePath parameter to specify the path to the script, the Certificate parameter to specify that the certificate is stored in

the `$cert` variable, and the

 HashAlgorithm parameter to set the hashing algorithm to SHA256. It uses the IncludeChain parameter to include all of the

signatures in the trust chain, including the

 root authority. It also uses the TimeStampServer parameter to add a timestamp to the signature. This prevents the script

from failing when the certificate expires.

 The second command signs the script by splatting the parameters defined in `$signingParameters`.

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.security/set-authenticodesignature?view=powershell-5.1

&WT.mc_id=ps-gethelp

 Get-AuthenticodeSignature

 Get-ExecutionPolicy

 Get-PfxCertificate

 Set-ExecutionPolicy

 about_Execution_Policies

 about_Signing

Page 9/9

