
Windows PowerShell Get-Help on Cmdlet 'Set-PSBreakpoint'

PS:\>Get-HELP Set-PSBreakpoint -Full

NAME

 Set-PSBreakpoint

SYNOPSIS

 Sets a breakpoint on a line, command, or variable.

SYNTAX

 Set-PSBreakpoint [[-Script] <System.String[]>] [-Line] <System.Int32[]> [[-Column] <System.Int32>] [-Action

<System.Management.Automation.ScriptBlock>]

 [<CommonParameters>]

 Set-PSBreakpoint [[-Script] <System.String[]>] [-Action <System.Management.Automation.ScriptBlock>] -Command

<System.String[]> [<CommonParameters>]

 Set-PSBreakpoint [[-Script] <System.String[]>] [-Action <System.Management.Automation.ScriptBlock>] [-Mode {Read |

Write | ReadWrite}] -Variable <System.String[]>

 [<CommonParameters>]

 Page 1/11

DESCRIPTION

 The `Set-PSBreakpoint` cmdlet sets a breakpoint in a script or in any command run in the current session. You can use

`Set-PSBreakpoint` to set a breakpoint before

 executing a script or running a command, or during debugging, when stopped at another breakpoint.

 `Set-PSBreakpoint` cannot set a breakpoint on a remote computer. To debug a script on a remote computer, copy the

script to the local computer and then debug it

 locally.

 Each `Set-PSBreakpoint` command creates one of the following three types of breakpoints:

 - Line breakpoint - Sets breakpoints at particular line and column coordinates.

 - Command breakpoint - Sets breakpoints on commands and functions.

 - Variable breakpoint - Sets breakpoints on variables.

 You can set a breakpoint on multiple lines, commands, or variables in a single `Set-PSBreakpoint` command, but each

`Set-PSBreakpoint` command sets only one type of

 breakpoint.

 At a breakpoint, PowerShell temporarily stops executing and gives control to the debugger. The command prompt

changes to `DBG>`, and a set of debugger commands become

 available for use. However, you can use the Action parameter to specify an alternate response, such as conditions for the

breakpoint or instructions to perform

 additional tasks such as logging or diagnostics.

 The `Set-PSBreakpoint` cmdlet is one of several cmdlets designed for debugging PowerShell scripts. For more

information about the PowerShell debugger, see

 about_Debuggers (../Microsoft.PowerShell.Core/About/about_Debuggers.md).

Page 2/11

PARAMETERS

 -Action <System.Management.Automation.ScriptBlock>

 Specifies commands that run at each breakpoint instead of breaking. Enter a script block that contains the commands.

You can use this parameter to set conditional

 breakpoints or to perform other tasks, such as testing or logging.

 If this parameter is omitted, or no action is specified, execution stops at the breakpoint, and the debugger starts.

 When the Action parameter is used, the Action script block runs at each breakpoint. Execution does not stop unless the

script block includes the Break keyword. If

 you use the Continue keyword in the script block, execution resumes until the next breakpoint.

 For more information, see about_Script_Blocks (../Microsoft.PowerShell.Core/About/about_Script_Blocks.md),

about_Break

 (../Microsoft.PowerShell.Core/About/about_Break.md), and about_Continue

(../Microsoft.PowerShell.Core/About/about_Continue.md).

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Column <System.Int32>

 Specifies the column number of the column in the script file on which execution stops. Enter only one column number.

The default is column 1.

 The Column value is used with the value of the Line parameter to specify the breakpoint. If the Line parameter

specifies multiple lines, the Column parameter sets

 a breakpoint at the specified column on each of the specified lines. PowerShell stops executing before the statement or

expression that includes the character at

 the specified line and column position.

 Page 3/11

 Columns are counted from the top left margin beginning with column number 1 (not 0). If you specify a column that

does not exist in the script, an error is not

 declared, but the breakpoint is never executed.

 Required? false

 Position? 2

 Default value 1

 Accept pipeline input? False

 Accept wildcard characters? false

 -Command <System.String[]>

 Sets a command breakpoint. Enter cmdlet names, such as `Get-Process`, or function names. Wildcards are permitted.

 Execution stops just before each instance of each command is executed. If the command is a function, execution stops

each time the function is called and at each

 BEGIN, PROCESS, and END section.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? true

 -Line <System.Int32[]>

 Sets a line breakpoint in a script. Enter one or more line numbers, separated by commas. PowerShell stops

immediately before executing the statement that begins

 on each of the specified lines.

 Lines are counted from the top left margin of the script file beginning with line number 1 (not 0). If you specify a blank

line, execution stops before the next

 non-blank line. If the line is out of range, the breakpoint is never hit.

 Required? true Page 4/11

 Position? 1

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Mode <System.Management.Automation.VariableAccessMode>

 Specifies the mode of access that triggers variable breakpoints. The default is Write .

 This parameter is valid only when the Variable parameter is used in the command. The mode applies to all breakpoints

set in the command. The acceptable values for

 this parameter are:

 - Write - Stops execution immediately before a new value is written to the variable. - Read - Stops execution when the

variable is read, that is, when its value

 is accessed, either to be assigned, displayed, or used. In read mode, execution does not stop when the value of the

variable changes. - ReadWrite - Stops

 execution when the variable is read or written.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Script <System.String[]>

 Specifies an array of script files that this cmdlet sets a breakpoint in. Enter the paths and file names of one or more

script files. If the files are in the

 current directory, you can omit the path. Wildcards are permitted.

 By default, variable breakpoints and command breakpoints are set on any command that runs in the current session.

This parameter is required only when setting a

 line breakpoint.

 Page 5/11

 Required? false

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Variable <System.String[]>

 Specifies an array of variables that this cmdlet sets breakpoints on. Enter a comma-separated list of variables without

dollar signs (`$`).

 Use the Mode parameter to determine the mode of access that triggers the breakpoints. The default mode, Write, stops

execution just before a new value is written

 to the variable.

 Required? true

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 None

 You can't pipe objects to this cmdlet.

OUTPUTS

 System.Management.Automation.CommandBreakpoint Page 6/11

 System.Management.Automation.LineBreakpoint

 System.Management.Automation.VariableBreakpoint

 `Set-PSBreakpoint` returns an object that represents each breakpoint that it sets.

NOTES

 Windows PowerShell includes the following aliases for `Set-PSBreakpoint`:

 - `sbp`

 - `Set-PSBreakpoint` cannot set a breakpoint on a remote computer. To debug a script on a remote computer, copy

the script to the local computer and then debug

 it locally. - When you set a breakpoint on more than one line, command, or variable, `Set-PSBreakpoint` generates a

breakpoint object for each entry. - When

 setting a breakpoint on a function or variable at the command prompt, you can set the breakpoint before or after you

create the function or variable.

 ------------ Example 1: Set a breakpoint on a line ------------

 Set-PSBreakpoint -Script "sample.ps1" -Line 5

 Column : 0

 Line : 5

 Action :

 Enabled : True

 HitCount : 0

 Id : 0 Page 7/11

 Script : C:\ps-test\sample.ps1

 ScriptName : C:\ps-test\sample.ps1

 When you set a new breakpoint by line number, the `Set-PSBreakpoint` cmdlet generates a line breakpoint object (

System.Management.Automation.LineBreakpoint) that

 includes the breakpoint ID and hit count.

 ---------- Example 2: Set a breakpoint on a function ----------

 Set-PSBreakpoint -Command "Increment" -Script "sample.ps1"

 Command : Increment

 Action :

 Enabled : True

 HitCount : 0

 Id : 1

 Script : C:\ps-test\sample.ps1

 ScriptName : C:\ps-test\sample.ps1

 The result is a command breakpoint object. Before the script runs, the value of the HitCount property is 0.

 ---------- Example 3: Set a breakpoint on a variable ----------

 Set-PSBreakpoint -Script "sample.ps1" -Variable "Server" -Mode ReadWrite

 Example 4: Set a breakpoint on every command that begins with specified text

 Set-PSBreakpoint -Script Sample.ps1 -Command "write*"

 Example 5: Set a breakpoint depending on the value of a variable

 Set-PSBreakpoint -Script "test.ps1" -Command "DiskTest" -Action { if ($Disk -gt 2) { break } }

 Page 8/11

 The value of the Action is a script block that tests the value of the `$Disk` variable in the function.

 The action uses the `break` keyword to stop execution if the condition is met. The alternative (and the default) is Continue

.

 ---------- Example 6: Set a breakpoint on a function ----------

 PS> Set-PSBreakpoint -Command "checklog"

 Id : 0

 Command : checklog

 Enabled : True

 HitCount : 0

 Action :

 function CheckLog {

 >> get-eventlog -log Application |

 >> where {($_.source -like "TestApp") -and ($_.Message -like "*failed*")}

 >>}

 >>

 PS> Checklog

 DEBUG: Hit breakpoint(s)

 DEBUG: Function breakpoint on 'prompt:Checklog'

 --------- Example 7: Set breakpoints on multiple lines ---------

 PS C:\> Set-PSBreakpoint -Script "sample.ps1" -Line 1, 14, 19 -Column 2 -Action {&(log.ps1)}

 Column : 2

 Line : 1

 Action :

 Enabled : True

 HitCount : 0

 Id : 6 Page 9/11

 Script : C:\ps-test\sample.ps1

 ScriptName : C:\ps-test\sample.ps1

 Column : 2

 Line : 14

 Action :

 Enabled : True

 HitCount : 0

 Id : 7

 Script : C:\ps-test\sample.ps1

 ScriptName : C:\ps-test\sample.ps1

 Column : 2

 Line : 19

 Action :

 Enabled : True

 HitCount : 0

 Id : 8

 Script : C:\ps-test\sample.ps1

 ScriptName : C:\ps-test\sample.ps1

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/set-psbreakpoint?view=powershell-5.1&WT.mc_id

=ps-gethelp

 Disable-PSBreakpoint

 Enable-PSBreakpoint

 Get-PSBreakpoint

 Get-PSCallStack Page 10/11

 Remove-PSBreakpoint

Page 11/11

